solana_accounts_db/
accounts_hash.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
use {
    crate::{
        accounts_db::{AccountStorageEntry, PUBKEY_BINS_FOR_CALCULATING_HASHES},
        active_stats::{ActiveStatItem, ActiveStats},
        ancestors::Ancestors,
        pubkey_bins::PubkeyBinCalculator24,
    },
    bytemuck_derive::{Pod, Zeroable},
    log::*,
    memmap2::MmapMut,
    rayon::prelude::*,
    solana_lattice_hash::lt_hash::LtHash,
    solana_measure::{measure::Measure, measure_us},
    solana_sdk::{
        hash::{Hash, Hasher, HASH_BYTES},
        pubkey::Pubkey,
        rent_collector::RentCollector,
        slot_history::Slot,
        sysvar::epoch_schedule::EpochSchedule,
    },
    std::{
        borrow::Borrow,
        convert::TryInto,
        io::{Seek, SeekFrom, Write},
        path::PathBuf,
        sync::{
            atomic::{AtomicU64, AtomicUsize, Ordering},
            Arc,
        },
        thread, time,
    },
    tempfile::tempfile_in,
};
pub const MERKLE_FANOUT: usize = 16;

/// 1 file containing account hashes sorted by pubkey, mapped into memory
struct MmapAccountHashesFile {
    /// raw slice of `Hash` values. Can be a larger slice than `count`
    mmap: MmapMut,
    /// # of valid Hash entries in `mmap`
    count: usize,
}

impl MmapAccountHashesFile {
    /// return a slice of account hashes starting at 'index'
    fn read(&self, index: usize) -> &[Hash] {
        let start = std::mem::size_of::<Hash>() * index;
        let end = std::mem::size_of::<Hash>() * self.count;
        let bytes = &self.mmap[start..end];
        bytemuck::cast_slice(bytes)
    }

    /// write a hash to the end of mmap file.
    fn write(&mut self, hash: &Hash) {
        let start = self.count * std::mem::size_of::<Hash>();
        let end = start + std::mem::size_of::<Hash>();
        self.mmap[start..end].copy_from_slice(hash.as_ref());
        self.count += 1;
    }
}

/// 1 file containing account hashes sorted by pubkey
struct AccountHashesFile {
    /// # hashes and an open file that will be deleted on drop. None if there are zero hashes to represent, and thus, no file.
    writer: Option<MmapAccountHashesFile>,
    /// The directory where temporary cache files are put
    dir_for_temp_cache_files: PathBuf,
    /// # bytes allocated
    capacity: usize,
}

impl AccountHashesFile {
    /// return a mmap reader that can be accessed  by slice
    fn get_reader(&mut self) -> Option<MmapAccountHashesFile> {
        std::mem::take(&mut self.writer)
    }

    /// # hashes stored in this file
    fn count(&self) -> usize {
        self.writer
            .as_ref()
            .map(|writer| writer.count)
            .unwrap_or_default()
    }

    /// write 'hash' to the file
    /// If the file isn't open, create it first.
    fn write(&mut self, hash: &Hash) {
        if self.writer.is_none() {
            // we have hashes to write but no file yet, so create a file that will auto-delete on drop

            let get_file = || -> Result<_, std::io::Error> {
                let mut data = tempfile_in(&self.dir_for_temp_cache_files).unwrap_or_else(|err| {
                    panic!(
                        "Unable to create file within {}: {err}",
                        self.dir_for_temp_cache_files.display()
                    )
                });

                // Theoretical performance optimization: write a zero to the end of
                // the file so that we won't have to resize it later, which may be
                // expensive.
                assert!(self.capacity > 0);
                data.seek(SeekFrom::Start((self.capacity - 1) as u64))?;
                data.write_all(&[0])?;
                data.rewind()?;
                data.flush()?;
                Ok(data)
            };

            // Retry 5 times to allocate the AccountHashesFile. The memory might be fragmented and
            // causes memory allocation failure. Therefore, let's retry after failure. Hoping that the
            // kernel has the chance to defrag the memory between the retries, and retries succeed.
            let mut num_retries = 0;
            let data = loop {
                num_retries += 1;

                match get_file() {
                    Ok(data) => {
                        break data;
                    }
                    Err(err) => {
                        info!(
                            "Unable to create account hashes file within {}: {}, retry counter {}",
                            self.dir_for_temp_cache_files.display(),
                            err,
                            num_retries
                        );

                        if num_retries > 5 {
                            panic!(
                                "Unable to create account hashes file within {}: after {} retries",
                                self.dir_for_temp_cache_files.display(),
                                num_retries
                            );
                        }
                        datapoint_info!(
                            "retry_account_hashes_file_allocation",
                            ("retry", num_retries, i64)
                        );
                        thread::sleep(time::Duration::from_millis(num_retries * 100));
                    }
                }
            };

            //UNSAFE: Required to create a Mmap
            let map = unsafe { MmapMut::map_mut(&data) };
            let map = map.unwrap_or_else(|e| {
                error!(
                    "Failed to map the data file (size: {}): {}.\n
                        Please increase sysctl vm.max_map_count or equivalent for your platform.",
                    self.capacity, e
                );
                std::process::exit(1);
            });

            self.writer = Some(MmapAccountHashesFile {
                mmap: map,
                count: 0,
            });
        }
        self.writer.as_mut().unwrap().write(hash);
    }
}

/// parameters to calculate accounts hash
#[derive(Debug)]
pub struct CalcAccountsHashConfig<'a> {
    /// true to use a thread pool dedicated to bg operations
    pub use_bg_thread_pool: bool,
    /// 'ancestors' is used to get storages
    pub ancestors: Option<&'a Ancestors>,
    /// does hash calc need to consider account data that exists in the write cache?
    /// if so, 'ancestors' will be used for this purpose as well as storages.
    pub epoch_schedule: &'a EpochSchedule,
    pub rent_collector: &'a RentCollector,
    /// used for tracking down hash mismatches after the fact
    pub store_detailed_debug_info_on_failure: bool,
}

// smallest, 3 quartiles, largest, average
pub type StorageSizeQuartileStats = [usize; 6];

#[derive(Debug, Default)]
pub struct HashStats {
    pub total_us: u64,
    pub mark_time_us: u64,
    pub cache_hash_data_us: u64,
    pub scan_time_total_us: u64,
    pub zeros_time_total_us: u64,
    pub hash_time_total_us: u64,
    pub sort_time_total_us: u64,
    pub hash_total: usize,
    pub num_snapshot_storage: usize,
    pub scan_chunks: usize,
    pub num_slots: usize,
    pub num_dirty_slots: usize,
    pub collect_snapshots_us: u64,
    pub storage_sort_us: u64,
    pub storage_size_quartiles: StorageSizeQuartileStats,
    pub oldest_root: Slot,
    pub roots_older_than_epoch: AtomicUsize,
    pub accounts_in_roots_older_than_epoch: AtomicUsize,
    pub append_vec_sizes_older_than_epoch: AtomicUsize,
    pub longest_ancient_scan_us: AtomicU64,
    pub sum_ancient_scans_us: AtomicU64,
    pub count_ancient_scans: AtomicU64,
    pub pubkey_bin_search_us: AtomicU64,
    pub num_zero_lamport_accounts: AtomicU64,
    pub num_zero_lamport_accounts_ancient: Arc<AtomicU64>,
}
impl HashStats {
    pub fn calc_storage_size_quartiles(&mut self, storages: &[Arc<AccountStorageEntry>]) {
        let mut sum = 0;
        let mut sizes = storages
            .iter()
            .map(|storage| {
                let cap = storage.accounts.capacity() as usize;
                sum += cap;
                cap
            })
            .collect::<Vec<_>>();
        sizes.sort_unstable();
        let len = sizes.len();
        self.storage_size_quartiles = if len == 0 {
            StorageSizeQuartileStats::default()
        } else {
            [
                *sizes.first().unwrap(),
                sizes[len / 4],
                sizes[len * 2 / 4],
                sizes[len * 3 / 4],
                *sizes.last().unwrap(),
                sum / len,
            ]
        };
    }

    pub fn log(&self) {
        datapoint_info!(
            "calculate_accounts_hash_from_storages",
            ("total_us", self.total_us, i64),
            ("mark_time_us", self.mark_time_us, i64),
            ("cache_hash_data_us", self.cache_hash_data_us, i64),
            ("accounts_scan_us", self.scan_time_total_us, i64),
            ("eliminate_zeros_us", self.zeros_time_total_us, i64),
            ("hash_us", self.hash_time_total_us, i64),
            ("sort_us", self.sort_time_total_us, i64),
            ("hash_total", self.hash_total, i64),
            ("storage_sort_us", self.storage_sort_us, i64),
            ("collect_snapshots_us", self.collect_snapshots_us, i64),
            ("num_snapshot_storage", self.num_snapshot_storage, i64),
            ("scan_chunks", self.scan_chunks, i64),
            ("num_slots", self.num_slots, i64),
            ("num_dirty_slots", self.num_dirty_slots, i64),
            ("storage_size_min", self.storage_size_quartiles[0], i64),
            (
                "storage_size_quartile_1",
                self.storage_size_quartiles[1],
                i64
            ),
            (
                "storage_size_quartile_2",
                self.storage_size_quartiles[2],
                i64
            ),
            (
                "storage_size_quartile_3",
                self.storage_size_quartiles[3],
                i64
            ),
            ("storage_size_max", self.storage_size_quartiles[4], i64),
            ("storage_size_avg", self.storage_size_quartiles[5], i64),
            (
                "roots_older_than_epoch",
                self.roots_older_than_epoch.load(Ordering::Relaxed),
                i64
            ),
            ("oldest_root", self.oldest_root, i64),
            (
                "longest_ancient_scan_us",
                self.longest_ancient_scan_us.load(Ordering::Relaxed),
                i64
            ),
            (
                "sum_ancient_scans_us",
                self.sum_ancient_scans_us.load(Ordering::Relaxed),
                i64
            ),
            (
                "count_ancient_scans",
                self.count_ancient_scans.load(Ordering::Relaxed),
                i64
            ),
            (
                "append_vec_sizes_older_than_epoch",
                self.append_vec_sizes_older_than_epoch
                    .load(Ordering::Relaxed),
                i64
            ),
            (
                "accounts_in_roots_older_than_epoch",
                self.accounts_in_roots_older_than_epoch
                    .load(Ordering::Relaxed),
                i64
            ),
            (
                "pubkey_bin_search_us",
                self.pubkey_bin_search_us.load(Ordering::Relaxed),
                i64
            ),
            (
                "num_zero_lamport_accounts",
                self.num_zero_lamport_accounts.load(Ordering::Relaxed),
                i64
            ),
            (
                "num_zero_lamport_accounts_ancient",
                self.num_zero_lamport_accounts_ancient
                    .load(Ordering::Relaxed),
                i64
            ),
        );
    }
}

/// While scanning appendvecs, this is the info that needs to be extracted, de-duped, and sorted from what is stored in an append vec.
/// Note this can be saved/loaded during hash calculation to a memory mapped file whose contents are
/// [CalculateHashIntermediate]
#[repr(C)]
#[derive(Debug, PartialEq, Eq, Clone, Copy, Pod, Zeroable)]
pub struct CalculateHashIntermediate {
    pub hash: AccountHash,
    pub lamports: u64,
    pub pubkey: Pubkey,
}

// In order to safely guarantee CalculateHashIntermediate is Pod, it cannot have any padding
const _: () = assert!(
    std::mem::size_of::<CalculateHashIntermediate>()
        == std::mem::size_of::<AccountHash>()
            + std::mem::size_of::<u64>()
            + std::mem::size_of::<Pubkey>(),
    "CalculateHashIntermediate cannot have any padding"
);

