solana_program_entrypoint/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
//! The Rust-based BPF program entrypoint supported by the latest BPF loader.
//!
//! For more information see the [`bpf_loader`] module.
//!
//! [`bpf_loader`]: crate::bpf_loader

extern crate alloc;
use {
    alloc::vec::Vec,
    solana_account_info::AccountInfo,
    solana_pubkey::Pubkey,
    std::{
        alloc::Layout,
        cell::RefCell,
        mem::{size_of, MaybeUninit},
        ptr::null_mut,
        rc::Rc,
        slice::{from_raw_parts, from_raw_parts_mut},
    },
};
// need to re-export msg for custom_heap_default macro
pub use {
    solana_account_info::MAX_PERMITTED_DATA_INCREASE, solana_msg::msg as __msg,
    solana_program_error::ProgramResult,
};

/// User implemented function to process an instruction
///
/// program_id: Program ID of the currently executing program accounts: Accounts
/// passed as part of the instruction instruction_data: Instruction data
pub type ProcessInstruction =
    fn(program_id: &Pubkey, accounts: &[AccountInfo], instruction_data: &[u8]) -> ProgramResult;

/// Programs indicate success with a return value of 0
pub const SUCCESS: u64 = 0;

/// Start address of the memory region used for program heap.
pub const HEAP_START_ADDRESS: u64 = 0x300000000;
/// Length of the heap memory region used for program heap.
pub const HEAP_LENGTH: usize = 32 * 1024;

/// Value used to indicate that a serialized account is not a duplicate
pub const NON_DUP_MARKER: u8 = u8::MAX;

/// Declare the program entrypoint and set up global handlers.
///
/// This macro emits the common boilerplate necessary to begin program
/// execution, calling a provided function to process the program instruction
/// supplied by the runtime, and reporting its result to the runtime.
///
/// It also sets up a [global allocator] and [panic handler], using the
/// [`custom_heap_default`] and [`custom_panic_default`] macros.
///
/// [`custom_heap_default`]: crate::custom_heap_default
/// [`custom_panic_default`]: crate::custom_panic_default
///
/// [global allocator]: https://doc.rust-lang.org/stable/std/alloc/trait.GlobalAlloc.html
/// [panic handler]: https://doc.rust-lang.org/nomicon/panic-handler.html
///
/// The argument is the name of a function with this type signature:
///
/// ```ignore
/// fn process_instruction(
///     program_id: &Pubkey,      // Public key of the account the program was loaded into
///     accounts: &[AccountInfo], // All accounts required to process the instruction
///     instruction_data: &[u8],  // Serialized instruction-specific data
/// ) -> ProgramResult;
/// ```
///
/// # Cargo features
///
/// This macro emits symbols and definitions that may only be defined once
/// globally. As such, if linked to other Rust crates it will cause compiler
/// errors. To avoid this, it is common for Solana programs to define an
/// optional [Cargo feature] called `no-entrypoint`, and use it to conditionally
/// disable the `entrypoint` macro invocation, as well as the
/// `process_instruction` function. See a typical pattern for this in the
/// example below.
///
/// [Cargo feature]: https://doc.rust-lang.org/cargo/reference/features.html
///
/// The code emitted by this macro can be customized by adding cargo features
/// _to your own crate_ (the one that calls this macro) and enabling them:
///
/// - If the `custom-heap` feature is defined then the macro will not set up the
///   global allocator, allowing `entrypoint` to be used with your own
///   allocator. See documentation for the [`custom_heap_default`] macro for
///   details of customizing the global allocator.
///
/// - If the `custom-panic` feature is defined then the macro will not define a
///   panic handler, allowing `entrypoint` to be used with your own panic
///   handler. See documentation for the [`custom_panic_default`] macro for
///   details of customizing the panic handler.
///
/// # Examples
///
/// Defining an entrypoint and making it conditional on the `no-entrypoint`
/// feature. Although the `entrypoint` module is written inline in this example,
/// it is common to put it into its own file.
///
/// ```no_run
/// #[cfg(not(feature = "no-entrypoint"))]
/// pub mod entrypoint {
///
///     use solana_account_info::AccountInfo;
///     use solana_program_entrypoint::entrypoint;
///     use solana_program_entrypoint::ProgramResult;
///     use solana_msg::msg;
///     use solana_pubkey::Pubkey;
///
///     entrypoint!(process_instruction);
///
///     pub fn process_instruction(
///         program_id: &Pubkey,
///         accounts: &[AccountInfo],
///         instruction_data: &[u8],
///     ) -> ProgramResult {
///         msg!("Hello world");
///
///         Ok(())
///     }
///
/// }
/// ```
#[macro_export]
macro_rules! entrypoint {
    ($process_instruction:ident) => {
        /// # Safety
        #[no_mangle]
        pub unsafe extern "C" fn entrypoint(input: *mut u8) -> u64 {
            let (program_id, accounts, instruction_data) = unsafe { $crate::deserialize(input) };
            match $process_instruction(program_id, &accounts, instruction_data) {
                Ok(()) => $crate::SUCCESS,
                Err(error) => error.into(),
            }
        }
        $crate::custom_heap_default!();
        $crate::custom_panic_default!();
    };
}

