solana_sbpf/
elf.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
//! This module relocates a BPF ELF

// Note: Typically ELF shared objects are loaded using the program headers and
// not the section headers.  Since we are leveraging the elfkit crate its much
// easier to use the section headers.  There are cases (reduced size, obfuscation)
// where the section headers may be removed from the ELF.  If that happens then
// this loader will need to be re-written to use the program headers instead.

use crate::{
    aligned_memory::{is_memory_aligned, AlignedMemory},
    ebpf::{self, EF_SBPF_V2, HOST_ALIGN, INSN_SIZE},
    elf_parser::{
        consts::{
            ELFCLASS64, ELFDATA2LSB, ELFOSABI_NONE, EM_BPF, EM_SBPF, ET_DYN, R_X86_64_32,
            R_X86_64_64, R_X86_64_NONE, R_X86_64_RELATIVE,
        },
        types::{Elf64Phdr, Elf64Shdr, Elf64Word},
        Elf64, ElfParserError,
    },
    error::EbpfError,
    memory_region::MemoryRegion,
    program::{BuiltinProgram, FunctionRegistry, SBPFVersion},
    verifier::Verifier,
    vm::{Config, ContextObject},
};

#[cfg(all(feature = "jit", not(target_os = "windows"), target_arch = "x86_64"))]
use crate::jit::{JitCompiler, JitProgram};
use byteorder::{ByteOrder, LittleEndian};
use std::{collections::BTreeMap, fmt::Debug, mem, ops::Range, str};

#[cfg(not(feature = "shuttle-test"))]
use std::sync::Arc;

#[cfg(feature = "shuttle-test")]
use shuttle::sync::Arc;

/// Error definitions
#[derive(Debug, thiserror::Error, PartialEq, Eq)]
pub enum ElfError {
    /// Failed to parse ELF file
    #[error("Failed to parse ELF file: {0}")]
    FailedToParse(String),
    /// Entrypoint out of bounds
    #[error("Entrypoint out of bounds")]
    EntrypointOutOfBounds,
    /// Invalid entrypoint
    #[error("Invalid entrypoint")]
    InvalidEntrypoint,
    /// Failed to get section
    #[error("Failed to get section {0}")]
    FailedToGetSection(String),
    /// Unresolved symbol
    #[error("Unresolved symbol ({0}) at instruction #{1:?} (ELF file offset {2:#x})")]
    UnresolvedSymbol(String, usize, usize),
    /// Section not found
    #[error("Section not found: {0}")]
    SectionNotFound(String),
    /// Relative jump out of bounds
    #[error("Relative jump out of bounds at instruction #{0}")]
    RelativeJumpOutOfBounds(usize),
    /// Symbol hash collision
    #[error("Symbol hash collision {0:#x}")]
    SymbolHashCollision(u32),
    /// Incompatible ELF: wrong endianess
    #[error("Incompatible ELF: wrong endianess")]
    WrongEndianess,
    /// Incompatible ELF: wrong ABI
    #[error("Incompatible ELF: wrong ABI")]
    WrongAbi,
    /// Incompatible ELF: wrong machine
    #[error("Incompatible ELF: wrong machine")]
    WrongMachine,
    /// Incompatible ELF: wrong class
    #[error("Incompatible ELF: wrong class")]
    WrongClass,
    /// Not one text section
    #[error("Multiple or no text sections, consider removing llc option: -function-sections")]
    NotOneTextSection,
    /// Read-write data not supported
    #[error("Found writable section ({0}) in ELF, read-write data not supported")]
    WritableSectionNotSupported(String),
    /// Relocation failed, no loadable section contains virtual address
    #[error("Relocation failed, no loadable section contains virtual address {0:#x}")]
    AddressOutsideLoadableSection(u64),
    /// Relocation failed, invalid referenced virtual address
    #[error("Relocation failed, invalid referenced virtual address {0:#x}")]
    InvalidVirtualAddress(u64),
    /// Relocation failed, unknown type
    #[error("Relocation failed, unknown type {0:?}")]
    UnknownRelocation(u32),
    /// Failed to read relocation info
    #[error("Failed to read relocation info")]
    FailedToReadRelocationInfo,
    /// Incompatible ELF: wrong type
    #[error("Incompatible ELF: wrong type")]
    WrongType,
    /// Unknown symbol
    #[error("Unknown symbol with index {0}")]
    UnknownSymbol(usize),
    /// Offset or value is out of bounds
    #[error("Offset or value is out of bounds")]
    ValueOutOfBounds,
    /// Detected sbpf_version required by the executable which are not enabled
    #[error("Detected sbpf_version required by the executable which are not enabled")]
    UnsupportedSBPFVersion,
    /// Invalid program header
    #[error("Invalid ELF program header")]
    InvalidProgramHeader,
}

impl From<ElfParserError> for ElfError {
    fn from(err: ElfParserError) -> Self {
        match err {
            ElfParserError::InvalidSectionHeader
            | ElfParserError::InvalidString
            | ElfParserError::InvalidSize
            | ElfParserError::Overlap
            | ElfParserError::SectionNotInOrder
            | ElfParserError::NoSectionNameStringTable
            | ElfParserError::InvalidDynamicSectionTable
            | ElfParserError::InvalidRelocationTable
            | ElfParserError::InvalidAlignment
            | ElfParserError::NoStringTable
            | ElfParserError::NoDynamicStringTable
            | ElfParserError::InvalidFileHeader
            | ElfParserError::StringTooLong(_, _) => ElfError::FailedToParse(err.to_string()),
            ElfParserError::InvalidProgramHeader => ElfError::InvalidProgramHeader,
            ElfParserError::OutOfBounds => ElfError::ValueOutOfBounds,
        }
    }
}

fn get_section(elf: &Elf64, name: &[u8]) -> Result<Elf64Shdr, ElfError> {
    for section_header in elf.section_header_table() {
        if elf.section_name(section_header.sh_name)? == name {
            return Ok(section_header.clone());
        }
    }