#[derive(Debug, PartialEq, Eq)]
struct CumulativeOffset {
    /// Since the source data is at most 2D, two indexes are enough.
    index: [usize; 2],
    start_offset: usize,
}

trait ExtractSliceFromRawData<'b, T: 'b> {
    fn extract<'a>(&'b self, offset: &'a CumulativeOffset, start: usize) -> &'b [T];
}

impl<'b, T: 'b> ExtractSliceFromRawData<'b, T> for Vec<Vec<T>> {
    fn extract<'a>(&'b self, offset: &'a CumulativeOffset, start: usize) -> &'b [T] {
        &self[offset.index[0]][start..]
    }
}

impl<'b, T: 'b> ExtractSliceFromRawData<'b, T> for Vec<Vec<Vec<T>>> {
    fn extract<'a>(&'b self, offset: &'a CumulativeOffset, start: usize) -> &'b [T] {
        &self[offset.index[0]][offset.index[1]][start..]
    }
}

// Allow retrieving &[start..end] from a logical src: Vec<T>, where src is really Vec<Vec<T>> (or later Vec<Vec<Vec<T>>>)
// This model prevents callers from having to flatten which saves both working memory and time.
#[derive(Default, Debug)]
struct CumulativeOffsets {
    cumulative_offsets: Vec<CumulativeOffset>,
    total_count: usize,
}

/// used by merkle tree calculation to lookup account hashes by overall index
#[derive(Default)]
struct CumulativeHashesFromFiles {
    /// source of hashes in order
    readers: Vec<MmapAccountHashesFile>,
    /// look up reader index and offset by overall index
    cumulative: CumulativeOffsets,
}

impl CumulativeHashesFromFiles {
    /// Calculate offset from overall index to which file and offset within that file based on the length of each hash file.
    /// Also collect readers to access the data.
    fn from_files(hashes: Vec<AccountHashesFile>) -> Self {
        let mut readers = Vec::with_capacity(hashes.len());
        let cumulative = CumulativeOffsets::new(hashes.into_iter().filter_map(|mut hash_file| {
            // ignores all hashfiles that have zero entries
            hash_file.get_reader().map(|reader| {
                let count = reader.count;
                readers.push(reader);
                count
            })
        }));
        Self {
            cumulative,
            readers,
        }
    }

    /// total # of items referenced
    fn total_count(&self) -> usize {
        self.cumulative.total_count
    }

    // return the biggest slice possible that starts at the overall index 'start'
    fn get_slice(&self, start: usize) -> &[Hash] {
        let (start, offset) = self.cumulative.find(start);
        let data_source_index = offset.index[0];
        let data = &self.readers[data_source_index];
        // unwrap here because we should never ask for data that doesn't exist. If we do, then cumulative calculated incorrectly.
        data.read(start)
    }
}

impl CumulativeOffsets {
    fn new<I>(iter: I) -> Self
    where
        I: Iterator<Item = usize>,
    {
        let mut total_count: usize = 0;
        let cumulative_offsets: Vec<_> = iter
            .enumerate()
            .filter_map(|(i, len)| {
                if len > 0 {
                    let result = CumulativeOffset {
                        index: [i, i],
                        start_offset: total_count,
                    };
                    total_count += len;
                    Some(result)
                } else {
                    None
                }
            })
            .collect();

        Self {
            cumulative_offsets,
            total_count,
        }
    }

    fn from_raw<T>(raw: &[Vec<T>]) -> Self {
        Self::new(raw.iter().map(|v| v.len()))
    }

    /// find the index of the data source that contains 'start'
    fn find_index(&self, start: usize) -> usize {
        assert!(!self.cumulative_offsets.is_empty());
        match self.cumulative_offsets[..].binary_search_by(|index| index.start_offset.cmp(&start)) {
            Ok(index) => index,
            Err(index) => index - 1, // we would insert at index so we are before the item at index
        }
    }

    /// given overall start index 'start'
    /// return ('start', which is the offset into the data source at 'index',
    ///     and 'index', which is the data source to use)
    fn find(&self, start: usize) -> (usize, &CumulativeOffset) {
        let index = self.find_index(start);
        let index = &self.cumulative_offsets[index];
        let start = start - index.start_offset;
        (start, index)
    }

    // return the biggest slice possible that starts at 'start'
    fn get_slice<'a, 'b, T, U>(&'a self, raw: &'b U, start: usize) -> &'b [T]
    where
        U: ExtractSliceFromRawData<'b, T> + 'b,
    {
        let (start, index) = self.find(start);
        raw.extract(index, start)
    }
}

#[derive(Debug)]
pub struct AccountsHasher<'a> {
    pub zero_lamport_accounts: ZeroLamportAccounts,
    /// The directory where temporary cache files are put
    pub dir_for_temp_cache_files: PathBuf,
    pub(crate) active_stats: &'a ActiveStats,
}

/// Pointer to a specific item in chunked accounts hash slices.
#[derive(Debug, Clone, Copy)]
struct SlotGroupPointer {
    /// slot group index
    slot_group_index: usize,
    /// offset within a slot group
    offset: usize,
}

/// A struct for the location of an account hash item inside chunked accounts hash slices.
#[derive(Debug)]
struct ItemLocation<'a> {
    /// account's pubkey
    key: &'a Pubkey,
    /// pointer to the item in slot group slices
    pointer: SlotGroupPointer,
}

impl<'a> AccountsHasher<'a> {
    pub fn calculate_hash(hashes: Vec<Vec<Hash>>) -> (Hash, usize) {
        let cumulative_offsets = CumulativeOffsets::from_raw(&hashes);

        let hash_total = cumulative_offsets.total_count;
        let result = AccountsHasher::compute_merkle_root_from_slices(
            hash_total,
            MERKLE_FANOUT,
            None,
            |start: usize| cumulative_offsets.get_slice(&hashes, start),
            None,
        );
        (result.0, hash_total)
    }

    pub fn compute_merkle_root(hashes: Vec<(Pubkey, Hash)>, fanout: usize) -> Hash {
        Self::compute_merkle_root_loop(hashes, fanout, |t| &t.1)
    }

    // this function avoids an infinite recursion compiler error
    pub fn compute_merkle_root_recurse(hashes: Vec<Hash>, fanout: usize) -> Hash {
        Self::compute_merkle_root_loop(hashes, fanout, |t| t)
    }

    pub fn div_ceil(x: usize, y: usize) -> usize {
        let mut result = x / y;
        if x % y != 0 {
            result += 1;
        }
        result
    }

    // For the first iteration, there could be more items in the tuple than just hash and lamports.
    // Using extractor allows us to avoid an unnecessary array copy on the first iteration.
    pub fn compute_merkle_root_loop<T, F>(hashes: Vec<T>, fanout: usize, extractor: F) -> Hash
    where
        F: Fn(&T) -> &Hash + std::marker::Sync,
        T: std::marker::Sync,
    {
        if hashes.is_empty() {
            return Hasher::default().result();
        }

        let mut time = Measure::start("time");

        let total_hashes = hashes.len();
        let chunks = Self::div_ceil(total_hashes, fanout);

        let result: Vec<_> = (0..chunks)
            .into_par_iter()
            .map(|i| {
                let start_index = i * fanout;
                let end_index = std::cmp::min(start_index + fanout, total_hashes);

                let mut hasher = Hasher::default();
                for item in hashes.iter().take(end_index).skip(start_index) {
                    let h = extractor(item);
                    hasher.hash(h.as_ref());
                }

                hasher.result()
            })
            .collect();
        time.stop();
        debug!("hashing {} {}", total_hashes, time);

        if result.len() == 1 {
            result[0]
        } else {
            Self::compute_merkle_root_recurse(result, fanout)
        }
    }

    fn calculate_three_level_chunks(
        total_hashes: usize,
        fanout: usize,
        max_levels_per_pass: Option<usize>,
        specific_level_count: Option<usize>,
    ) -> (usize, usize, bool) {
        const THREE_LEVEL_OPTIMIZATION: usize = 3; // this '3' is dependent on the code structure below where we manually unroll
        let target = fanout.pow(THREE_LEVEL_OPTIMIZATION as u32);

        // Only use the 3 level optimization if we have at least 4 levels of data.
        // Otherwise, we'll be serializing a parallel operation.
        let threshold = target * fanout;
        let mut three_level = max_levels_per_pass.unwrap_or(usize::MAX) >= THREE_LEVEL_OPTIMIZATION
            && total_hashes >= threshold;
        if three_level {
            if let Some(specific_level_count_value) = specific_level_count {
                three_level = specific_level_count_value >= THREE_LEVEL_OPTIMIZATION;
            }
        }
        let (num_hashes_per_chunk, levels_hashed) = if three_level {
            (target, THREE_LEVEL_OPTIMIZATION)
        } else {
            (fanout, 1)
        };
        (num_hashes_per_chunk, levels_hashed, three_level)
    }

    // This function is designed to allow hashes to be located in multiple, perhaps multiply deep vecs.
    // The caller provides a function to return a slice from the source data.
    fn compute_merkle_root_from_slices<'b, F, T>(
        total_hashes: usize,
        fanout: usize,
        max_levels_per_pass: Option<usize>,
        get_hash_slice_starting_at_index: F,
        specific_level_count: Option<usize>,
    ) -> (Hash, Vec<Hash>)
    where
        // returns a slice of hashes starting at the given overall index
        F: Fn(usize) -> &'b [T] + std::marker::Sync,
        T: Borrow<Hash> + std::marker::Sync + 'b,
    {
        if total_hashes == 0 {
            return (Hasher::default().result(), vec![]);
        }

        let mut time = Measure::start("time");

        let (num_hashes_per_chunk, levels_hashed, three_level) = Self::calculate_three_level_chunks(
            total_hashes,
            fanout,
            max_levels_per_pass,
            specific_level_count,
        );

        let chunks = Self::div_ceil(total_hashes, num_hashes_per_chunk);

        // initial fetch - could return entire slice
        let data = get_hash_slice_starting_at_index(0);
        let data_len = data.len();

        let result: Vec<_> = (0..chunks)
            .into_par_iter()
            .map(|i| {
                // summary:
                // this closure computes 1 or 3 levels of merkle tree (all chunks will be 1 or all will be 3)
                // for a subset (our chunk) of the input data [start_index..end_index]

                // index into get_hash_slice_starting_at_index where this chunk's range begins
                let start_index = i * num_hashes_per_chunk;
                // index into get_hash_slice_starting_at_index where this chunk's range ends
                let end_index = std::cmp::min(start_index + num_hashes_per_chunk, total_hashes);

                // will compute the final result for this closure
                let mut hasher = Hasher::default();