/// Declare the program entrypoint and set up global handlers.
///
/// This is similar to the `entrypoint!` macro, except that it does not perform
/// any dynamic allocations, and instead writes the input accounts into a pre-
/// allocated array.
///
/// This version reduces compute unit usage by 20-30 compute units per unique
/// account in the instruction. It may become the default option in a future
/// release.
///
/// For more information about how the program entrypoint behaves and what it
/// does, please see the documentation for [`entrypoint!`].
///
/// NOTE: This entrypoint has a hard-coded limit of 64 input accounts.
#[macro_export]
macro_rules! entrypoint_no_alloc {
    ($process_instruction:ident) => {
        /// # Safety
        #[no_mangle]
        pub unsafe extern "C" fn entrypoint(input: *mut u8) -> u64 {
            use std::mem::MaybeUninit;
            // Clippy complains about this because a `const` with interior
            // mutability `RefCell` should use `static` instead to make it
            // clear that it can change.
            // In our case, however, we want to create an array of `AccountInfo`s,
            // and the only way to do it is through a `const` expression, and
            // we don't expect to mutate the internals of this `const` type.
            #[allow(clippy::declare_interior_mutable_const)]
            const UNINIT_ACCOUNT_INFO: MaybeUninit<AccountInfo> =
                MaybeUninit::<AccountInfo>::uninit();
            const MAX_ACCOUNT_INFOS: usize = 64;
            let mut accounts = [UNINIT_ACCOUNT_INFO; MAX_ACCOUNT_INFOS];
            let (program_id, num_accounts, instruction_data) =
                unsafe { $crate::deserialize_into(input, &mut accounts) };
            // Use `slice_assume_init_ref` once it's stabilized
            let accounts = &*(&accounts[..num_accounts] as *const [MaybeUninit<AccountInfo<'_>>]
                as *const [AccountInfo<'_>]);

            #[inline(never)]
            fn call_program(program_id: &Pubkey, accounts: &[AccountInfo], data: &[u8]) -> u64 {
                match $process_instruction(program_id, accounts, data) {
                    Ok(()) => $crate::SUCCESS,
                    Err(error) => error.into(),
                }
            }

            call_program(&program_id, accounts, &instruction_data)
        }
        $crate::custom_heap_default!();
        $crate::custom_panic_default!();
    };
}

/// Define the default global allocator.
///
/// The default global allocator is enabled only if the calling crate has not
/// disabled it using [Cargo features] as described below. It is only defined
/// for [BPF] targets.
///
/// [Cargo features]: https://doc.rust-lang.org/cargo/reference/features.html
/// [BPF]: https://solana.com/docs/programs/faq#berkeley-packet-filter-bpf
///
/// # Cargo features
///
/// A crate that calls this macro can provide its own custom heap
/// implementation, or allow others to provide their own custom heap
/// implementation, by adding a `custom-heap` feature to its `Cargo.toml`. After
/// enabling the feature, one may define their own [global allocator] in the
/// standard way.
///
/// [global allocator]: https://doc.rust-lang.org/stable/std/alloc/trait.GlobalAlloc.html
///
#[macro_export]
macro_rules! custom_heap_default {
    () => {
        #[cfg(all(not(feature = "custom-heap"), target_os = "solana"))]
        #[global_allocator]
        static A: $crate::BumpAllocator = $crate::BumpAllocator {
            start: $crate::HEAP_START_ADDRESS as usize,
            len: $crate::HEAP_LENGTH,
        };
    };
}