    Err(ElfError::SectionNotFound(
        std::str::from_utf8(name)
            .unwrap_or("UTF-8 error")
            .to_string(),
    ))
}

// For more information on the BPF instruction set:
// https://github.com/iovisor/bpf-docs/blob/master/eBPF.md

// msb                                                        lsb
// +------------------------+----------------+----+----+--------+
// |immediate               |offset          |src |dst |opcode  |
// +------------------------+----------------+----+----+--------+

// From least significant to most significant bit:
//   8 bit opcode
//   4 bit destination register (dst)
//   4 bit source register (src)
//   16 bit offset
//   32 bit immediate (imm)

/// Byte offset of the immediate field in the instruction
const BYTE_OFFSET_IMMEDIATE: usize = 4;
/// Byte length of the immediate field
const BYTE_LENGTH_IMMEDIATE: usize = 4;

/// BPF relocation types.
#[allow(non_camel_case_types)]
#[derive(Debug, PartialEq, Copy, Clone)]
enum BpfRelocationType {
    /// No relocation, placeholder
    R_Bpf_None = 0,
    /// R_BPF_64_64 relocation type is used for ld_imm64 instruction.
    /// The actual to-be-relocated data (0 or section offset) is
    /// stored at r_offset + 4 and the read/write data bitsize is 32
    /// (4 bytes). The relocation can be resolved with the symbol
    /// value plus implicit addend.
    R_Bpf_64_64 = 1,
    /// 64 bit relocation of a ldxdw instruction.  The ldxdw
    /// instruction occupies two instruction slots. The 64-bit address
    /// to load from is split into the 32-bit imm field of each
    /// slot. The first slot's pre-relocation imm field contains the
    /// virtual address (typically same as the file offset) of the
    /// location to load. Relocation involves calculating the
    /// post-load 64-bit physical address referenced by the imm field
    /// and writing that physical address back into the imm fields of
    /// the ldxdw instruction.
    R_Bpf_64_Relative = 8,
    /// Relocation of a call instruction.  The existing imm field
    /// contains either an offset of the instruction to jump to (think
    /// local function call) or a special value of "-1".  If -1 the
    /// symbol must be looked up in the symbol table.  The relocation
    /// entry contains the symbol number to call.  In order to support
    /// both local jumps and calling external symbols a 32-bit hash is
    /// computed and stored in the the call instruction's 32-bit imm
    /// field.  The hash is used later to look up the 64-bit address
    /// to jump to.  In the case of a local jump the hash is
    /// calculated using the current program counter and in the case
    /// of a symbol the hash is calculated using the name of the
    /// symbol.
    R_Bpf_64_32 = 10,
}
impl BpfRelocationType {
    fn from_x86_relocation_type(from: u32) -> Option<BpfRelocationType> {
        match from {
            R_X86_64_NONE => Some(BpfRelocationType::R_Bpf_None),
            R_X86_64_64 => Some(BpfRelocationType::R_Bpf_64_64),
            R_X86_64_RELATIVE => Some(BpfRelocationType::R_Bpf_64_Relative),
            R_X86_64_32 => Some(BpfRelocationType::R_Bpf_64_32),
            _ => None,
        }
    }
}

/// ELF section
#[derive(Debug, PartialEq)]
pub enum Section {
    /// Owned section data.
    ///
    /// The first field is virtual address of the section.
    /// The second field is the actual section data.
    Owned(usize, Vec<u8>),
    /// Borrowed section data.
    ///
    /// The first field is virtual address of the section.
    /// The second field can be used to index the input ELF buffer to
    /// retrieve the section data.
    Borrowed(usize, Range<usize>),
}

/// Elf loader/relocator
#[derive(Debug, PartialEq)]
pub struct Executable<C: ContextObject> {
    /// Loaded and executable elf
    elf_bytes: AlignedMemory<{ HOST_ALIGN }>,
    /// Required SBPF capabilities
    sbpf_version: SBPFVersion,
    /// Read-only section
    ro_section: Section,
    /// Text section virtual address
    text_section_vaddr: u64,
    /// Text section range in `elf_bytes`
    text_section_range: Range<usize>,
    /// Address of the entry point
    entry_pc: usize,
    /// Call resolution map (hash, pc, name)
    function_registry: FunctionRegistry<usize>,
    /// Loader built-in program
    loader: Arc<BuiltinProgram<C>>,
    /// Compiled program and argument
    #[cfg(all(feature = "jit", not(target_os = "windows"), target_arch = "x86_64"))]
    compiled_program: Option<JitProgram>,
}

impl<C: ContextObject> Executable<C> {
    /// Get the configuration settings
    pub fn get_config(&self) -> &Config {
        self.loader.get_config()
    }

    /// Get the executable sbpf_version
    pub fn get_sbpf_version(&self) -> SBPFVersion {
        self.sbpf_version
    }

    /// Get the .text section virtual address and bytes
    pub fn get_text_bytes(&self) -> (u64, &[u8]) {
        (
            self.text_section_vaddr,
            &self.elf_bytes.as_slice()[self.text_section_range.clone()],
        )
    }