                // index into 'data' where we are currently pulling data
                // if we exhaust our data, then we will request a new slice, and data_index resets to 0, the beginning of the new slice
                let mut data_index = start_index;
                // source data, which we may refresh when we exhaust
                let mut data = data;
                // len of the source data
                let mut data_len = data_len;

                if !three_level {
                    // 1 group of fanout
                    // The result of this loop is a single hash value from fanout input hashes.
                    for i in start_index..end_index {
                        if data_index >= data_len {
                            // we exhausted our data, fetch next slice starting at i
                            data = get_hash_slice_starting_at_index(i);
                            data_len = data.len();
                            data_index = 0;
                        }
                        hasher.hash(data[data_index].borrow().as_ref());
                        data_index += 1;
                    }
                } else {
                    // hash 3 levels of fanout simultaneously.
                    // This codepath produces 1 hash value for between 1..=fanout^3 input hashes.
                    // It is equivalent to running the normal merkle tree calculation 3 iterations on the input.
                    //
                    // big idea:
                    //  merkle trees usually reduce the input vector by a factor of fanout with each iteration
                    //  example with fanout 2:
                    //   start:     [0,1,2,3,4,5,6,7]      in our case: [...16M...] or really, 1B
                    //   iteration0 [.5, 2.5, 4.5, 6.5]                 [... 1M...]
                    //   iteration1 [1.5, 5.5]                          [...65k...]
                    //   iteration2 3.5                                 [...4k... ]
                    //  So iteration 0 consumes N elements, hashes them in groups of 'fanout' and produces a vector of N/fanout elements
                    //   and the process repeats until there is only 1 hash left.
                    //
                    //  With the three_level code path, we make each chunk we iterate of size fanout^3 (4096)
                    //  So, the input could be 16M hashes and the output will be 4k hashes, or N/fanout^3
                    //  The goal is to reduce the amount of data that has to be constructed and held in memory.
                    //  When we know we have enough hashes, then, in 1 pass, we hash 3 levels simultaneously, storing far fewer intermediate hashes.
                    //
                    // Now, some details:
                    // The result of this loop is a single hash value from fanout^3 input hashes.
                    // concepts:
                    //  what we're conceptually hashing: "raw_hashes"[start_index..end_index]
                    //   example: [a,b,c,d,e,f]
                    //   but... hashes[] may really be multiple vectors that are pieced together.
                    //   example: [[a,b],[c],[d,e,f]]
                    //   get_hash_slice_starting_at_index(any_index) abstracts that and returns a slice starting at raw_hashes[any_index..]
                    //   such that the end of get_hash_slice_starting_at_index may be <, >, or = end_index
                    //   example: get_hash_slice_starting_at_index(1) returns [b]
                    //            get_hash_slice_starting_at_index(3) returns [d,e,f]
                    // This code is basically 3 iterations of merkle tree hashing occurring simultaneously.
                    // The first fanout raw hashes are hashed in hasher_k. This is iteration0
                    // Once hasher_k has hashed fanout hashes, hasher_k's result hash is hashed in hasher_j and then discarded
                    // hasher_k then starts over fresh and hashes the next fanout raw hashes. This is iteration0 again for a new set of data.
                    // Once hasher_j has hashed fanout hashes (from k), hasher_j's result hash is hashed in hasher and then discarded
                    // Once hasher has hashed fanout hashes (from j), then the result of hasher is the hash for fanout^3 raw hashes.
                    // If there are < fanout^3 hashes, then this code stops when it runs out of raw hashes and returns whatever it hashed.
                    // This is always how the very last elements work in a merkle tree.
                    let mut i = start_index;
                    while i < end_index {
                        let mut hasher_j = Hasher::default();
                        for _j in 0..fanout {
                            let mut hasher_k = Hasher::default();
                            let end = std::cmp::min(end_index - i, fanout);
                            for _k in 0..end {
                                if data_index >= data_len {
                                    // we exhausted our data, fetch next slice starting at i
                                    data = get_hash_slice_starting_at_index(i);
                                    data_len = data.len();
                                    data_index = 0;
                                }
                                hasher_k.hash(data[data_index].borrow().as_ref());
                                data_index += 1;
                                i += 1;
                            }
                            hasher_j.hash(hasher_k.result().as_ref());
                            if i >= end_index {
                                break;
                            }
                        }
                        hasher.hash(hasher_j.result().as_ref());
                    }
                }

                hasher.result()
            })
            .collect();
        time.stop();
        debug!("hashing {} {}", total_hashes, time);

        if let Some(mut specific_level_count_value) = specific_level_count {
            specific_level_count_value -= levels_hashed;
            if specific_level_count_value == 0 {
                (Hash::default(), result)
            } else {
                assert!(specific_level_count_value > 0);
                // We did not hash the number of levels required by 'specific_level_count', so repeat
                Self::compute_merkle_root_from_slices_recurse(
                    result,
                    fanout,
                    max_levels_per_pass,
                    Some(specific_level_count_value),
                )
            }
        } else {
            (
                if result.len() == 1 {
                    result[0]
                } else {
                    Self::compute_merkle_root_recurse(result, fanout)
                },
                vec![], // no intermediate results needed by caller
            )
        }
    }

    fn compute_merkle_root_from_slices_recurse(
        hashes: Vec<Hash>,
        fanout: usize,
        max_levels_per_pass: Option<usize>,
        specific_level_count: Option<usize>,
    ) -> (Hash, Vec<Hash>) {
        Self::compute_merkle_root_from_slices(
            hashes.len(),
            fanout,
            max_levels_per_pass,
            |start| &hashes[start..],
            specific_level_count,
        )
    }

    pub fn accumulate_account_hashes(mut hashes: Vec<(Pubkey, AccountHash)>) -> Hash {
        hashes.par_sort_unstable_by(|a, b| a.0.cmp(&b.0));
        Self::compute_merkle_root_loop(hashes, MERKLE_FANOUT, |i| &i.1 .0)
    }

    pub fn compare_two_hash_entries(
        a: &CalculateHashIntermediate,
        b: &CalculateHashIntermediate,
    ) -> std::cmp::Ordering {
        // note partial_cmp only returns None with floating point comparisons
        a.pubkey.partial_cmp(&b.pubkey).unwrap()
    }

    pub fn checked_cast_for_capitalization(balance: u128) -> u64 {
        balance.try_into().unwrap_or_else(|_| {
            panic!("overflow is detected while summing capitalization: {balance}")
        })
    }

    /// returns:
    /// Vec, with one entry per bin
    ///  for each entry, Vec<Hash> in pubkey order
    /// If return Vec<AccountHashesFile> was flattened, it would be all hashes, in pubkey order.
    fn de_dup_accounts(
        &self,
        sorted_data_by_pubkey: &[&[CalculateHashIntermediate]],
        stats: &mut HashStats,
        max_bin: usize,
    ) -> (Vec<AccountHashesFile>, u64) {
        // 1. eliminate zero lamport accounts
        // 2. pick the highest slot or (slot = and highest version) of each pubkey
        // 3. produce this output:
        // a. vec: PUBKEY_BINS_FOR_CALCULATING_HASHES in pubkey order
        //      vec: individual hashes in pubkey order, 1 hash per
        // b. lamports
        let _guard = self.active_stats.activate(ActiveStatItem::HashDeDup);

        #[derive(Default)]
        struct DedupResult {
            hashes_files: Vec<AccountHashesFile>,
            hashes_count: usize,
            lamports_sum: u64,
        }

        let mut zeros = Measure::start("eliminate zeros");
        let DedupResult {
            hashes_files: hashes,
            hashes_count: hash_total,
            lamports_sum: lamports_total,
        } = (0..max_bin)
            .into_par_iter()
            .fold(DedupResult::default, |mut accum, bin| {
                let (hashes_file, lamports_bin) =
                    self.de_dup_accounts_in_parallel(sorted_data_by_pubkey, bin, max_bin, stats);

                accum.lamports_sum = accum
                    .lamports_sum
                    .checked_add(lamports_bin)
                    .expect("summing capitalization cannot overflow");
                accum.hashes_count += hashes_file.count();
                accum.hashes_files.push(hashes_file);
                accum
            })
            .reduce(
                || {
                    DedupResult {
                        // Allocate with Vec::new() so that no allocation actually happens. See
                        // https://github.com/anza-xyz/agave/pull/1308.
                        hashes_files: Vec::new(),
                        ..Default::default()
                    }
                },
                |mut a, mut b| {
                    a.lamports_sum = a
                        .lamports_sum
                        .checked_add(b.lamports_sum)
                        .expect("summing capitalization cannot overflow");
                    a.hashes_count += b.hashes_count;
                    a.hashes_files.append(&mut b.hashes_files);
                    a
                },
            );
        zeros.stop();
        stats.zeros_time_total_us += zeros.as_us();
        stats.hash_total += hash_total;
        (hashes, lamports_total)
    }

    /// Given the item location, return the item in the `CalculatedHashIntermediate` slices and the next item location in the same bin.
    /// If the end of the `CalculatedHashIntermediate` slice is reached or all the accounts in current bin have been exhausted, return `None` for next item location.
    fn get_item<'b>(
        sorted_data_by_pubkey: &[&'b [CalculateHashIntermediate]],
        bin: usize,
        binner: &PubkeyBinCalculator24,
        item_loc: &ItemLocation<'b>,
    ) -> (&'b CalculateHashIntermediate, Option<ItemLocation<'b>>) {
        let division_data = &sorted_data_by_pubkey[item_loc.pointer.slot_group_index];
        let mut index = item_loc.pointer.offset;
        index += 1;
        let mut next = None;

        while index < division_data.len() {
            // still more items where we found the previous key, so just increment the index for that slot group, skipping all pubkeys that are equal
            let next_key = &division_data[index].pubkey;
            if next_key == item_loc.key {
                index += 1;
                continue; // duplicate entries of same pubkey, so keep skipping
            }

            if binner.bin_from_pubkey(next_key) > bin {
                // the next pubkey is not in our bin
                break;
            }

            // point to the next pubkey > key
            next = Some(ItemLocation {
                key: next_key,
                pointer: SlotGroupPointer {
                    slot_group_index: item_loc.pointer.slot_group_index,
                    offset: index,
                },
            });
            break;
        }

        // this is the previous first item that was requested
        (&division_data[index - 1], next)
    }

    /// `hash_data` must be sorted by `binner.bin_from_pubkey()`
    /// return index in `hash_data` of first pubkey that is in `bin`, based on `binner`
    fn binary_search_for_first_pubkey_in_bin(
        hash_data: &[CalculateHashIntermediate],
        bin: usize,
        binner: &PubkeyBinCalculator24,
    ) -> Option<usize> {
        let potential_index = if bin == 0 {
            // `bin` == 0 is special because there cannot be `bin`-1
            // so either element[0] is in bin 0 or there is nothing in bin 0.
            0
        } else {
            // search for the first pubkey that is in `bin`
            // There could be many keys in a row with the same `bin`.
            // So, for each pubkey, use calculated_bin * 2 + 1 as the bin of a given pubkey for binary search.
            // And compare the bin of each pubkey with `bin` * 2.
            // So all keys that are in `bin` will compare as `bin` * 2 + 1
            // all keys that are in `bin`-1 will compare as ((`bin` - 1) * 2 + 1), which is (`bin` * 2 - 1)
            // NO keys will compare as `bin` * 2 because we add 1.
            // So, the binary search will NEVER return Ok(found_index), but will always return Err(index of first key in `bin`).
            // Note that if NO key is in `bin`, then the key at the found index will be in a bin > `bin`, so return None.
            let just_prior_to_desired_bin = bin * 2;
            let search = hash_data.binary_search_by(|data| {
                (1 + 2 * binner.bin_from_pubkey(&data.pubkey)).cmp(&just_prior_to_desired_bin)
            });
            // returns Err(index where item should be) since the desired item will never exist
            search.expect_err("it is impossible to find a matching bin")
        };
        // note that `potential_index` could be == hash_data.len(). This indicates the first key in `bin` would be
        // after the data we have. Thus, no key is in `bin`.
        // This also handles the case where `hash_data` is empty, since len() will be 0 and `get` will return None.
        hash_data.get(potential_index).and_then(|potential_data| {
            (binner.bin_from_pubkey(&potential_data.pubkey) == bin).then_some(potential_index)
        })
    }

    /// `hash_data` must be sorted by `binner.bin_from_pubkey()`
    /// return index in `hash_data` of first pubkey that is in `bin`, based on `binner`
    fn find_first_pubkey_in_bin(
        hash_data: &[CalculateHashIntermediate],
        bin: usize,
        bins: usize,
        binner: &PubkeyBinCalculator24,
        stats: &HashStats,
    ) -> Option<usize> {
        if hash_data.is_empty() {
            return None;
        }
        let (result, us) = measure_us!({
            // assume uniform distribution of pubkeys and choose first guess based on bin we're looking for
            let i = hash_data.len() * bin / bins;
            let estimate = &hash_data[i];

            let pubkey_bin = binner.bin_from_pubkey(&estimate.pubkey);
            let range = if pubkey_bin >= bin {
                // i pubkey matches or is too large, so look <= i for the first pubkey in the right bin
                // i+1 could be the first pubkey in the right bin
                0..(i + 1)
            } else {
                // i pubkey is too small, so look after i
                (i + 1)..hash_data.len()
            };
            Some(
                range.start +
                // binary search the subset
                Self::binary_search_for_first_pubkey_in_bin(
                    &hash_data[range],
                    bin,
                    binner,
                )?,
            )
        });
        stats.pubkey_bin_search_us.fetch_add(us, Ordering::Relaxed);
        result
    }

