solana_compute_budget/
compute_budget.rs

1use crate::compute_budget_limits::{self, ComputeBudgetLimits, DEFAULT_HEAP_COST};
2
3#[cfg(feature = "frozen-abi")]
4impl ::solana_frozen_abi::abi_example::AbiExample for ComputeBudget {
5    fn example() -> Self {
6        // ComputeBudget is not Serialize so just rely on Default.
7        ComputeBudget::default()
8    }
9}
10
11/// Max instruction stack depth. This is the maximum nesting of instructions that can happen during
12/// a transaction.
13pub const MAX_INSTRUCTION_STACK_DEPTH: usize = 5;
14
15/// Max call depth. This is the maximum nesting of SBF to SBF call that can happen within a program.
16pub const MAX_CALL_DEPTH: usize = 64;
17
18/// The size of one SBF stack frame.
19pub const STACK_FRAME_SIZE: usize = 4096;
20
21#[derive(Clone, Copy, Debug, PartialEq, Eq)]
22pub struct ComputeBudget {
23    /// Number of compute units that a transaction or individual instruction is
24    /// allowed to consume. Compute units are consumed by program execution,
25    /// resources they use, etc...
26    pub compute_unit_limit: u64,
27    /// Number of compute units consumed by a log_u64 call
28    pub log_64_units: u64,
29    /// Number of compute units consumed by a create_program_address call
30    pub create_program_address_units: u64,
31    /// Number of compute units consumed by an invoke call (not including the cost incurred by
32    /// the called program)
33    pub invoke_units: u64,
34    /// Maximum program instruction invocation stack depth. Invocation stack
35    /// depth starts at 1 for transaction instructions and the stack depth is
36    /// incremented each time a program invokes an instruction and decremented
37    /// when a program returns.
38    pub max_instruction_stack_depth: usize,
39    /// Maximum cross-program invocation and instructions per transaction
40    pub max_instruction_trace_length: usize,
41    /// Base number of compute units consumed to call SHA256
42    pub sha256_base_cost: u64,
43    /// Incremental number of units consumed by SHA256 (based on bytes)
44    pub sha256_byte_cost: u64,
45    /// Maximum number of slices hashed per syscall
46    pub sha256_max_slices: u64,
47    /// Maximum SBF to BPF call depth
48    pub max_call_depth: usize,
49    /// Size of a stack frame in bytes, must match the size specified in the LLVM SBF backend
50    pub stack_frame_size: usize,
51    /// Number of compute units consumed by logging a `Pubkey`
52    pub log_pubkey_units: u64,
53    /// Maximum cross-program invocation instruction size
54    pub max_cpi_instruction_size: usize,
55    /// Number of account data bytes per compute unit charged during a cross-program invocation
56    pub cpi_bytes_per_unit: u64,
57    /// Base number of compute units consumed to get a sysvar
58    pub sysvar_base_cost: u64,
59    /// Number of compute units consumed to call secp256k1_recover
60    pub secp256k1_recover_cost: u64,
61    /// Number of compute units consumed to do a syscall without any work
62    pub syscall_base_cost: u64,
63    /// Number of compute units consumed to validate a curve25519 edwards point
64    pub curve25519_edwards_validate_point_cost: u64,
65    /// Number of compute units consumed to add two curve25519 edwards points
66    pub curve25519_edwards_add_cost: u64,
67    /// Number of compute units consumed to subtract two curve25519 edwards points
68    pub curve25519_edwards_subtract_cost: u64,
69    /// Number of compute units consumed to multiply a curve25519 edwards point
70    pub curve25519_edwards_multiply_cost: u64,
71    /// Number of compute units consumed for a multiscalar multiplication (msm) of edwards points.
72    /// The total cost is calculated as `msm_base_cost + (length - 1) * msm_incremental_cost`.
73    pub curve25519_edwards_msm_base_cost: u64,
74    /// Number of compute units consumed for a multiscalar multiplication (msm) of edwards points.
75    /// The total cost is calculated as `msm_base_cost + (length - 1) * msm_incremental_cost`.