/// Define the default global panic handler.
///
/// This must be used if the [`entrypoint`] macro is not used, and no other
/// panic handler has been defined; otherwise compilation will fail with a
/// missing `custom_panic` symbol.
///
/// The default global allocator is enabled only if the calling crate has not
/// disabled it using [Cargo features] as described below. It is only defined
/// for [BPF] targets.
///
/// [Cargo features]: https://doc.rust-lang.org/cargo/reference/features.html
/// [BPF]: https://solana.com/docs/programs/faq#berkeley-packet-filter-bpf
///
/// # Cargo features
///
/// A crate that calls this macro can provide its own custom panic handler, or
/// allow others to provide their own custom panic handler, by adding a
/// `custom-panic` feature to its `Cargo.toml`. After enabling the feature, one
/// may define their own panic handler.
///
/// A good way to reduce the final size of the program is to provide a
/// `custom_panic` implementation that does nothing. Doing so will cut ~25kb
/// from a noop program. That number goes down the more the programs pulls in
/// Rust's standard library for other purposes.
///
/// # Defining a panic handler for Solana
///
/// _The mechanism for defining a Solana panic handler is different [from most
/// Rust programs][rpanic]._
///
/// [rpanic]: https://doc.rust-lang.org/nomicon/panic-handler.html
///
/// To define a panic handler one must define a `custom_panic` function
/// with the `#[no_mangle]` attribute, as below:
///
/// ```ignore
/// #[cfg(all(feature = "custom-panic", target_os = "solana"))]
/// #[no_mangle]
/// fn custom_panic(info: &core::panic::PanicInfo<'_>) {
///     $crate::msg!("{}", info);
/// }
/// ```
///
/// The above is how Solana defines the default panic handler.
#[macro_export]
macro_rules! custom_panic_default {
    () => {
        #[cfg(all(not(feature = "custom-panic"), target_os = "solana"))]
        #[no_mangle]
        fn custom_panic(info: &core::panic::PanicInfo<'_>) {
            // Full panic reporting
            $crate::__msg!("{}", info);
        }
    };
}

/// The bump allocator used as the default rust heap when running programs.
pub struct BumpAllocator {
    pub start: usize,
    pub len: usize,
}
/// Integer arithmetic in this global allocator implementation is safe when
/// operating on the prescribed `HEAP_START_ADDRESS` and `HEAP_LENGTH`. Any
/// other use may overflow and is thus unsupported and at one's own risk.
#[allow(clippy::arithmetic_side_effects)]
unsafe impl std::alloc::GlobalAlloc for BumpAllocator {
    #[inline]
    unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
        let pos_ptr = self.start as *mut usize;

        let mut pos = *pos_ptr;
        if pos == 0 {
            // First time, set starting position
            pos = self.start + self.len;
        }
        pos = pos.saturating_sub(layout.size());
        pos &= !(layout.align().wrapping_sub(1));
        if pos < self.start + size_of::<*mut u8>() {
            return null_mut();
        }
        *pos_ptr = pos;
        pos as *mut u8
    }
    #[inline]
    unsafe fn dealloc(&self, _: *mut u8, _: Layout) {
        // I'm a bump allocator, I don't free
    }
}

/// `assert_eq(std::mem::align_of::<u128>(), 8)` is true for BPF but not for some host machines
pub const BPF_ALIGN_OF_U128: usize = 8;

#[allow(clippy::arithmetic_side_effects)]
#[inline(always)] // this reduces CU usage
unsafe fn deserialize_instruction_data<'a>(input: *mut u8, mut offset: usize) -> (&'a [u8], usize) {
    #[allow(clippy::cast_ptr_alignment)]
    let instruction_data_len = *(input.add(offset) as *const u64) as usize;
    offset += size_of::<u64>();

    let instruction_data = { from_raw_parts(input.add(offset), instruction_data_len) };
    offset += instruction_data_len;