    /// Return the working_set and max number of pubkeys for hash dedup.
    /// `working_set` holds SlotGroupPointer {slot_group_index, offset} for items in account's pubkey descending order.
    fn initialize_dedup_working_set(
        sorted_data_by_pubkey: &[&[CalculateHashIntermediate]],
        pubkey_bin: usize,
        bins: usize,
        binner: &PubkeyBinCalculator24,
        stats: &HashStats,
    ) -> (
        Vec<SlotGroupPointer>, /* working_set */
        usize,                 /* max_inclusive_num_pubkeys */
    ) {
        // working_set holds the lowest items for each slot_group sorted by pubkey descending (min_key is the last)
        let mut working_set: Vec<SlotGroupPointer> = Vec::default();

        // Initialize 'working_set', which holds the current lowest item in each slot group.
        // `working_set` should be initialized in reverse order of slot_groups. Later slot_groups are
        // processed first. For each slot_group, if the lowest item for current slot group is
        // already in working_set (i.e. inserted by a later slot group), the next lowest item
        // in this slot group is searched and checked, until either one that is `not` in the
        // working_set is found, which will then be inserted, or no next lowest item is found.
        // Iterating in reverse order of slot_group will guarantee that each slot group will be
        // scanned only once and scanned continuously. Therefore, it can achieve better data
        // locality during the scan.
        let max_inclusive_num_pubkeys = sorted_data_by_pubkey
            .iter()
            .enumerate()
            .rev()
            .map(|(i, hash_data)| {
                let first_pubkey_in_bin =
                    Self::find_first_pubkey_in_bin(hash_data, pubkey_bin, bins, binner, stats);

                if let Some(first_pubkey_in_bin) = first_pubkey_in_bin {
                    let mut next = Some(ItemLocation {
                        key: &hash_data[first_pubkey_in_bin].pubkey,
                        pointer: SlotGroupPointer {
                            slot_group_index: i,
                            offset: first_pubkey_in_bin,
                        },
                    });

                    Self::add_next_item(
                        &mut next,
                        &mut working_set,
                        sorted_data_by_pubkey,
                        pubkey_bin,
                        binner,
                    );

                    let mut first_pubkey_in_next_bin = first_pubkey_in_bin + 1;
                    while first_pubkey_in_next_bin < hash_data.len() {
                        if binner.bin_from_pubkey(&hash_data[first_pubkey_in_next_bin].pubkey)
                            != pubkey_bin
                        {
                            break;
                        }
                        first_pubkey_in_next_bin += 1;
                    }
                    first_pubkey_in_next_bin - first_pubkey_in_bin
                } else {
                    0
                }
            })
            .sum::<usize>();

        (working_set, max_inclusive_num_pubkeys)
    }

    /// Add next item into hash dedup working set
    fn add_next_item<'b>(
        next: &mut Option<ItemLocation<'b>>,
        working_set: &mut Vec<SlotGroupPointer>,
        sorted_data_by_pubkey: &[&'b [CalculateHashIntermediate]],
        pubkey_bin: usize,
        binner: &PubkeyBinCalculator24,
    ) {
        // looping to add next item to working set
        while let Some(ItemLocation { key, pointer }) = std::mem::take(next) {
            // if `new key` is less than the min key in the working set, skip binary search and
            // insert item to the end vec directly
            if let Some(SlotGroupPointer {
                slot_group_index: current_min_slot_group_index,
                offset: current_min_offset,
            }) = working_set.last()
            {
                let current_min_key = &sorted_data_by_pubkey[*current_min_slot_group_index]
                    [*current_min_offset]
                    .pubkey;
                if key < current_min_key {
                    working_set.push(pointer);
                    break;
                }
            }

            let found = working_set.binary_search_by(|pointer| {
                let prob = &sorted_data_by_pubkey[pointer.slot_group_index][pointer.offset].pubkey;
                (*key).cmp(prob)
            });

            match found {
                Err(index) => {
                    // found a new new key, insert into the working_set. This is O(n/2) on
                    // average. Theoretically, this operation could be expensive and may be further
                    // optimized in future.
                    working_set.insert(index, pointer);
                    break;
                }
                Ok(index) => {
                    let found = &mut working_set[index];
                    if found.slot_group_index > pointer.slot_group_index {
                        // There is already a later slot group that contains this key in the working_set,
                        // look up again.
                        let (_item, new_next) = Self::get_item(
                            sorted_data_by_pubkey,
                            pubkey_bin,
                            binner,
                            &ItemLocation { key, pointer },
                        );
                        *next = new_next;
                    } else {
                        // A previous slot contains this key, replace it, and look for next item in the previous slot group.
                        let (_item, new_next) = Self::get_item(
                            sorted_data_by_pubkey,
                            pubkey_bin,
                            binner,
                            &ItemLocation {
                                key,
                                pointer: *found,
                            },
                        );
                        *found = pointer;
                        *next = new_next;
                    }
                }
            }
        }
    }

    // go through: [..][pubkey_bin][..] and return hashes and lamport sum
    //   slot groups^                ^accounts found in a slot group, sorted by pubkey, higher slot, write_version
    // 1. handle zero lamport accounts
    // 2. pick the highest slot or (slot = and highest version) of each pubkey
    // 3. produce this output:
    //   a. AccountHashesFile: individual account hashes in pubkey order
    //   b. lamport sum
    fn de_dup_accounts_in_parallel(
        &self,
        sorted_data_by_pubkey: &[&[CalculateHashIntermediate]],
        pubkey_bin: usize,
        bins: usize,
        stats: &HashStats,
    ) -> (AccountHashesFile, u64) {
        let binner = PubkeyBinCalculator24::new(bins);

        // working_set hold the lowest items for each slot_group sorted by pubkey descending (min_key is the last)
        let (mut working_set, max_inclusive_num_pubkeys) = Self::initialize_dedup_working_set(
            sorted_data_by_pubkey,
            pubkey_bin,
            bins,
            &binner,
            stats,
        );

        let mut hashes = AccountHashesFile {
            writer: None,
            dir_for_temp_cache_files: self.dir_for_temp_cache_files.clone(),
            capacity: max_inclusive_num_pubkeys * std::mem::size_of::<Hash>(),
        };

        let mut overall_sum: u64 = 0;

        while let Some(pointer) = working_set.pop() {
            let key = &sorted_data_by_pubkey[pointer.slot_group_index][pointer.offset].pubkey;

            // get the min item, add lamports, get hash
            let (item, mut next) = Self::get_item(
                sorted_data_by_pubkey,
                pubkey_bin,
                &binner,
                &ItemLocation { key, pointer },
            );

            // add lamports and get hash
            if item.lamports != 0 {
                overall_sum = overall_sum
                    .checked_add(item.lamports)
                    .expect("summing lamports cannot overflow");
                hashes.write(&item.hash.0);
            } else {
                stats
                    .num_zero_lamport_accounts
                    .fetch_add(1, Ordering::Relaxed);
                // if lamports == 0, check if they should be included
                if self.zero_lamport_accounts == ZeroLamportAccounts::Included {
                    // For incremental accounts hash, the hash of a zero lamport account is
                    // the hash of its pubkey
                    let hash = blake3::hash(bytemuck::bytes_of(&item.pubkey));
                    let hash = Hash::new_from_array(hash.into());
                    hashes.write(&hash);
                }
            }

            Self::add_next_item(
                &mut next,
                &mut working_set,
                sorted_data_by_pubkey,
                pubkey_bin,
                &binner,
            );
        }

        (hashes, overall_sum)
    }

    /// input:
    /// vec: group of slot data, ordered by Slot (low to high)
    ///   vec: [..] - items found in that slot range Sorted by: Pubkey, higher Slot, higher Write version (if pubkey =)
    pub fn rest_of_hash_calculation(
        &self,
        sorted_data_by_pubkey: &[&[CalculateHashIntermediate]],
        stats: &mut HashStats,
    ) -> (Hash, u64) {
        let (hashes, total_lamports) = self.de_dup_accounts(
            sorted_data_by_pubkey,
            stats,
            PUBKEY_BINS_FOR_CALCULATING_HASHES,
        );

        let cumulative = CumulativeHashesFromFiles::from_files(hashes);

        let _guard = self.active_stats.activate(ActiveStatItem::HashMerkleTree);
        let mut hash_time = Measure::start("hash");
        let (hash, _) = Self::compute_merkle_root_from_slices(
            cumulative.total_count(),
            MERKLE_FANOUT,
            None,
            |start| cumulative.get_slice(start),
            None,
        );
        hash_time.stop();
        stats.hash_time_total_us += hash_time.as_us();
        (hash, total_lamports)
    }
}

/// How should zero-lamport accounts be treated by the accounts hasher?
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub enum ZeroLamportAccounts {
    Excluded,
    Included,
}

/// Hash of an account
#[repr(transparent)]
#[cfg_attr(feature = "frozen-abi", derive(AbiExample))]
#[derive(Debug, Copy, Clone, Eq, PartialEq, Pod, Zeroable)]
pub struct AccountHash(pub Hash);

// Ensure the newtype wrapper never changes size from the underlying Hash
// This also ensures there are no padding bytes, which is required to safely implement Pod
const _: () = assert!(std::mem::size_of::<AccountHash>() == std::mem::size_of::<Hash>());

/// The AccountHash for a zero-lamport account
pub const ZERO_LAMPORT_ACCOUNT_HASH: AccountHash =
    AccountHash(Hash::new_from_array([0; HASH_BYTES]));

/// Lattice hash of an account
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct AccountLtHash(pub LtHash);

/// The AccountLtHash for a zero-lamport account
pub const ZERO_LAMPORT_ACCOUNT_LT_HASH: AccountLtHash = AccountLtHash(LtHash::identity());

/// Lattice hash of all accounts
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct AccountsLtHash(pub LtHash);

/// Hash of accounts
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub enum AccountsHashKind {
    Full(AccountsHash),
    Incremental(IncrementalAccountsHash),
}
impl AccountsHashKind {
    pub fn as_hash(&self) -> &Hash {
        match self {
            AccountsHashKind::Full(AccountsHash(hash))
            | AccountsHashKind::Incremental(IncrementalAccountsHash(hash)) => hash,
        }
    }
}
impl From<AccountsHash> for AccountsHashKind {
    fn from(accounts_hash: AccountsHash) -> Self {
        AccountsHashKind::Full(accounts_hash)
    }
}
impl From<IncrementalAccountsHash> for AccountsHashKind {
    fn from(incremental_accounts_hash: IncrementalAccountsHash) -> Self {
        AccountsHashKind::Incremental(incremental_accounts_hash)
    }
}

/// Hash of accounts
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub struct AccountsHash(pub Hash);
/// Hash of accounts that includes zero-lamport accounts
/// Used with incremental snapshots
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub struct IncrementalAccountsHash(pub Hash);

/// Hash of accounts written in a single slot
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub struct AccountsDeltaHash(pub Hash);

/// Snapshot serde-safe accounts delta hash
#[cfg_attr(feature = "frozen-abi", derive(AbiExample))]
#[derive(Clone, Default, Debug, Serialize, Deserialize, PartialEq, Eq)]
pub struct SerdeAccountsDeltaHash(pub Hash);

impl From<SerdeAccountsDeltaHash> for AccountsDeltaHash {
    fn from(accounts_delta_hash: SerdeAccountsDeltaHash) -> Self {
        Self(accounts_delta_hash.0)
    }
}
impl From<AccountsDeltaHash> for SerdeAccountsDeltaHash {
    fn from(accounts_delta_hash: AccountsDeltaHash) -> Self {
        Self(accounts_delta_hash.0)
    }
}