    /// Get the concatenated read-only sections (including the text section)
    pub fn get_ro_section(&self) -> &[u8] {
        match &self.ro_section {
            Section::Owned(_offset, data) => data.as_slice(),
            Section::Borrowed(_offset, byte_range) => {
                &self.elf_bytes.as_slice()[byte_range.clone()]
            }
        }
    }

    /// Get a memory region that can be used to access the merged readonly section
    pub fn get_ro_region(&self) -> MemoryRegion {
        get_ro_region(&self.ro_section, self.elf_bytes.as_slice())
    }

    /// Get the entry point offset into the text section
    pub fn get_entrypoint_instruction_offset(&self) -> usize {
        self.entry_pc
    }

    /// Get the text section offset in the ELF file
    #[cfg(feature = "debugger")]
    pub fn get_text_section_offset(&self) -> u64 {
        self.text_section_range.start as u64
    }

    /// Get the loader built-in program
    pub fn get_loader(&self) -> &Arc<BuiltinProgram<C>> {
        &self.loader
    }

    /// Get the JIT compiled program
    #[cfg(all(feature = "jit", not(target_os = "windows"), target_arch = "x86_64"))]
    pub fn get_compiled_program(&self) -> Option<&JitProgram> {
        self.compiled_program.as_ref()
    }

    /// Verify the executable
    pub fn verify<V: Verifier>(&self) -> Result<(), EbpfError> {
        <V as Verifier>::verify(
            self.get_text_bytes().1,
            self.get_config(),
            self.get_sbpf_version(),
            self.get_function_registry(),
            self.loader.get_function_registry(),
        )?;
        Ok(())
    }

    /// JIT compile the executable
    #[cfg(all(feature = "jit", not(target_os = "windows"), target_arch = "x86_64"))]
    pub fn jit_compile(&mut self) -> Result<(), crate::error::EbpfError> {
        let jit = JitCompiler::<C>::new(self)?;
        self.compiled_program = Some(jit.compile()?);
        Ok(())
    }

    /// Get the function registry
    pub fn get_function_registry(&self) -> &FunctionRegistry<usize> {
        &self.function_registry
    }

    /// Create from raw text section bytes (list of instructions)
    pub fn new_from_text_bytes(
        text_bytes: &[u8],
        loader: Arc<BuiltinProgram<C>>,
        sbpf_version: SBPFVersion,
        mut function_registry: FunctionRegistry<usize>,
    ) -> Result<Self, ElfError> {
        let elf_bytes = AlignedMemory::from_slice(text_bytes);
        let entry_pc = if let Some((_name, pc)) = function_registry.lookup_by_name(b"entrypoint") {
            pc
        } else {
            function_registry.register_function_hashed_legacy(
                &loader,
                !sbpf_version.static_syscalls(),
                *b"entrypoint",
                0,
            )?;
            0
        };
        Ok(Self {
            elf_bytes,
            sbpf_version,
            ro_section: Section::Borrowed(ebpf::MM_RODATA_START as usize, 0..text_bytes.len()),
            text_section_vaddr: if sbpf_version.enable_lower_bytecode_vaddr() {
                ebpf::MM_BYTECODE_START
            } else {
                ebpf::MM_RODATA_START
            },
            text_section_range: 0..text_bytes.len(),
            entry_pc,
            function_registry,
            loader,
            #[cfg(all(feature = "jit", not(target_os = "windows"), target_arch = "x86_64"))]
            compiled_program: None,
        })
    }

    /// Fully loads an ELF
    pub fn load(bytes: &[u8], loader: Arc<BuiltinProgram<C>>) -> Result<Self, ElfError> {
        const E_FLAGS_OFFSET: usize = 48;
        let e_flags = LittleEndian::read_u32(
            bytes
                .get(E_FLAGS_OFFSET..E_FLAGS_OFFSET.saturating_add(std::mem::size_of::<u32>()))
                .ok_or(ElfParserError::OutOfBounds)?,
        );
        let config = loader.get_config();
        let sbpf_version = if config.enabled_sbpf_versions.end() == &SBPFVersion::V0 {
            if e_flags == EF_SBPF_V2 {
                SBPFVersion::Reserved
            } else {
                SBPFVersion::V0
            }
        } else {
            match e_flags {
                0 => SBPFVersion::V0,
                1 => SBPFVersion::V1,
                2 => SBPFVersion::V2,
                3 => SBPFVersion::V3,
                _ => SBPFVersion::Reserved,
            }
        };
        if !config.enabled_sbpf_versions.contains(&sbpf_version) {
            return Err(ElfError::UnsupportedSBPFVersion);
        }

        let mut executable = if sbpf_version.enable_stricter_elf_headers() {
            Self::load_with_strict_parser(bytes, loader)?
        } else {
            Self::load_with_lenient_parser(bytes, loader)?
        };
        executable.sbpf_version = sbpf_version;
        Ok(executable)
    }