76    pub curve25519_edwards_msm_incremental_cost: u64,
77    /// Number of compute units consumed to validate a curve25519 ristretto point
78    pub curve25519_ristretto_validate_point_cost: u64,
79    /// Number of compute units consumed to add two curve25519 ristretto points
80    pub curve25519_ristretto_add_cost: u64,
81    /// Number of compute units consumed to subtract two curve25519 ristretto points
82    pub curve25519_ristretto_subtract_cost: u64,
83    /// Number of compute units consumed to multiply a curve25519 ristretto point
84    pub curve25519_ristretto_multiply_cost: u64,
85    /// Number of compute units consumed for a multiscalar multiplication (msm) of ristretto points.
86    /// The total cost is calculated as `msm_base_cost + (length - 1) * msm_incremental_cost`.
87    pub curve25519_ristretto_msm_base_cost: u64,
88    /// Number of compute units consumed for a multiscalar multiplication (msm) of ristretto points.
89    /// The total cost is calculated as `msm_base_cost + (length - 1) * msm_incremental_cost`.
90    pub curve25519_ristretto_msm_incremental_cost: u64,
91    /// program heap region size, default: solana_sdk::entrypoint::HEAP_LENGTH
92    pub heap_size: u32,
93    /// Number of compute units per additional 32k heap above the default (~.5
94    /// us per 32k at 15 units/us rounded up)
95    pub heap_cost: u64,
96    /// Memory operation syscall base cost
97    pub mem_op_base_cost: u64,
98    /// Number of compute units consumed to call alt_bn128_addition
99    pub alt_bn128_addition_cost: u64,
100    /// Number of compute units consumed to call alt_bn128_multiplication.
101    pub alt_bn128_multiplication_cost: u64,
102    /// Total cost will be alt_bn128_pairing_one_pair_cost_first
103    /// + alt_bn128_pairing_one_pair_cost_other * (num_elems - 1)
104    pub alt_bn128_pairing_one_pair_cost_first: u64,
105    pub alt_bn128_pairing_one_pair_cost_other: u64,
106    /// Big integer modular exponentiation base cost
107    pub big_modular_exponentiation_base_cost: u64,
108    /// Big integer moduler exponentiation cost divisor
109    /// The modular exponentiation cost is computed as
110    /// `input_length`/`big_modular_exponentiation_cost_divisor` + `big_modular_exponentiation_base_cost`
111    pub big_modular_exponentiation_cost_divisor: u64,
112    /// Coefficient `a` of the quadratic function which determines the number
113    /// of compute units consumed to call poseidon syscall for a given number
114    /// of inputs.
115    pub poseidon_cost_coefficient_a: u64,
116    /// Coefficient `c` of the quadratic function which determines the number
117    /// of compute units consumed to call poseidon syscall for a given number
118    /// of inputs.
119    pub poseidon_cost_coefficient_c: u64,
120    /// Number of compute units consumed for accessing the remaining compute units.
121    pub get_remaining_compute_units_cost: u64,
122    /// Number of compute units consumed to call alt_bn128_g1_compress.
123    pub alt_bn128_g1_compress: u64,
124    /// Number of compute units consumed to call alt_bn128_g1_decompress.
125    pub alt_bn128_g1_decompress: u64,
126    /// Number of compute units consumed to call alt_bn128_g2_compress.
127    pub alt_bn128_g2_compress: u64,
128    /// Number of compute units consumed to call alt_bn128_g2_decompress.