    (instruction_data, offset)
}

#[allow(clippy::arithmetic_side_effects)]
#[inline(always)] // this reduces CU usage by half!
unsafe fn deserialize_account_info<'a>(
    input: *mut u8,
    mut offset: usize,
) -> (AccountInfo<'a>, usize) {
    #[allow(clippy::cast_ptr_alignment)]
    let is_signer = *(input.add(offset) as *const u8) != 0;
    offset += size_of::<u8>();

    #[allow(clippy::cast_ptr_alignment)]
    let is_writable = *(input.add(offset) as *const u8) != 0;
    offset += size_of::<u8>();

    #[allow(clippy::cast_ptr_alignment)]
    let executable = *(input.add(offset) as *const u8) != 0;
    offset += size_of::<u8>();

    // The original data length is stored here because these 4 bytes were
    // originally only used for padding and served as a good location to
    // track the original size of the account data in a compatible way.
    let original_data_len_offset = offset;
    offset += size_of::<u32>();

    let key: &Pubkey = &*(input.add(offset) as *const Pubkey);
    offset += size_of::<Pubkey>();

    let owner: &Pubkey = &*(input.add(offset) as *const Pubkey);
    offset += size_of::<Pubkey>();

    #[allow(clippy::cast_ptr_alignment)]
    let lamports = Rc::new(RefCell::new(&mut *(input.add(offset) as *mut u64)));
    offset += size_of::<u64>();

    #[allow(clippy::cast_ptr_alignment)]
    let data_len = *(input.add(offset) as *const u64) as usize;
    offset += size_of::<u64>();

    // Store the original data length for detecting invalid reallocations and
    // requires that MAX_PERMITTED_DATA_LENGTH fits in a u32
    *(input.add(original_data_len_offset) as *mut u32) = data_len as u32;

    let data = Rc::new(RefCell::new({
        from_raw_parts_mut(input.add(offset), data_len)
    }));
    offset += data_len + MAX_PERMITTED_DATA_INCREASE;
    offset += (offset as *const u8).align_offset(BPF_ALIGN_OF_U128); // padding

    #[allow(clippy::cast_ptr_alignment)]
    let rent_epoch = *(input.add(offset) as *const u64);
    offset += size_of::<u64>();

    (
        AccountInfo {
            key,
            is_signer,
            is_writable,
            lamports,
            data,
            owner,
            executable,
            rent_epoch,
        },
        offset,
    )
}

/// Deserialize the input arguments
///
/// The integer arithmetic in this method is safe when called on a buffer that was
/// serialized by runtime. Use with buffers serialized otherwise is unsupported and
/// done at one's own risk.
///
/// # Safety
#[allow(clippy::arithmetic_side_effects)]
pub unsafe fn deserialize<'a>(input: *mut u8) -> (&'a Pubkey, Vec<AccountInfo<'a>>, &'a [u8]) {
    let mut offset: usize = 0;

    // Number of accounts present

    #[allow(clippy::cast_ptr_alignment)]
    let num_accounts = *(input.add(offset) as *const u64) as usize;
    offset += size_of::<u64>();

    // Account Infos

    let mut accounts = Vec::with_capacity(num_accounts);
    for _ in 0..num_accounts {
        let dup_info = *(input.add(offset) as *const u8);
        offset += size_of::<u8>();
        if dup_info == NON_DUP_MARKER {
            let (account_info, new_offset) = deserialize_account_info(input, offset);
            offset = new_offset;
            accounts.push(account_info);
        } else {
            offset += 7; // padding

            // Duplicate account, clone the original
            accounts.push(accounts[dup_info as usize].clone());
        }
    }

    // Instruction data

    let (instruction_data, new_offset) = deserialize_instruction_data(input, offset);
    offset = new_offset;

    // Program Id

    let program_id: &Pubkey = &*(input.add(offset) as *const Pubkey);

    (program_id, accounts, instruction_data)
}

/// Deserialize the input arguments
///
/// Differs from `deserialize` by writing the account infos into an uninitialized
/// slice, which provides better performance, roughly 30 CUs per unique account
/// provided to the instruction.
///
/// Panics if the input slice is not large enough.
///
/// The integer arithmetic in this method is safe when called on a buffer that was
/// serialized by runtime. Use with buffers serialized otherwise is unsupported and
/// done at one's own risk.
///
/// # Safety
#[allow(clippy::arithmetic_side_effects)]
pub unsafe fn deserialize_into<'a>(
    input: *mut u8,
    accounts: &mut [MaybeUninit<AccountInfo<'a>>],
) -> (&'a Pubkey, usize, &'a [u8]) {
    let mut offset: usize = 0;