    /// Loads an ELF without relocation
    pub fn load_with_strict_parser(
        bytes: &[u8],
        loader: Arc<BuiltinProgram<C>>,
    ) -> Result<Self, ElfParserError> {
        use crate::elf_parser::{
            consts::{
                ELFMAG, EV_CURRENT, PF_R, PF_W, PF_X, PT_GNU_STACK, PT_LOAD, PT_NULL, SHN_UNDEF,
                STT_FUNC,
            },
            types::{Elf64Ehdr, Elf64Shdr, Elf64Sym},
        };

        let aligned_memory = AlignedMemory::<{ HOST_ALIGN }>::from_slice(bytes);
        let elf_bytes = aligned_memory.as_slice();

        let (file_header_range, file_header) = Elf64::parse_file_header(elf_bytes)?;
        let program_header_table_range = mem::size_of::<Elf64Ehdr>()
            ..mem::size_of::<Elf64Phdr>()
                .saturating_mul(file_header.e_phnum as usize)
                .saturating_add(mem::size_of::<Elf64Ehdr>());
        if file_header.e_ident.ei_mag != ELFMAG
            || file_header.e_ident.ei_class != ELFCLASS64
            || file_header.e_ident.ei_data != ELFDATA2LSB
            || file_header.e_ident.ei_version != EV_CURRENT as u8
            || file_header.e_ident.ei_osabi != ELFOSABI_NONE
            || file_header.e_ident.ei_abiversion != 0x00
            || file_header.e_ident.ei_pad != [0x00; 7]
            || file_header.e_type != ET_DYN
            || file_header.e_machine != EM_SBPF
            || file_header.e_version != EV_CURRENT
            // file_header.e_entry
            || file_header.e_phoff != mem::size_of::<Elf64Ehdr>() as u64
            // file_header.e_shoff
            // file_header.e_flags
            || file_header.e_ehsize != mem::size_of::<Elf64Ehdr>() as u16
            || file_header.e_phentsize != mem::size_of::<Elf64Phdr>() as u16
            || file_header.e_phnum < EXPECTED_PROGRAM_HEADERS.len() as u16
            || program_header_table_range.end >= elf_bytes.len()
            || file_header.e_shentsize != mem::size_of::<Elf64Shdr>() as u16
            // file_header.e_shnum
            || file_header.e_shstrndx >= file_header.e_shnum
        {
            return Err(ElfParserError::InvalidFileHeader);
        }

        const EXPECTED_PROGRAM_HEADERS: [(u32, u32, u64); 5] = [
            (PT_LOAD, PF_X, ebpf::MM_BYTECODE_START), // byte code
            (PT_LOAD, PF_R, ebpf::MM_RODATA_START),   // read only data
            (PT_GNU_STACK, PF_R | PF_W, ebpf::MM_STACK_START), // stack
            (PT_LOAD, PF_R | PF_W, ebpf::MM_HEAP_START), // heap
            (PT_NULL, 0, 0xFFFFFFFF00000000),         // dynamic symbol table
        ];
        let program_header_table =
            Elf64::slice_from_bytes::<Elf64Phdr>(elf_bytes, program_header_table_range.clone())?;
        for (program_header, (p_type, p_flags, p_vaddr)) in program_header_table
            .iter()
            .zip(EXPECTED_PROGRAM_HEADERS.iter())
        {
            let p_filesz = if (*p_flags & PF_W) != 0 {
                0
            } else {
                program_header.p_memsz
            };
            if program_header.p_type != *p_type
                || program_header.p_flags != *p_flags
                || program_header.p_offset < program_header_table_range.end as u64
                || program_header.p_offset >= elf_bytes.len() as u64
                || program_header.p_offset.checked_rem(ebpf::INSN_SIZE as u64) != Some(0)
                || program_header.p_vaddr != *p_vaddr
                || program_header.p_paddr != *p_vaddr
                || program_header.p_filesz != p_filesz
                || program_header.p_filesz
                    > (elf_bytes.len() as u64).saturating_sub(program_header.p_offset)
                || program_header.p_memsz >= ebpf::MM_REGION_SIZE
            {
                return Err(ElfParserError::InvalidProgramHeader);
            }
        }

        let config = loader.get_config();
        let symbol_names_section_header = if config.enable_symbol_and_section_labels {
            let (_section_header_table_range, section_header_table) =
                Elf64::parse_section_header_table(
                    elf_bytes,
                    file_header_range.clone(),
                    file_header,
                    program_header_table_range.clone(),
                )?;
            let section_names_section_header = (file_header.e_shstrndx != SHN_UNDEF)
                .then(|| {
                    section_header_table
                        .get(file_header.e_shstrndx as usize)
                        .ok_or(ElfParserError::OutOfBounds)
                })
                .transpose()?
                .ok_or(ElfParserError::NoSectionNameStringTable)?;
            let mut symbol_names_section_header = None;
            for section_header in section_header_table.iter() {
                let section_name = Elf64::get_string_in_section(
                    elf_bytes,
                    section_names_section_header,
                    section_header.sh_name,
                    64,
                )?;
                if section_name == b".dynstr" {
                    symbol_names_section_header = Some(section_header);
                }
            }
            symbol_names_section_header
        } else {
            None
        };
        let bytecode_header = &program_header_table[0];
        let rodata_header = &program_header_table[1];
        let dynamic_symbol_table: &[Elf64Sym] =
            Elf64::slice_from_program_header(elf_bytes, &program_header_table[4])?;
        let mut function_registry = FunctionRegistry::<usize>::default();
        let mut expected_symbol_address = bytecode_header.p_vaddr;
        for symbol in dynamic_symbol_table {
            if symbol.st_info & STT_FUNC == 0 {
                continue;
            }
            if symbol.st_value != expected_symbol_address {
                return Err(ElfParserError::OutOfBounds);
            }
            if symbol.st_size == 0 || symbol.st_size.checked_rem(ebpf::INSN_SIZE as u64) != Some(0)
            {
                return Err(ElfParserError::InvalidSize);
            }
            if symbol.st_size
                > bytecode_header
                    .vm_range()
                    .end
                    .saturating_sub(symbol.st_value)
            {
                return Err(ElfParserError::OutOfBounds);
            }
            let target_pc = symbol
                .st_value
                .saturating_sub(bytecode_header.p_vaddr)
                .checked_div(ebpf::INSN_SIZE as u64)
                .unwrap_or_default() as usize;
            let name = if config.enable_symbol_and_section_labels {
                Elf64::get_string_in_section(
                    elf_bytes,
                    symbol_names_section_header
                        .as_ref()
                        .ok_or(ElfParserError::NoStringTable)?,
                    symbol.st_name as Elf64Word,
                    u8::MAX as usize,
                )?
            } else {
                &[]
            };
            function_registry
                .register_function(target_pc as u32, name, target_pc)
                .unwrap();
            expected_symbol_address = symbol.st_value.saturating_add(symbol.st_size);
        }
        if expected_symbol_address != bytecode_header.vm_range().end {
            return Err(ElfParserError::OutOfBounds);
        }
        if !bytecode_header.vm_range().contains(&file_header.e_entry)
            || file_header.e_entry.checked_rem(ebpf::INSN_SIZE as u64) != Some(0)
        {
            return Err(ElfParserError::InvalidFileHeader);
        }
        let entry_pc = file_header
            .e_entry
            .saturating_sub(bytecode_header.p_vaddr)
            .checked_div(ebpf::INSN_SIZE as u64)
            .unwrap_or_default() as usize;
        if function_registry.lookup_by_key(entry_pc as u32).is_none() {
            return Err(ElfParserError::InvalidFileHeader);
        }