/// Snapshot serde-safe accounts hash
#[cfg_attr(feature = "frozen-abi", derive(AbiExample))]
#[derive(Clone, Default, Debug, Serialize, Deserialize, PartialEq, Eq)]
pub struct SerdeAccountsHash(pub Hash);

impl From<SerdeAccountsHash> for AccountsHash {
    fn from(accounts_hash: SerdeAccountsHash) -> Self {
        Self(accounts_hash.0)
    }
}
impl From<AccountsHash> for SerdeAccountsHash {
    fn from(accounts_hash: AccountsHash) -> Self {
        Self(accounts_hash.0)
    }
}

/// Snapshot serde-safe incremental accounts hash
#[cfg_attr(feature = "frozen-abi", derive(AbiExample))]
#[derive(Clone, Default, Debug, Serialize, Deserialize, PartialEq, Eq)]
pub struct SerdeIncrementalAccountsHash(pub Hash);

impl From<SerdeIncrementalAccountsHash> for IncrementalAccountsHash {
    fn from(incremental_accounts_hash: SerdeIncrementalAccountsHash) -> Self {
        Self(incremental_accounts_hash.0)
    }
}
impl From<IncrementalAccountsHash> for SerdeIncrementalAccountsHash {
    fn from(incremental_accounts_hash: IncrementalAccountsHash) -> Self {
        Self(incremental_accounts_hash.0)
    }
}

#[cfg(test)]
mod tests {
    use {super::*, itertools::Itertools, std::str::FromStr, tempfile::tempdir};

    lazy_static! {
        static ref ACTIVE_STATS: ActiveStats = ActiveStats::default();
    }

    impl<'a> AccountsHasher<'a> {
        fn new(dir_for_temp_cache_files: PathBuf) -> Self {
            Self {
                zero_lamport_accounts: ZeroLamportAccounts::Excluded,
                dir_for_temp_cache_files,
                active_stats: &ACTIVE_STATS,
            }
        }
    }

    impl AccountHashesFile {
        fn new(dir_for_temp_cache_files: PathBuf) -> Self {
            Self {
                writer: None,
                dir_for_temp_cache_files,
                capacity: 1024, /* default 1k for tests */
            }
        }
    }

    impl CumulativeOffsets {
        fn from_raw_2d<T>(raw: &[Vec<Vec<T>>]) -> Self {
            let mut total_count: usize = 0;
            let mut cumulative_offsets = Vec::with_capacity(0);
            for (i, v_outer) in raw.iter().enumerate() {
                for (j, v) in v_outer.iter().enumerate() {
                    let len = v.len();
                    if len > 0 {
                        if cumulative_offsets.is_empty() {
                            // the first inner, non-empty vector we find gives us an approximate rectangular shape
                            cumulative_offsets = Vec::with_capacity(raw.len() * v_outer.len());
                        }
                        cumulative_offsets.push(CumulativeOffset {
                            index: [i, j],
                            start_offset: total_count,
                        });
                        total_count += len;
                    }
                }
            }

            Self {
                cumulative_offsets,
                total_count,
            }
        }
    }

    #[test]
    fn test_find_first_pubkey_in_bin() {
        let stats = HashStats::default();
        for (bins, expected_count) in [1, 2, 4].into_iter().zip([5, 20, 120]) {
            let bins: usize = bins;
            let binner = PubkeyBinCalculator24::new(bins);

            let mut count = 0usize;
            // # pubkeys in each bin are permutations of these
            // 0 means none in this bin
            // large number (20) means the found key will be well before or after the expected index based on an assumption of uniform distribution
            for counts in [0, 1, 2, 20, 0].into_iter().permutations(bins) {
                count += 1;
                let hash_data = counts
                    .iter()
                    .enumerate()
                    .flat_map(|(bin, count)| {
                        (0..*count).map(move |_| {
                            let binner = PubkeyBinCalculator24::new(bins);
                            CalculateHashIntermediate {
                                hash: AccountHash(Hash::default()),
                                lamports: 0,
                                pubkey: binner.lowest_pubkey_from_bin(bin, bins),
                            }
                        })
                    })
                    .collect::<Vec<_>>();
                // look for the first pubkey in each bin
                for (bin, count_in_bin) in counts.iter().enumerate().take(bins) {
                    let first = AccountsHasher::find_first_pubkey_in_bin(
                        &hash_data, bin, bins, &binner, &stats,
                    );
                    // test both functions
                    let first_again = AccountsHasher::binary_search_for_first_pubkey_in_bin(
                        &hash_data, bin, &binner,
                    );
                    assert_eq!(first, first_again);
                    assert_eq!(first.is_none(), count_in_bin == &0);
                    if let Some(first) = first {
                        assert_eq!(binner.bin_from_pubkey(&hash_data[first].pubkey), bin);
                        if first > 0 {
                            assert!(binner.bin_from_pubkey(&hash_data[first - 1].pubkey) < bin);
                        }
                    }
                }
            }
            assert_eq!(
                count, expected_count,
                "too few iterations in test. bins: {bins}"
            );
        }
    }

    #[test]
    fn test_account_hashes_file() {
        let dir_for_temp_cache_files = tempdir().unwrap();
        // 0 hashes
        let mut file = AccountHashesFile::new(dir_for_temp_cache_files.path().to_path_buf());
        assert!(file.get_reader().is_none());
        let hashes = (0..2).map(|i| Hash::new(&[i; 32])).collect::<Vec<_>>();

        // 1 hash
        file.write(&hashes[0]);
        let reader = file.get_reader().unwrap();
        assert_eq!(&[hashes[0]][..], reader.read(0));
        assert!(reader.read(1).is_empty());

        // multiple hashes
        let mut file = AccountHashesFile::new(dir_for_temp_cache_files.path().to_path_buf());
        assert!(file.get_reader().is_none());
        hashes.iter().for_each(|hash| file.write(hash));
        let reader = file.get_reader().unwrap();
        (0..2).for_each(|i| assert_eq!(&hashes[i..], reader.read(i)));
        assert!(reader.read(2).is_empty());
    }

    #[test]
    fn test_cumulative_hashes_from_files() {
        let dir_for_temp_cache_files = tempdir().unwrap();
        (0..4).for_each(|permutation| {
            let hashes = (0..2).map(|i| Hash::new(&[i + 1; 32])).collect::<Vec<_>>();

            let mut combined = Vec::default();

            // 0 hashes
            let file0 = AccountHashesFile::new(dir_for_temp_cache_files.path().to_path_buf());

            // 1 hash
            let mut file1 = AccountHashesFile::new(dir_for_temp_cache_files.path().to_path_buf());
            file1.write(&hashes[0]);
            combined.push(hashes[0]);

            // multiple hashes
            let mut file2 = AccountHashesFile::new(dir_for_temp_cache_files.path().to_path_buf());
            hashes.iter().for_each(|hash| {
                file2.write(hash);
                combined.push(*hash);
            });

            let hashes = if permutation == 0 {
                vec![file0, file1, file2]
            } else if permutation == 1 {
                // include more empty files
                vec![
                    file0,
                    file1,
                    AccountHashesFile::new(dir_for_temp_cache_files.path().to_path_buf()),
                    file2,
                    AccountHashesFile::new(dir_for_temp_cache_files.path().to_path_buf()),
                ]
            } else if permutation == 2 {
                vec![file1, file2]
            } else {
                // swap file2 and 1
                let one = combined.remove(0);
                combined.push(one);
                vec![
                    file2,
                    AccountHashesFile::new(dir_for_temp_cache_files.path().to_path_buf()),
                    AccountHashesFile::new(dir_for_temp_cache_files.path().to_path_buf()),
                    file1,
                ]
            };

            let cumulative = CumulativeHashesFromFiles::from_files(hashes);
            let len = combined.len();
            assert_eq!(cumulative.total_count(), len);
            (0..combined.len()).for_each(|start| {
                let mut retrieved = Vec::default();
                let mut cumulative_start = start;
                // read all data
                while retrieved.len() < (len - start) {
                    let this_one = cumulative.get_slice(cumulative_start);
                    retrieved.extend(this_one.iter());
                    cumulative_start += this_one.len();
                    assert_ne!(0, this_one.len());
                }
                assert_eq!(
                    &combined[start..],
                    &retrieved[..],
                    "permutation: {permutation}"
                );
            });
        });
    }

    #[test]
    fn test_accountsdb_div_ceil() {
        assert_eq!(AccountsHasher::div_ceil(10, 3), 4);
        assert_eq!(AccountsHasher::div_ceil(0, 1), 0);
        assert_eq!(AccountsHasher::div_ceil(0, 5), 0);
        assert_eq!(AccountsHasher::div_ceil(9, 3), 3);
        assert_eq!(AccountsHasher::div_ceil(9, 9), 1);
    }

    #[test]
    #[should_panic(expected = "attempt to divide by zero")]
    fn test_accountsdb_div_ceil_fail() {
        assert_eq!(AccountsHasher::div_ceil(10, 0), 0);
    }

    fn for_rest(original: &[CalculateHashIntermediate]) -> Vec<&[CalculateHashIntermediate]> {
        vec![original]
    }

    #[test]
    fn test_accountsdb_rest_of_hash_calculation() {
        solana_logger::setup();

        let mut account_maps = Vec::new();

        let pubkey = Pubkey::from([11u8; 32]);
        let hash = AccountHash(Hash::new(&[1u8; 32]));
        let val = CalculateHashIntermediate {
            hash,
            lamports: 88,
            pubkey,
        };
        account_maps.push(val);

        // 2nd key - zero lamports, so will be removed
        let pubkey = Pubkey::from([12u8; 32]);
        let hash = AccountHash(Hash::new(&[2u8; 32]));
        let val = CalculateHashIntermediate {
            hash,
            lamports: 0,
            pubkey,
        };
        account_maps.push(val);

        let dir_for_temp_cache_files = tempdir().unwrap();
        let accounts_hash = AccountsHasher::new(dir_for_temp_cache_files.path().to_path_buf());
        let result = accounts_hash
            .rest_of_hash_calculation(&for_rest(&account_maps), &mut HashStats::default());
        let expected_hash = Hash::from_str("8j9ARGFv4W2GfML7d3sVJK2MePwrikqYnu6yqer28cCa").unwrap();
        assert_eq!((result.0, result.1), (expected_hash, 88));

        // 3rd key - with pubkey value before 1st key so it will be sorted first
        let pubkey = Pubkey::from([10u8; 32]);
        let hash = AccountHash(Hash::new(&[2u8; 32]));
        let val = CalculateHashIntermediate {
            hash,
            lamports: 20,
            pubkey,
        };
        account_maps.insert(0, val);

        let result = accounts_hash
            .rest_of_hash_calculation(&for_rest(&account_maps), &mut HashStats::default());
        let expected_hash = Hash::from_str("EHv9C5vX7xQjjMpsJMzudnDTzoTSRwYkqLzY8tVMihGj").unwrap();
        assert_eq!((result.0, result.1), (expected_hash, 108));

        // 3rd key - with later slot
        let pubkey = Pubkey::from([10u8; 32]);
        let hash = AccountHash(Hash::new(&[99u8; 32]));
        let val = CalculateHashIntermediate {
            hash,
            lamports: 30,
            pubkey,
        };
        account_maps.insert(1, val);

        let result = accounts_hash
            .rest_of_hash_calculation(&for_rest(&account_maps), &mut HashStats::default());
        let expected_hash = Hash::from_str("7NNPg5A8Xsg1uv4UFm6KZNwsipyyUnmgCrznP6MBWoBZ").unwrap();
        assert_eq!((result.0, result.1), (expected_hash, 118));
    }

    fn one_range() -> usize {
        1
    }

    fn zero_range() -> usize {
        0
    }

    #[test]
    fn test_accountsdb_de_dup_accounts_zero_chunks() {
        let vec = [vec![CalculateHashIntermediate {
            lamports: 1,
            hash: AccountHash(Hash::default()),
            pubkey: Pubkey::default(),
        }]];
        let temp_vec = vec.to_vec();
        let slice = convert_to_slice(&temp_vec);
        let dir_for_temp_cache_files = tempdir().unwrap();
        let accounts_hasher = AccountsHasher::new(dir_for_temp_cache_files.path().to_path_buf());
        let (mut hashes, lamports) =
            accounts_hasher.de_dup_accounts_in_parallel(&slice, 0, 1, &HashStats::default());
        assert_eq!(&[Hash::default()], hashes.get_reader().unwrap().read(0));
        assert_eq!(lamports, 1);
    }

    fn get_vec_vec(hashes: Vec<AccountHashesFile>) -> Vec<Vec<Hash>> {
        hashes.into_iter().map(get_vec).collect()
    }
    fn get_vec(mut hashes: AccountHashesFile) -> Vec<Hash> {
        hashes
            .get_reader()
            .map(|r| r.read(0).to_vec())
            .unwrap_or_default()
    }