    // Number of accounts present

    #[allow(clippy::cast_ptr_alignment)]
    let num_accounts = *(input.add(offset) as *const u64) as usize;
    offset += size_of::<u64>();

    if num_accounts > accounts.len() {
        panic!(
            "{} accounts provided, but only {} are supported",
            num_accounts,
            accounts.len()
        );
    }

    // Account Infos

    for i in 0..num_accounts {
        let dup_info = *(input.add(offset) as *const u8);
        offset += size_of::<u8>();
        if dup_info == NON_DUP_MARKER {
            let (account_info, new_offset) = deserialize_account_info(input, offset);
            offset = new_offset;
            accounts[i].write(account_info);
        } else {
            offset += 7; // padding

            // Duplicate account, clone the original
            accounts[i].write(accounts[dup_info as usize].assume_init_ref().clone());
        }
    }

    // Instruction data

    let (instruction_data, new_offset) = deserialize_instruction_data(input, offset);
    offset = new_offset;

    // Program Id

    let program_id: &Pubkey = &*(input.add(offset) as *const Pubkey);

    (program_id, num_accounts, instruction_data)
}

#[cfg(test)]
mod test {
    use {super::*, std::alloc::GlobalAlloc};

    #[test]
    fn test_bump_allocator() {
        // alloc the entire
        {
            let heap = [0u8; 128];
            let allocator = BumpAllocator {
                start: heap.as_ptr() as *const _ as usize,
                len: heap.len(),
            };
            for i in 0..128 - size_of::<*mut u8>() {
                let ptr = unsafe {
                    allocator.alloc(Layout::from_size_align(1, size_of::<u8>()).unwrap())
                };
                assert_eq!(
                    ptr as *const _ as usize,
                    heap.as_ptr() as *const _ as usize + heap.len() - 1 - i
                );
            }
            assert_eq!(null_mut(), unsafe {
                allocator.alloc(Layout::from_size_align(1, 1).unwrap())
            });
        }
        // check alignment
        {
            let heap = [0u8; 128];
            let allocator = BumpAllocator {
                start: heap.as_ptr() as *const _ as usize,
                len: heap.len(),
            };
            let ptr =
                unsafe { allocator.alloc(Layout::from_size_align(1, size_of::<u8>()).unwrap()) };
            assert_eq!(0, ptr.align_offset(size_of::<u8>()));
            let ptr =
                unsafe { allocator.alloc(Layout::from_size_align(1, size_of::<u16>()).unwrap()) };
            assert_eq!(0, ptr.align_offset(size_of::<u16>()));
            let ptr =
                unsafe { allocator.alloc(Layout::from_size_align(1, size_of::<u32>()).unwrap()) };
            assert_eq!(0, ptr.align_offset(size_of::<u32>()));
            let ptr =
                unsafe { allocator.alloc(Layout::from_size_align(1, size_of::<u64>()).unwrap()) };
            assert_eq!(0, ptr.align_offset(size_of::<u64>()));
            let ptr =
                unsafe { allocator.alloc(Layout::from_size_align(1, size_of::<u128>()).unwrap()) };
            assert_eq!(0, ptr.align_offset(size_of::<u128>()));
            let ptr = unsafe { allocator.alloc(Layout::from_size_align(1, 64).unwrap()) };
            assert_eq!(0, ptr.align_offset(64));
        }
        // alloc entire block (minus the pos ptr)
        {
            let heap = [0u8; 128];
            let allocator = BumpAllocator {
                start: heap.as_ptr() as *const _ as usize,
                len: heap.len(),
            };
            let ptr =
                unsafe { allocator.alloc(Layout::from_size_align(120, size_of::<u8>()).unwrap()) };
            assert_ne!(ptr, null_mut());
            assert_eq!(0, ptr.align_offset(size_of::<u64>()));
        }
    }
}