        let text_section_vaddr = bytecode_header.p_vaddr;
        let text_section_range = bytecode_header.file_range().unwrap_or_default();
        let ro_section = Section::Borrowed(
            rodata_header.p_vaddr as usize,
            rodata_header.file_range().unwrap_or_default(),
        );
        Ok(Self {
            elf_bytes: aligned_memory,
            sbpf_version: SBPFVersion::Reserved, // Is set in Self::load()
            ro_section,
            text_section_vaddr,
            text_section_range,
            entry_pc,
            function_registry,
            loader,
            #[cfg(all(feature = "jit", not(target_os = "windows"), target_arch = "x86_64"))]
            compiled_program: None,
        })
    }

    /// Loads an ELF with relocation
    fn load_with_lenient_parser(
        bytes: &[u8],
        loader: Arc<BuiltinProgram<C>>,
    ) -> Result<Self, ElfError> {
        // We always need one memory copy to take ownership and for relocations
        let aligned_memory = AlignedMemory::<{ HOST_ALIGN }>::from_slice(bytes);
        let (mut elf_bytes, unrelocated_elf_bytes) =
            if is_memory_aligned(bytes.as_ptr() as usize, HOST_ALIGN) {
                (aligned_memory, bytes)
            } else {
                // We might need another memory copy to ensure alignment
                (aligned_memory.clone(), aligned_memory.as_slice())
            };
        let elf = Elf64::parse(unrelocated_elf_bytes)?;

        let config = loader.get_config();
        let header = elf.file_header();
        let sbpf_version = if header.e_flags == EF_SBPF_V2 {
            SBPFVersion::Reserved
        } else {
            SBPFVersion::V0
        };

        Self::validate(config, &elf, elf_bytes.as_slice())?;

        // calculate the text section info
        let text_section = get_section(&elf, b".text")?;
        let text_section_vaddr =
            if sbpf_version.enable_elf_vaddr() && text_section.sh_addr >= ebpf::MM_RODATA_START {
                text_section.sh_addr
            } else {
                text_section.sh_addr.saturating_add(ebpf::MM_RODATA_START)
            };
        let vaddr_end = if sbpf_version.reject_rodata_stack_overlap() {
            text_section_vaddr.saturating_add(text_section.sh_size)
        } else {
            text_section_vaddr
        };
        if (config.reject_broken_elfs
            && !sbpf_version.enable_elf_vaddr()
            && text_section.sh_addr != text_section.sh_offset)
            || vaddr_end > ebpf::MM_STACK_START
        {
            return Err(ElfError::ValueOutOfBounds);
        }

        // relocate symbols
        let mut function_registry = FunctionRegistry::default();
        Self::relocate(
            &mut function_registry,
            &loader,
            &elf,
            elf_bytes.as_slice_mut(),
        )?;

        // calculate entrypoint offset into the text section
        let offset = header.e_entry.saturating_sub(text_section.sh_addr);
        if offset.checked_rem(ebpf::INSN_SIZE as u64) != Some(0) {
            return Err(ElfError::InvalidEntrypoint);
        }
        let entry_pc = if let Some(entry_pc) = (offset as usize).checked_div(ebpf::INSN_SIZE) {
            if !sbpf_version.static_syscalls() {
                function_registry.unregister_function(ebpf::hash_symbol_name(b"entrypoint"));
            }
            function_registry.register_function_hashed_legacy(
                &loader,
                !sbpf_version.static_syscalls(),
                *b"entrypoint",
                entry_pc,
            )?;
            entry_pc
        } else {
            return Err(ElfError::InvalidEntrypoint);
        };

        let ro_section = Self::parse_ro_sections(
            config,
            &sbpf_version,
            elf.section_header_table()
                .iter()
                .map(|s| (elf.section_name(s.sh_name).ok(), s)),
            elf_bytes.as_slice(),
        )?;