    #[test]
    fn test_accountsdb_de_dup_accounts_empty() {
        solana_logger::setup();
        let dir_for_temp_cache_files = tempdir().unwrap();
        let accounts_hash = AccountsHasher::new(dir_for_temp_cache_files.path().to_path_buf());

        let empty = [];
        let vec = &empty;
        let (hashes, lamports) =
            accounts_hash.de_dup_accounts(vec, &mut HashStats::default(), one_range());
        assert_eq!(
            Vec::<Hash>::new(),
            get_vec_vec(hashes)
                .into_iter()
                .flatten()
                .collect::<Vec<_>>(),
        );
        assert_eq!(lamports, 0);
        let vec = vec![];
        let (hashes, lamports) =
            accounts_hash.de_dup_accounts(&vec, &mut HashStats::default(), zero_range());
        let empty: Vec<Vec<Hash>> = Vec::default();
        assert_eq!(empty, get_vec_vec(hashes));
        assert_eq!(lamports, 0);

        let (hashes, lamports) =
            accounts_hash.de_dup_accounts_in_parallel(&[], 1, 1, &HashStats::default());
        assert_eq!(Vec::<Hash>::new(), get_vec(hashes));
        assert_eq!(lamports, 0);

        let (hashes, lamports) =
            accounts_hash.de_dup_accounts_in_parallel(&[], 2, 1, &HashStats::default());
        assert_eq!(Vec::<Hash>::new(), get_vec(hashes));
        assert_eq!(lamports, 0);
    }

    #[test]
    fn test_accountsdb_de_dup_accounts_from_stores() {
        solana_logger::setup();

        let key_a = Pubkey::from([1u8; 32]);
        let key_b = Pubkey::from([2u8; 32]);
        let key_c = Pubkey::from([3u8; 32]);
        const COUNT: usize = 6;
        let hashes = (0..COUNT).map(|i| AccountHash(Hash::new(&[i as u8; 32])));
        // create this vector
        // abbbcc
        let keys = [key_a, key_b, key_b, key_b, key_c, key_c];

        let accounts: Vec<_> = hashes
            .zip(keys.iter())
            .enumerate()
            .map(|(i, (hash, &pubkey))| CalculateHashIntermediate {
                hash,
                lamports: (i + 1) as u64,
                pubkey,
            })
            .collect();

        type ExpectedType = (String, bool, u64, String);
        let expected:Vec<ExpectedType> = vec![
            // ("key/lamports key2/lamports ...",
            // is_last_slice
            // result lamports
            // result hashes)
            // "a5" = key_a, 5 lamports
            ("a1", false, 1, "[11111111111111111111111111111111]"),
            ("a1b2", false, 3, "[11111111111111111111111111111111, 4vJ9JU1bJJE96FWSJKvHsmmFADCg4gpZQff4P3bkLKi]"),
            ("a1b2b3", false, 4, "[11111111111111111111111111111111, 8qbHbw2BbbTHBW1sbeqakYXVKRQM8Ne7pLK7m6CVfeR]"),
            ("a1b2b3b4", false, 5, "[11111111111111111111111111111111, CktRuQ2mttgRGkXJtyksdKHjUdc2C4TgDzyB98oEzy8]"),
            ("a1b2b3b4c5", false, 10, "[11111111111111111111111111111111, CktRuQ2mttgRGkXJtyksdKHjUdc2C4TgDzyB98oEzy8, GgBaCs3NCBuZN12kCJgAW63ydqohFkHEdfdEXBPzLHq]"),
            ("b2", false, 2, "[4vJ9JU1bJJE96FWSJKvHsmmFADCg4gpZQff4P3bkLKi]"),
            ("b2b3", false, 3, "[8qbHbw2BbbTHBW1sbeqakYXVKRQM8Ne7pLK7m6CVfeR]"),
            ("b2b3b4", false, 4, "[CktRuQ2mttgRGkXJtyksdKHjUdc2C4TgDzyB98oEzy8]"),
            ("b2b3b4c5", false, 9, "[CktRuQ2mttgRGkXJtyksdKHjUdc2C4TgDzyB98oEzy8, GgBaCs3NCBuZN12kCJgAW63ydqohFkHEdfdEXBPzLHq]"),
            ("b3", false, 3, "[8qbHbw2BbbTHBW1sbeqakYXVKRQM8Ne7pLK7m6CVfeR]"),
            ("b3b4", false, 4, "[CktRuQ2mttgRGkXJtyksdKHjUdc2C4TgDzyB98oEzy8]"),
            ("b3b4c5", false, 9, "[CktRuQ2mttgRGkXJtyksdKHjUdc2C4TgDzyB98oEzy8, GgBaCs3NCBuZN12kCJgAW63ydqohFkHEdfdEXBPzLHq]"),
            ("b4", false, 4, "[CktRuQ2mttgRGkXJtyksdKHjUdc2C4TgDzyB98oEzy8]"),
            ("b4c5", false, 9, "[CktRuQ2mttgRGkXJtyksdKHjUdc2C4TgDzyB98oEzy8, GgBaCs3NCBuZN12kCJgAW63ydqohFkHEdfdEXBPzLHq]"),
            ("c5", false, 5, "[GgBaCs3NCBuZN12kCJgAW63ydqohFkHEdfdEXBPzLHq]"),
            ("a1", true, 1, "[11111111111111111111111111111111]"),
            ("a1b2", true, 3, "[11111111111111111111111111111111, 4vJ9JU1bJJE96FWSJKvHsmmFADCg4gpZQff4P3bkLKi]"),
            ("a1b2b3", true, 4, "[11111111111111111111111111111111, 8qbHbw2BbbTHBW1sbeqakYXVKRQM8Ne7pLK7m6CVfeR]"),
            ("a1b2b3b4", true, 5, "[11111111111111111111111111111111, CktRuQ2mttgRGkXJtyksdKHjUdc2C4TgDzyB98oEzy8]"),
            ("a1b2b3b4c5", true, 10, "[11111111111111111111111111111111, CktRuQ2mttgRGkXJtyksdKHjUdc2C4TgDzyB98oEzy8, GgBaCs3NCBuZN12kCJgAW63ydqohFkHEdfdEXBPzLHq]"),
            ("b2", true, 2, "[4vJ9JU1bJJE96FWSJKvHsmmFADCg4gpZQff4P3bkLKi]"),
            ("b2b3", true, 3, "[8qbHbw2BbbTHBW1sbeqakYXVKRQM8Ne7pLK7m6CVfeR]"),
            ("b2b3b4", true, 4, "[CktRuQ2mttgRGkXJtyksdKHjUdc2C4TgDzyB98oEzy8]"),
            ("b2b3b4c5", true, 9, "[CktRuQ2mttgRGkXJtyksdKHjUdc2C4TgDzyB98oEzy8, GgBaCs3NCBuZN12kCJgAW63ydqohFkHEdfdEXBPzLHq]"),
            ("b3", true, 3, "[8qbHbw2BbbTHBW1sbeqakYXVKRQM8Ne7pLK7m6CVfeR]"),
            ("b3b4", true, 4, "[CktRuQ2mttgRGkXJtyksdKHjUdc2C4TgDzyB98oEzy8]"),
            ("b3b4c5", true, 9, "[CktRuQ2mttgRGkXJtyksdKHjUdc2C4TgDzyB98oEzy8, GgBaCs3NCBuZN12kCJgAW63ydqohFkHEdfdEXBPzLHq]"),
            ("b4", true, 4, "[CktRuQ2mttgRGkXJtyksdKHjUdc2C4TgDzyB98oEzy8]"),
            ("b4c5", true, 9, "[CktRuQ2mttgRGkXJtyksdKHjUdc2C4TgDzyB98oEzy8, GgBaCs3NCBuZN12kCJgAW63ydqohFkHEdfdEXBPzLHq]"),
            ("c5", true, 5, "[GgBaCs3NCBuZN12kCJgAW63ydqohFkHEdfdEXBPzLHq]"),
            ].into_iter().map(|item| {
                let result: ExpectedType = (
                    item.0.to_string(),
                    item.1,
                    item.2,
                    item.3.to_string(),
                );
                result
            }).collect();

        let dir_for_temp_cache_files = tempdir().unwrap();
        let hash = AccountsHasher::new(dir_for_temp_cache_files.path().to_path_buf());
        let mut expected_index = 0;
        for last_slice in 0..2 {
            for start in 0..COUNT {
                for end in start + 1..COUNT {
                    let is_last_slice = last_slice == 1;
                    let accounts = accounts.clone();
                    let slice = &accounts[start..end];

                    let slice2 = vec![slice.to_vec()];
                    let slice = &slice2[..];
                    let slice_temp = convert_to_slice(&slice2);
                    let (hashes2, lamports2) =
                        hash.de_dup_accounts_in_parallel(&slice_temp, 0, 1, &HashStats::default());
                    let slice3 = convert_to_slice(&slice2);
                    let (hashes3, lamports3) =
                        hash.de_dup_accounts_in_parallel(&slice3, 0, 1, &HashStats::default());
                    let vec = slice.to_vec();
                    let slice4 = convert_to_slice(&vec);
                    let mut max_bin = end - start;
                    if !max_bin.is_power_of_two() {
                        max_bin = 1;
                    }

                    let (hashes4, lamports4) =
                        hash.de_dup_accounts(&slice4, &mut HashStats::default(), max_bin);
                    let vec = slice.to_vec();
                    let slice5 = convert_to_slice(&vec);
                    let (hashes5, lamports5) =
                        hash.de_dup_accounts(&slice5, &mut HashStats::default(), max_bin);
                    let vec = slice.to_vec();
                    let slice5 = convert_to_slice(&vec);
                    let (hashes6, lamports6) =
                        hash.de_dup_accounts(&slice5, &mut HashStats::default(), max_bin);

                    let hashes2 = get_vec(hashes2);
                    let hashes3 = get_vec(hashes3);
                    let hashes4 = get_vec_vec(hashes4);
                    let hashes5 = get_vec_vec(hashes5);
                    let hashes6 = get_vec_vec(hashes6);

                    assert_eq!(hashes2, hashes3);
                    let expected2 = hashes2.clone();
                    assert_eq!(
                        expected2,
                        hashes4.into_iter().flatten().collect::<Vec<_>>(),
                        "last_slice: {last_slice}, start: {start}, end: {end}, slice: {slice:?}"
                    );
                    assert_eq!(
                        expected2.clone(),
                        hashes5.iter().flatten().copied().collect::<Vec<_>>(),
                        "last_slice: {last_slice}, start: {start}, end: {end}, slice: {slice:?}"
                    );
                    assert_eq!(
                        expected2.clone(),
                        hashes6.iter().flatten().copied().collect::<Vec<_>>()
                    );
                    assert_eq!(lamports2, lamports3);
                    assert_eq!(lamports2, lamports4);
                    assert_eq!(lamports2, lamports5);
                    assert_eq!(lamports2, lamports6);

                    let human_readable = slice[0]
                        .iter()
                        .map(|v| {
                            let mut s = (if v.pubkey == key_a {
                                "a"
                            } else if v.pubkey == key_b {
                                "b"
                            } else {
                                "c"
                            })
                            .to_string();