129    pub alt_bn128_g2_decompress: u64,
130}
131
132impl Default for ComputeBudget {
133    fn default() -> Self {
134        Self::new(compute_budget_limits::MAX_COMPUTE_UNIT_LIMIT as u64)
135    }
136}
137
138impl From<ComputeBudgetLimits> for ComputeBudget {
139    fn from(compute_budget_limits: ComputeBudgetLimits) -> Self {
140        ComputeBudget {
141            compute_unit_limit: u64::from(compute_budget_limits.compute_unit_limit),
142            heap_size: compute_budget_limits.updated_heap_bytes,
143            ..ComputeBudget::default()
144        }
145    }
146}
147
148impl ComputeBudget {
149    pub fn new(compute_unit_limit: u64) -> Self {
150        ComputeBudget {
151            compute_unit_limit,
152            log_64_units: 100,
153            create_program_address_units: 1500,
154            invoke_units: 1000,
155            max_instruction_stack_depth: MAX_INSTRUCTION_STACK_DEPTH,
156            max_instruction_trace_length: 64,
157            sha256_base_cost: 85,
158            sha256_byte_cost: 1,
159            sha256_max_slices: 20_000,
160            max_call_depth: MAX_CALL_DEPTH,
161            stack_frame_size: STACK_FRAME_SIZE,
162            log_pubkey_units: 100,
163            max_cpi_instruction_size: 1280, // IPv6 Min MTU size
164            cpi_bytes_per_unit: 250,        // ~50MB at 200,000 units
165            sysvar_base_cost: 100,
166            secp256k1_recover_cost: 25_000,
167            syscall_base_cost: 100,
168            curve25519_edwards_validate_point_cost: 159,
169            curve25519_edwards_add_cost: 473,
170            curve25519_edwards_subtract_cost: 475,
171            curve25519_edwards_multiply_cost: 2_177,
172            curve25519_edwards_msm_base_cost: 2_273,
173            curve25519_edwards_msm_incremental_cost: 758,
174            curve25519_ristretto_validate_point_cost: 169,
175            curve25519_ristretto_add_cost: 521,
176            curve25519_ristretto_subtract_cost: 519,
177            curve25519_ristretto_multiply_cost: 2_208,
178            curve25519_ristretto_msm_base_cost: 2303,
179            curve25519_ristretto_msm_incremental_cost: 788,
180            heap_size: u32::try_from(solana_sdk::entrypoint::HEAP_LENGTH).unwrap(),
181            heap_cost: DEFAULT_HEAP_COST,
182            mem_op_base_cost: 10,
183            alt_bn128_addition_cost: 334,
184            alt_bn128_multiplication_cost: 3_840,
185            alt_bn128_pairing_one_pair_cost_first: 36_364,
186            alt_bn128_pairing_one_pair_cost_other: 12_121,
187            big_modular_exponentiation_base_cost: 190,
188            big_modular_exponentiation_cost_divisor: 2,
189            poseidon_cost_coefficient_a: 61,
190            poseidon_cost_coefficient_c: 542,
191            get_remaining_compute_units_cost: 100,
192            alt_bn128_g1_compress: 30,
193            alt_bn128_g1_decompress: 398,
194            alt_bn128_g2_compress: 86,
195            alt_bn128_g2_decompress: 13610,
196        }
197    }
198
199    /// Returns cost of the Poseidon hash function for the given number of
200    /// inputs is determined by the following quadratic function:
201    ///
202    /// 61*n^2 + 542
203    ///
204    /// Which aproximates the results of benchmarks of light-posiedon
205    /// library[0]. These results assume 1 CU per 33 ns. Examples:
206    ///
207    /// * 1 input
208    ///   * light-poseidon benchmark: `18,303 / 33 ≈ 555`
209    ///   * function: `61*1^2 + 542 = 603`
210    /// * 2 inputs
211    ///   * light-poseidon benchmark: `25,866 / 33 ≈ 784`
212    ///   * function: `61*2^2 + 542 = 786`
213    /// * 3 inputs
214    ///   * light-poseidon benchmark: `37,549 / 33 ≈ 1,138`
215    ///   * function; `61*3^2 + 542 = 1091`
216    ///
217    /// [0] https://github.com/Lightprotocol/light-poseidon#performance
218    pub fn poseidon_cost(&self, nr_inputs: u64) -> Option<u64> {
219        let squared_inputs = nr_inputs.checked_pow(2)?;
220        let mul_result = self
221            .poseidon_cost_coefficient_a
222            .checked_mul(squared_inputs)?;
223        let final_result = mul_result.checked_add(self.poseidon_cost_coefficient_c)?;
224
225        Some(final_result)
226    }
227}