        Ok(Self {
            elf_bytes,
            sbpf_version,
            ro_section,
            text_section_vaddr,
            text_section_range: text_section.file_range().unwrap_or_default(),
            entry_pc,
            function_registry,
            loader,
            #[cfg(all(feature = "jit", not(target_os = "windows"), target_arch = "x86_64"))]
            compiled_program: None,
        })
    }

    /// Calculate the total memory size of the executable
    #[rustfmt::skip]
    #[allow(clippy::size_of_ref)]
    pub fn mem_size(&self) -> usize {
        let mut total = mem::size_of::<Self>();
        total = total
            // elf bytes
            .saturating_add(self.elf_bytes.mem_size())
            // ro section
            .saturating_add(match &self.ro_section {
                Section::Owned(_, data) => data.capacity(),
                Section::Borrowed(_, _) => 0,
            })
            // bpf functions
            .saturating_add(self.function_registry.mem_size());

        #[cfg(all(feature = "jit", not(target_os = "windows"), target_arch = "x86_64"))]
        {
            // compiled programs
            total = total.saturating_add(self.compiled_program.as_ref().map_or(0, |program| program.mem_size()));
        }

        total
    }

    // Functions exposed for tests

    /// Validates the ELF
    pub fn validate(config: &Config, elf: &Elf64, elf_bytes: &[u8]) -> Result<(), ElfError> {
        let header = elf.file_header();
        if header.e_ident.ei_class != ELFCLASS64 {
            return Err(ElfError::WrongClass);
        }
        if header.e_ident.ei_data != ELFDATA2LSB {
            return Err(ElfError::WrongEndianess);
        }
        if header.e_ident.ei_osabi != ELFOSABI_NONE {
            return Err(ElfError::WrongAbi);
        }
        if header.e_machine != EM_BPF && header.e_machine != EM_SBPF {
            return Err(ElfError::WrongMachine);
        }
        if header.e_type != ET_DYN {
            return Err(ElfError::WrongType);
        }

        let sbpf_version = if header.e_flags == EF_SBPF_V2 {
            SBPFVersion::Reserved
        } else {
            SBPFVersion::V0
        };
        if !config.enabled_sbpf_versions.contains(&sbpf_version) {
            return Err(ElfError::UnsupportedSBPFVersion);
        }

        if sbpf_version.enable_elf_vaddr() {
            if !config.optimize_rodata {
                // When optimize_rodata=false, we allocate a vector and copy all
                // rodata sections into it. In that case we can't allow virtual
                // addresses or we'd potentially have to do huge allocations.
                return Err(ElfError::UnsupportedSBPFVersion);
            }

            // The toolchain currently emits up to 4 program headers. 10 is a
            // future proof nice round number.
            //
            // program_headers() returns an ExactSizeIterator so count doesn't
            // actually iterate again.
            if elf.program_header_table().iter().count() >= 10 {
                return Err(ElfError::InvalidProgramHeader);
            }
        }

        let num_text_sections =
            elf.section_header_table()
                .iter()
                .fold(0, |count: usize, section_header| {
                    if let Ok(this_name) = elf.section_name(section_header.sh_name) {
                        if this_name == b".text" {
                            return count.saturating_add(1);
                        }
                    }
                    count
                });
        if 1 != num_text_sections {
            return Err(ElfError::NotOneTextSection);
        }

        for section_header in elf.section_header_table().iter() {
            if let Ok(name) = elf.section_name(section_header.sh_name) {
                if name.starts_with(b".bss")
                    || (section_header.is_writable()
                        && (name.starts_with(b".data") && !name.starts_with(b".data.rel")))
                {
                    return Err(ElfError::WritableSectionNotSupported(
                        String::from_utf8_lossy(name).to_string(),
                    ));
                }
            }
        }

        for section_header in elf.section_header_table().iter() {
            let start = section_header.sh_offset as usize;
            let end = section_header
                .sh_offset
                .checked_add(section_header.sh_size)
                .ok_or(ElfError::ValueOutOfBounds)? as usize;
            let _ = elf_bytes
                .get(start..end)
                .ok_or(ElfError::ValueOutOfBounds)?;
        }
        let text_section = get_section(elf, b".text")?;
        if !text_section.vm_range().contains(&header.e_entry) {
            return Err(ElfError::EntrypointOutOfBounds);
        }

        Ok(())
    }

    /// Parses and concatenates the readonly data sections
    pub fn parse_ro_sections<'a, S: IntoIterator<Item = (Option<&'a [u8]>, &'a Elf64Shdr)>>(
        config: &Config,
        sbpf_version: &SBPFVersion,
        sections: S,
        elf_bytes: &[u8],
    ) -> Result<Section, ElfError> {
        // the lowest section address
        let mut lowest_addr = usize::MAX;
        // the highest section address
        let mut highest_addr = 0;
        // the aggregated section length, not including gaps between sections
        let mut ro_fill_length = 0usize;
        let mut invalid_offsets = false;
        // when sbpf_version.enable_elf_vaddr()=true, we allow section_addr != sh_offset
        // if section_addr - sh_offset is constant across all sections. That is,
        // we allow sections to be translated by a fixed virtual offset.
        let mut addr_file_offset = None;

        // keep track of where ro sections are so we can tell whether they're
        // contiguous
        let mut first_ro_section = 0;
        let mut last_ro_section = 0;
        let mut n_ro_sections = 0usize;

        let mut ro_slices = vec![];
        for (i, (name, section_header)) in sections.into_iter().enumerate() {
            match name {
                Some(name)
                    if name == b".text"
                        || name == b".rodata"
                        || name == b".data.rel.ro"
                        || name == b".eh_frame" => {}
                _ => continue,
            }

            if n_ro_sections == 0 {
                first_ro_section = i;
            }
            last_ro_section = i;
            n_ro_sections = n_ro_sections.saturating_add(1);

            let section_addr = section_header.sh_addr;