                            s.push_str(&v.lamports.to_string());
                            s
                        })
                        .collect::<String>();

                    let hash_result_as_string = format!("{hashes2:?}");

                    let packaged_result: ExpectedType = (
                        human_readable,
                        is_last_slice,
                        lamports2,
                        hash_result_as_string,
                    );
                    assert_eq!(expected[expected_index], packaged_result);

                    // for generating expected results
                    // error!("{:?},", packaged_result);
                    expected_index += 1;
                }
            }
        }
    }

    #[test]
    fn test_accountsdb_compare_two_hash_entries() {
        solana_logger::setup();
        let pubkey = Pubkey::new_unique();
        let hash = AccountHash(Hash::new_unique());
        let val = CalculateHashIntermediate {
            hash,
            lamports: 1,
            pubkey,
        };

        // slot same, version <
        let hash2 = AccountHash(Hash::new_unique());
        let val2 = CalculateHashIntermediate {
            hash: hash2,
            lamports: 4,
            pubkey,
        };
        assert_eq!(
            std::cmp::Ordering::Equal, // no longer comparing slots or versions
            AccountsHasher::compare_two_hash_entries(&val, &val2)
        );

        // slot same, vers =
        let hash3 = AccountHash(Hash::new_unique());
        let val3 = CalculateHashIntermediate {
            hash: hash3,
            lamports: 2,
            pubkey,
        };
        assert_eq!(
            std::cmp::Ordering::Equal,
            AccountsHasher::compare_two_hash_entries(&val, &val3)
        );

        // slot same, vers >
        let hash4 = AccountHash(Hash::new_unique());
        let val4 = CalculateHashIntermediate {
            hash: hash4,
            lamports: 6,
            pubkey,
        };
        assert_eq!(
            std::cmp::Ordering::Equal, // no longer comparing slots or versions
            AccountsHasher::compare_two_hash_entries(&val, &val4)
        );

        // slot >, version <
        let hash5 = AccountHash(Hash::new_unique());
        let val5 = CalculateHashIntermediate {
            hash: hash5,
            lamports: 8,
            pubkey,
        };
        assert_eq!(
            std::cmp::Ordering::Equal, // no longer comparing slots or versions
            AccountsHasher::compare_two_hash_entries(&val, &val5)
        );
    }

    fn test_de_dup_accounts_in_parallel<'a>(
        account_maps: &'a [&'a [CalculateHashIntermediate]],
    ) -> (AccountHashesFile, u64) {
        let dir_for_temp_cache_files = tempdir().unwrap();
        let accounts_hasher = AccountsHasher::new(dir_for_temp_cache_files.path().to_path_buf());
        accounts_hasher.de_dup_accounts_in_parallel(account_maps, 0, 1, &HashStats::default())
    }

    #[test]
    fn test_accountsdb_remove_zero_balance_accounts() {
        solana_logger::setup();

        let pubkey = Pubkey::new_unique();
        let hash = AccountHash(Hash::new_unique());
        let mut account_maps = Vec::new();
        let val = CalculateHashIntermediate {
            hash,
            lamports: 1,
            pubkey,
        };
        account_maps.push(val);

        let vecs = vec![account_maps.to_vec()];
        let slice = convert_to_slice(&vecs);
        let (hashfile, lamports) = test_de_dup_accounts_in_parallel(&slice);
        assert_eq!(
            (get_vec(hashfile), lamports),
            (vec![val.hash.0], val.lamports)
        );

        // zero original lamports, higher version
        let val = CalculateHashIntermediate {
            hash,
            lamports: 0,
            pubkey,
        };
        account_maps.push(val); // has to be after previous entry since account_maps are in slot order

        let vecs = vec![account_maps.to_vec()];
        let slice = convert_to_slice(&vecs);
        let (hashfile, lamports) = test_de_dup_accounts_in_parallel(&slice);
        assert_eq!((get_vec(hashfile), lamports), (vec![], 0));
    }

    #[test]
    fn test_accountsdb_dup_pubkey_2_chunks() {
        // 2 chunks, a dup pubkey in each chunk
        for reverse in [false, true] {
            let key = Pubkey::new_from_array([1; 32]); // key is BEFORE key2
            let key2 = Pubkey::new_from_array([2; 32]);
            let hash = AccountHash(Hash::new_unique());
            let mut account_maps = Vec::new();
            let mut account_maps2 = Vec::new();
            let val = CalculateHashIntermediate {
                hash,
                lamports: 1,
                pubkey: key,
            };
            account_maps.push(val);
            let val2 = CalculateHashIntermediate {
                hash,
                lamports: 2,
                pubkey: key2,
            };
            account_maps.push(val2);
            let val3 = CalculateHashIntermediate {
                hash,
                lamports: 3,
                pubkey: key2,
            };
            account_maps2.push(val3);

            let mut vecs = vec![account_maps.to_vec(), account_maps2.to_vec()];
            if reverse {
                vecs = vecs.into_iter().rev().collect();
            }
            let slice = convert_to_slice(&vecs);
            let (hashfile, lamports) = test_de_dup_accounts_in_parallel(&slice);
            assert_eq!(
                (get_vec(hashfile), lamports),
                (
                    vec![val.hash.0, if reverse { val2.hash.0 } else { val3.hash.0 }],
                    val.lamports
                        + if reverse {
                            val2.lamports
                        } else {
                            val3.lamports
                        }
                ),
                "reverse: {reverse}"
            );
        }
    }

    #[test]
    fn test_accountsdb_dup_pubkey_2_chunks_backwards() {
        // 2 chunks, a dup pubkey in each chunk
        for reverse in [false, true] {
            let key = Pubkey::new_from_array([3; 32]); // key is AFTER key2
            let key2 = Pubkey::new_from_array([2; 32]);
            let hash = AccountHash(Hash::new_unique());
            let mut account_maps = Vec::new();
            let mut account_maps2 = Vec::new();
            let val2 = CalculateHashIntermediate {
                hash,
                lamports: 2,
                pubkey: key2,
            };
            account_maps.push(val2);
            let val = CalculateHashIntermediate {
                hash,
                lamports: 1,
                pubkey: key,
            };
            account_maps.push(val);
            let val3 = CalculateHashIntermediate {
                hash,
                lamports: 3,
                pubkey: key2,
            };
            account_maps2.push(val3);

            let mut vecs = vec![account_maps.to_vec(), account_maps2.to_vec()];
            if reverse {
                vecs = vecs.into_iter().rev().collect();
            }
            let slice = convert_to_slice(&vecs);
            let (hashfile, lamports) = test_de_dup_accounts_in_parallel(&slice);
            assert_eq!(
                (get_vec(hashfile), lamports),
                (
                    vec![if reverse { val2.hash.0 } else { val3.hash.0 }, val.hash.0],
                    val.lamports
                        + if reverse {
                            val2.lamports
                        } else {
                            val3.lamports
                        }
                ),
                "reverse: {reverse}"
            );
        }
    }

    #[test]
    fn test_accountsdb_cumulative_offsets1_d() {
        let input = vec![vec![0, 1], vec![], vec![2, 3, 4], vec![]];
        let cumulative = CumulativeOffsets::from_raw(&input);

        let src: Vec<_> = input.clone().into_iter().flatten().collect();
        let len = src.len();
        assert_eq!(cumulative.total_count, len);
        assert_eq!(cumulative.cumulative_offsets.len(), 2); // 2 non-empty vectors

        const DIMENSION: usize = 0;
        assert_eq!(cumulative.cumulative_offsets[0].index[DIMENSION], 0);
        assert_eq!(cumulative.cumulative_offsets[1].index[DIMENSION], 2);

        assert_eq!(cumulative.cumulative_offsets[0].start_offset, 0);
        assert_eq!(cumulative.cumulative_offsets[1].start_offset, 2);

        for start in 0..len {
            let slice = cumulative.get_slice(&input, start);
            let len = slice.len();
            assert!(len > 0);
            assert_eq!(&src[start..(start + len)], slice);
        }

        let input = vec![vec![], vec![0, 1], vec![], vec![2, 3, 4], vec![]];
        let cumulative = CumulativeOffsets::from_raw(&input);

        let src: Vec<_> = input.clone().into_iter().flatten().collect();
        let len = src.len();
        assert_eq!(cumulative.total_count, len);
        assert_eq!(cumulative.cumulative_offsets.len(), 2); // 2 non-empty vectors

        assert_eq!(cumulative.cumulative_offsets[0].index[DIMENSION], 1);
        assert_eq!(cumulative.cumulative_offsets[1].index[DIMENSION], 3);

        assert_eq!(cumulative.cumulative_offsets[0].start_offset, 0);
        assert_eq!(cumulative.cumulative_offsets[1].start_offset, 2);

        for start in 0..len {
            let slice = cumulative.get_slice(&input, start);
            let len = slice.len();
            assert!(len > 0);
            assert_eq!(&src[start..(start + len)], slice);
        }

        let input: Vec<Vec<u32>> = vec![vec![]];
        let cumulative = CumulativeOffsets::from_raw(&input);

        let len = input.into_iter().flatten().count();
        assert_eq!(cumulative.total_count, len);
        assert_eq!(cumulative.cumulative_offsets.len(), 0); // 2 non-empty vectors
    }

    #[should_panic(expected = "is_empty")]
    #[test]
    fn test_accountsdb_cumulative_find_empty() {
        let input = CumulativeOffsets {
            cumulative_offsets: vec![],
            total_count: 0,
        };
        input.find(0);
    }

    #[test]
    fn test_accountsdb_cumulative_find() {
        let input = CumulativeOffsets {
            cumulative_offsets: vec![CumulativeOffset {
                index: [0; 2],
                start_offset: 0,
            }],
            total_count: 0,
        };
        assert_eq!(input.find(0), (0, &input.cumulative_offsets[0]));

        let input = CumulativeOffsets {
            cumulative_offsets: vec![
                CumulativeOffset {
                    index: [0; 2],
                    start_offset: 0,
                },
                CumulativeOffset {
                    index: [1; 2],
                    start_offset: 2,
                },
            ],
            total_count: 0,
        };
        assert_eq!(input.find(0), (0, &input.cumulative_offsets[0])); // = first start_offset
        assert_eq!(input.find(1), (1, &input.cumulative_offsets[0])); // > first start_offset
        assert_eq!(input.find(2), (0, &input.cumulative_offsets[1])); // = last start_offset
        assert_eq!(input.find(3), (1, &input.cumulative_offsets[1])); // > last start_offset
    }