            // sh_offset handling:
            //
            // If sbpf_version.enable_elf_vaddr()=true, we allow section_addr >
            // sh_offset, if section_addr - sh_offset is constant across all
            // sections. That is, we allow the linker to align rodata to a
            // positive base address (MM_RODATA_START) as long as the mapping
            // to sh_offset(s) stays linear.
            //
            // If sbpf_version.enable_elf_vaddr()=false, section_addr must match
            // sh_offset for backwards compatibility
            if !invalid_offsets {
                if sbpf_version.enable_elf_vaddr() {
                    // This is enforced in validate()
                    debug_assert!(config.optimize_rodata);
                    if section_addr < section_header.sh_offset {
                        invalid_offsets = true;
                    } else {
                        let offset = section_addr.saturating_sub(section_header.sh_offset);
                        if *addr_file_offset.get_or_insert(offset) != offset {
                            // The sections are not all translated by the same
                            // constant. We won't be able to borrow, but unless
                            // config.reject_broken_elf=true, we're still going
                            // to accept this file for backwards compatibility.
                            invalid_offsets = true;
                        }
                    }
                } else if section_addr != section_header.sh_offset {
                    invalid_offsets = true;
                }
            }

            let mut vaddr_end =
                if sbpf_version.enable_elf_vaddr() && section_addr >= ebpf::MM_RODATA_START {
                    section_addr
                } else {
                    section_addr.saturating_add(ebpf::MM_RODATA_START)
                };
            if sbpf_version.reject_rodata_stack_overlap() {
                vaddr_end = vaddr_end.saturating_add(section_header.sh_size);
            }
            if (config.reject_broken_elfs && invalid_offsets) || vaddr_end > ebpf::MM_STACK_START {
                return Err(ElfError::ValueOutOfBounds);
            }

            let section_data = elf_bytes
                .get(section_header.file_range().unwrap_or_default())
                .ok_or(ElfError::ValueOutOfBounds)?;

            let section_addr = section_addr as usize;
            lowest_addr = lowest_addr.min(section_addr);
            highest_addr = highest_addr.max(section_addr.saturating_add(section_data.len()));
            ro_fill_length = ro_fill_length.saturating_add(section_data.len());

            ro_slices.push((section_addr, section_data));
        }

        if config.reject_broken_elfs && lowest_addr.saturating_add(ro_fill_length) > highest_addr {
            return Err(ElfError::ValueOutOfBounds);
        }

        let can_borrow = !invalid_offsets
            && last_ro_section
                .saturating_add(1)
                .saturating_sub(first_ro_section)
                == n_ro_sections;
        if sbpf_version.enable_elf_vaddr() && !can_borrow {
            return Err(ElfError::ValueOutOfBounds);
        }
        let ro_section = if config.optimize_rodata && can_borrow {
            // Read only sections are grouped together with no intermixed non-ro
            // sections. We can borrow.

            // When sbpf_version.enable_elf_vaddr()=true, section addresses and their
            // corresponding buffer offsets can be translated by a constant
            // amount. Subtract the constant to get buffer positions.
            let buf_offset_start =
                lowest_addr.saturating_sub(addr_file_offset.unwrap_or(0) as usize);
            let buf_offset_end =
                highest_addr.saturating_sub(addr_file_offset.unwrap_or(0) as usize);

            let addr_offset = if lowest_addr >= ebpf::MM_RODATA_START as usize {
                // The first field of Section::Borrowed is an offset from
                // ebpf::MM_RODATA_START so if the linker has already put the
                // sections within ebpf::MM_RODATA_START, we need to subtract
                // it now.
                lowest_addr
            } else {
                if sbpf_version.enable_elf_vaddr() {
                    return Err(ElfError::ValueOutOfBounds);
                }
                lowest_addr.saturating_add(ebpf::MM_RODATA_START as usize)
            };

            Section::Borrowed(addr_offset, buf_offset_start..buf_offset_end)
        } else {
            // Read only and other non-ro sections are mixed. Zero the non-ro
            // sections and and copy the ro ones at their intended offsets.

            if config.optimize_rodata {
                // The rodata region starts at MM_RODATA_START + offset,
                // [MM_RODATA_START, MM_RODATA_START + offset) is not
                // mappable. We only need to allocate highest_addr - lowest_addr
                // bytes.
                highest_addr = highest_addr.saturating_sub(lowest_addr);
            } else {
                // For backwards compatibility, the whole [MM_RODATA_START,
                // MM_RODATA_START + highest_addr) range is mappable. We need
                // to allocate the whole address range.
                lowest_addr = 0;
            };

            let buf_len = highest_addr;
            if buf_len > elf_bytes.len() {
                return Err(ElfError::ValueOutOfBounds);
            }

            let mut ro_section = vec![0; buf_len];
            for (section_addr, slice) in ro_slices.iter() {
                let buf_offset_start = section_addr.saturating_sub(lowest_addr);
                ro_section[buf_offset_start..buf_offset_start.saturating_add(slice.len())]
                    .copy_from_slice(slice);
            }

            let addr_offset = if lowest_addr >= ebpf::MM_RODATA_START as usize {
                lowest_addr
            } else {
                lowest_addr.saturating_add(ebpf::MM_RODATA_START as usize)
            };
            Section::Owned(addr_offset, ro_section)
        };