    #[test]
    fn test_accountsdb_cumulative_offsets2_d() {
        let input: Vec<Vec<Vec<u64>>> = vec![vec![vec![0, 1], vec![], vec![2, 3, 4], vec![]]];
        let cumulative = CumulativeOffsets::from_raw_2d(&input);

        let src: Vec<_> = input.clone().into_iter().flatten().flatten().collect();
        let len = src.len();
        assert_eq!(cumulative.total_count, len);
        assert_eq!(cumulative.cumulative_offsets.len(), 2); // 2 non-empty vectors

        const DIMENSION_0: usize = 0;
        const DIMENSION_1: usize = 1;
        assert_eq!(cumulative.cumulative_offsets[0].index[DIMENSION_0], 0);
        assert_eq!(cumulative.cumulative_offsets[0].index[DIMENSION_1], 0);
        assert_eq!(cumulative.cumulative_offsets[1].index[DIMENSION_0], 0);
        assert_eq!(cumulative.cumulative_offsets[1].index[DIMENSION_1], 2);

        assert_eq!(cumulative.cumulative_offsets[0].start_offset, 0);
        assert_eq!(cumulative.cumulative_offsets[1].start_offset, 2);

        for start in 0..len {
            let slice: &[u64] = cumulative.get_slice(&input, start);
            let len = slice.len();
            assert!(len > 0);
            assert_eq!(&src[start..(start + len)], slice);
        }

        let input = vec![vec![vec![], vec![0, 1], vec![], vec![2, 3, 4], vec![]]];
        let cumulative = CumulativeOffsets::from_raw_2d(&input);

        let src: Vec<_> = input.clone().into_iter().flatten().flatten().collect();
        let len = src.len();
        assert_eq!(cumulative.total_count, len);
        assert_eq!(cumulative.cumulative_offsets.len(), 2); // 2 non-empty vectors

        assert_eq!(cumulative.cumulative_offsets[0].index[DIMENSION_0], 0);
        assert_eq!(cumulative.cumulative_offsets[0].index[DIMENSION_1], 1);
        assert_eq!(cumulative.cumulative_offsets[1].index[DIMENSION_0], 0);
        assert_eq!(cumulative.cumulative_offsets[1].index[DIMENSION_1], 3);

        assert_eq!(cumulative.cumulative_offsets[0].start_offset, 0);
        assert_eq!(cumulative.cumulative_offsets[1].start_offset, 2);

        for start in 0..len {
            let slice: &[u64] = cumulative.get_slice(&input, start);
            let len = slice.len();
            assert!(len > 0);
            assert_eq!(&src[start..(start + len)], slice);
        }

        let input: Vec<Vec<Vec<u32>>> = vec![vec![]];
        let cumulative = CumulativeOffsets::from_raw_2d(&input);

        let len = input.into_iter().flatten().count();
        assert_eq!(cumulative.total_count, len);
        assert_eq!(cumulative.cumulative_offsets.len(), 0); // 2 non-empty vectors

        let input = vec![
            vec![vec![0, 1]],
            vec![vec![]],
            vec![vec![], vec![2, 3, 4], vec![]],
        ];
        let cumulative = CumulativeOffsets::from_raw_2d(&input);

        let src: Vec<_> = input.clone().into_iter().flatten().flatten().collect();
        let len = src.len();
        assert_eq!(cumulative.total_count, len);
        assert_eq!(cumulative.cumulative_offsets.len(), 2); // 2 non-empty vectors

        assert_eq!(cumulative.cumulative_offsets[0].index[DIMENSION_0], 0);
        assert_eq!(cumulative.cumulative_offsets[0].index[DIMENSION_1], 0);
        assert_eq!(cumulative.cumulative_offsets[1].index[DIMENSION_0], 2);
        assert_eq!(cumulative.cumulative_offsets[1].index[DIMENSION_1], 1);

        assert_eq!(cumulative.cumulative_offsets[0].start_offset, 0);
        assert_eq!(cumulative.cumulative_offsets[1].start_offset, 2);

        for start in 0..len {
            let slice: &[u64] = cumulative.get_slice(&input, start);
            let len = slice.len();
            assert!(len > 0);
            assert_eq!(&src[start..(start + len)], slice);
        }
    }

    fn test_hashing_larger(hashes: Vec<(Pubkey, Hash)>, fanout: usize) -> Hash {
        let result = AccountsHasher::compute_merkle_root(hashes.clone(), fanout);
        let reduced: Vec<_> = hashes.iter().map(|x| x.1).collect();
        let result2 = test_hashing(reduced, fanout);
        assert_eq!(result, result2, "len: {}", hashes.len());
        result
    }

    fn test_hashing(hashes: Vec<Hash>, fanout: usize) -> Hash {
        let temp: Vec<_> = hashes.iter().map(|h| (Pubkey::default(), *h)).collect();
        let result = AccountsHasher::compute_merkle_root(temp, fanout);
        let reduced: Vec<_> = hashes.clone();
        let result2 = AccountsHasher::compute_merkle_root_from_slices(
            hashes.len(),
            fanout,
            None,
            |start| &reduced[start..],
            None,
        );
        assert_eq!(result, result2.0, "len: {}", hashes.len());

        let result2 = AccountsHasher::compute_merkle_root_from_slices(
            hashes.len(),
            fanout,
            Some(1),
            |start| &reduced[start..],
            None,
        );
        assert_eq!(result, result2.0, "len: {}", hashes.len());

        let max = std::cmp::min(reduced.len(), fanout * 2);
        for left in 0..max {
            for right in left + 1..max {
                let src = vec![
                    vec![reduced[0..left].to_vec(), reduced[left..right].to_vec()],
                    vec![reduced[right..].to_vec()],
                ];
                let offsets = CumulativeOffsets::from_raw_2d(&src);

                let get_slice = |start: usize| -> &[Hash] { offsets.get_slice(&src, start) };
                let result2 = AccountsHasher::compute_merkle_root_from_slices(
                    offsets.total_count,
                    fanout,
                    None,
                    get_slice,
                    None,
                );
                assert_eq!(result, result2.0);
            }
        }
        result
    }

    #[test]
    fn test_accountsdb_compute_merkle_root_large() {
        solana_logger::setup();

        // handle fanout^x -1, +0, +1 for a few 'x's
        const FANOUT: usize = 3;
        let mut hash_counts: Vec<_> = (1..6)
            .flat_map(|x| {
                let mark = FANOUT.pow(x);
                vec![mark - 1, mark, mark + 1]
            })
            .collect();

        // saturate the test space for threshold to threshold + target
        // this hits right before we use the 3 deep optimization and all the way through all possible partial last chunks
        let target = FANOUT.pow(3);
        let threshold = target * FANOUT;
        hash_counts.extend(threshold - 1..=threshold + target);

        for hash_count in hash_counts {
            let hashes: Vec<_> = (0..hash_count).map(|_| Hash::new_unique()).collect();

            test_hashing(hashes, FANOUT);
        }
    }

    #[test]
    fn test_accountsdb_compute_merkle_root() {
        solana_logger::setup();

        let expected_results = vec![
            (0, 0, "GKot5hBsd81kMupNCXHaqbhv3huEbxAFMLnpcX2hniwn", 0),
            (0, 1, "8unXKJYTxrR423HgQxbDmx29mFri1QNrzVKKDxEfc6bj", 0),
            (0, 2, "6QfkevXLLqbfAaR1kVjvMLFtEXvNUVrpmkwXqgsYtCFW", 1),
            (0, 3, "G3FrJd9JrXcMiqChTSfvEdBL2sCPny3ebiUy9Xxbn7a2", 3),
            (0, 4, "G3sZXHhwoCFuNyWy7Efffr47RBW33ibEp7b2hqNDmXdu", 6),
            (0, 5, "78atJJYpokAPKMJwHxUW8SBDvPkkSpTBV7GiB27HwosJ", 10),
            (0, 6, "7c9SM2BmCRVVXdrEdKcMK91MviPqXqQMd8QAb77tgLEy", 15),
            (0, 7, "3hsmnZPhf22UvBLiZ4dVa21Qsdh65CCrtYXsb8MxoVAa", 21),
            (0, 8, "5bwXUiC6RCRhb8fqvjvUXT6waU25str3UXA3a6Aq1jux", 28),
            (0, 9, "3NNtQKH6PaYpCnFBtyi2icK9eYX3YM5pqA3SKaXtUNzu", 36),
            (1, 0, "GKot5hBsd81kMupNCXHaqbhv3huEbxAFMLnpcX2hniwn", 0),
            (1, 1, "4GWVCsnEu1iRyxjAB3F7J7C4MMvcoxFWtP9ihvwvDgxY", 0),
            (1, 2, "8ML8Te6Uw2mipFr2v9sMZDcziXzhVqJo2qeMJohg1CJx", 1),
            (1, 3, "AMEuC3AgqAeRBGBhSfTmuMdfbAiXJnGmKv99kHmcAE1H", 3),
            (1, 4, "HEnDuJLHpsQfrApimGrovTqPEF6Vkrx2dKFr3BDtYzWx", 6),
            (1, 5, "6rH69iP2yM1o565noZN1EqjySW4PhYUskz3c5tXePUfV", 10),
            (1, 6, "7qEQMEXdfSPjbZ3q4cuuZwebDMvTvuaQ3dBiHoDUKo9a", 15),
            (1, 7, "GDJz7LSKYjqqz6ujCaaQRJRmQ7TLNCwYJhdT84qT4qwk", 21),
            (1, 8, "HT9krPLVTo3rr5WZQBQFrbqWs8SbYScXfnt8EVuobboM", 28),
            (1, 9, "8y2pMgqMdRsvqw6BQXm6wtz3qxGPss72i6H6gVpPyeda", 36),
        ];

        let mut expected_index = 0;
        let start = 0;
        let default_fanout = 2;
        // test 0..3 recursions (at fanout = 2) and 1 item remainder. The internals have 1 special case first loop and subsequent loops are the same types.
        let iterations = default_fanout * default_fanout * default_fanout + 2;
        for pass in 0..2 {
            let fanout = if pass == 0 {
                default_fanout
            } else {
                MERKLE_FANOUT
            };
            for count in start..iterations {
                let mut input: Vec<_> = (0..count)
                    .map(|i| {
                        let key = Pubkey::from([(pass * iterations + count) as u8; 32]);
                        let hash = Hash::new(&[(pass * iterations + count + i + 1) as u8; 32]);
                        (key, hash)
                    })
                    .collect();

                let result = if pass == 0 {
                    test_hashing_larger(input, fanout)
                } else {
                    // this sorts inside
                    let early_result = AccountsHasher::accumulate_account_hashes(
                        input
                            .iter()
                            .map(|i| (i.0, AccountHash(i.1)))
                            .collect::<Vec<_>>(),
                    );

                    input.par_sort_unstable_by(|a, b| a.0.cmp(&b.0));
                    let result = AccountsHasher::compute_merkle_root(input, fanout);
                    assert_eq!(early_result, result);
                    result
                };
                // compare against captured, expected results for hash (and lamports)
                assert_eq!(
                    (
                        pass,
                        count,
                        &*(result.to_string()),
                        expected_results[expected_index].3
                    ), // we no longer calculate lamports
                    expected_results[expected_index]
                );
                expected_index += 1;
            }
        }
    }

    #[test]
    #[should_panic(expected = "summing lamports cannot overflow")]
    fn test_accountsdb_lamport_overflow() {
        solana_logger::setup();

        let offset = 2;
        let input = vec![
            CalculateHashIntermediate {
                hash: AccountHash(Hash::new(&[1u8; 32])),
                lamports: u64::MAX - offset,
                pubkey: Pubkey::new_unique(),
            },
            CalculateHashIntermediate {
                hash: AccountHash(Hash::new(&[2u8; 32])),
                lamports: offset + 1,
                pubkey: Pubkey::new_unique(),
            },
        ];
        let dir_for_temp_cache_files = tempdir().unwrap();
        let accounts_hasher = AccountsHasher::new(dir_for_temp_cache_files.path().to_path_buf());
        accounts_hasher.de_dup_accounts_in_parallel(
            &convert_to_slice(&[input]),
            0,
            1,
            &HashStats::default(),
        );
    }

    fn convert_to_slice(
        input: &[Vec<CalculateHashIntermediate>],
    ) -> Vec<&[CalculateHashIntermediate]> {
        input.iter().map(|v| &v[..]).collect::<Vec<_>>()
    }

    #[test]
    #[should_panic(expected = "summing lamports cannot overflow")]
    fn test_accountsdb_lamport_overflow2() {
        solana_logger::setup();

        let offset = 2;
        let input = vec![
            vec![CalculateHashIntermediate {
                hash: AccountHash(Hash::new(&[1u8; 32])),
                lamports: u64::MAX - offset,
                pubkey: Pubkey::new_unique(),
            }],
            vec![CalculateHashIntermediate {
                hash: AccountHash(Hash::new(&[2u8; 32])),
                lamports: offset + 1,
                pubkey: Pubkey::new_unique(),
            }],
        ];
        let dir_for_temp_cache_files = tempdir().unwrap();
        let accounts_hasher = AccountsHasher::new(dir_for_temp_cache_files.path().to_path_buf());
        accounts_hasher.de_dup_accounts(
            &convert_to_slice(&input),
            &mut HashStats::default(),
            2, // accounts above are in 2 groups
        );
    }
}