        Ok(ro_section)
    }

    /// Relocates the ELF in-place
    fn relocate(
        function_registry: &mut FunctionRegistry<usize>,
        loader: &BuiltinProgram<C>,
        elf: &Elf64,
        elf_bytes: &mut [u8],
    ) -> Result<(), ElfError> {
        let mut syscall_cache = BTreeMap::new();
        let text_section = get_section(elf, b".text")?;
        let sbpf_version = if elf.file_header().e_flags == EF_SBPF_V2 {
            SBPFVersion::Reserved
        } else {
            SBPFVersion::V0
        };

        // Fixup all program counter relative call instructions
        let config = loader.get_config();
        let text_bytes = elf_bytes
            .get_mut(text_section.file_range().unwrap_or_default())
            .ok_or(ElfError::ValueOutOfBounds)?;
        let instruction_count = text_bytes
            .len()
            .checked_div(ebpf::INSN_SIZE)
            .ok_or(ElfError::ValueOutOfBounds)?;
        for i in 0..instruction_count {
            let insn = ebpf::get_insn(text_bytes, i);
            if insn.opc == ebpf::CALL_IMM && insn.imm != -1 {
                let target_pc = (i as isize)
                    .saturating_add(1)
                    .saturating_add(insn.imm as isize);
                if target_pc < 0 || target_pc >= instruction_count as isize {
                    return Err(ElfError::RelativeJumpOutOfBounds(i));
                }
                let name = if config.enable_symbol_and_section_labels {
                    format!("function_{target_pc}")
                } else {
                    String::default()
                };
                let key = function_registry.register_function_hashed_legacy(
                    loader,
                    !sbpf_version.static_syscalls(),
                    name.as_bytes(),
                    target_pc as usize,
                )?;
                if !sbpf_version.static_syscalls() {
                    let offset = i.saturating_mul(ebpf::INSN_SIZE).saturating_add(4);
                    let checked_slice = text_bytes
                        .get_mut(offset..offset.saturating_add(4))
                        .ok_or(ElfError::ValueOutOfBounds)?;
                    LittleEndian::write_u32(checked_slice, key);
                }
            }
        }

        let mut program_header: Option<&Elf64Phdr> = None;

        // Fixup all the relocations in the relocation section if exists
        for relocation in elf.dynamic_relocations_table().unwrap_or_default().iter() {
            let mut r_offset = relocation.r_offset as usize;

            // When sbpf_version.enable_elf_vaddr()=true, we allow section.sh_addr !=
            // section.sh_offset so we need to bring r_offset to the correct
            // byte offset.
            if sbpf_version.enable_elf_vaddr() {
                match program_header {
                    Some(header) if header.vm_range().contains(&(r_offset as u64)) => {}
                    _ => {
                        program_header = elf
                            .program_header_table()
                            .iter()
                            .find(|header| header.vm_range().contains(&(r_offset as u64)))
                    }
                }
                let header = program_header.as_ref().ok_or(ElfError::ValueOutOfBounds)?;
                r_offset = r_offset
                    .saturating_sub(header.p_vaddr as usize)
                    .saturating_add(header.p_offset as usize);
            }

            match BpfRelocationType::from_x86_relocation_type(relocation.r_type()) {
                Some(BpfRelocationType::R_Bpf_64_64) => {
                    // Offset of the immediate field
                    let imm_offset = if text_section
                        .file_range()
                        .unwrap_or_default()
                        .contains(&r_offset)
                        || sbpf_version == SBPFVersion::V0
                    {
                        r_offset.saturating_add(BYTE_OFFSET_IMMEDIATE)
                    } else {
                        r_offset
                    };

                    // Read the instruction's immediate field which contains virtual
                    // address to convert to physical
                    let checked_slice = elf_bytes
                        .get(imm_offset..imm_offset.saturating_add(BYTE_LENGTH_IMMEDIATE))
                        .ok_or(ElfError::ValueOutOfBounds)?;
                    let refd_addr = LittleEndian::read_u32(checked_slice) as u64;

                    let symbol = elf
                        .dynamic_symbol_table()
                        .and_then(|table| table.get(relocation.r_sym() as usize).cloned())
                        .ok_or_else(|| ElfError::UnknownSymbol(relocation.r_sym() as usize))?;

                    // The relocated address is relative to the address of the
                    // symbol at index `r_sym`
                    let mut addr = symbol.st_value.saturating_add(refd_addr);

                    // The "physical address" from the VM's perspective is rooted
                    // at `MM_RODATA_START`. If the linker hasn't already put
                    // the symbol within `MM_RODATA_START`, we need to do so
                    // now.
                    if addr < ebpf::MM_RODATA_START {
                        addr = ebpf::MM_RODATA_START.saturating_add(addr);
                    }

                    if text_section
                        .file_range()
                        .unwrap_or_default()
                        .contains(&r_offset)
                        || sbpf_version == SBPFVersion::V0
                    {
                        let imm_low_offset = imm_offset;
                        let imm_high_offset = imm_low_offset.saturating_add(INSN_SIZE);

                        // Write the low side of the relocate address
                        let imm_slice = elf_bytes
                            .get_mut(
                                imm_low_offset
                                    ..imm_low_offset.saturating_add(BYTE_LENGTH_IMMEDIATE),
                            )
                            .ok_or(ElfError::ValueOutOfBounds)?;
                        LittleEndian::write_u32(imm_slice, (addr & 0xFFFFFFFF) as u32);

                        // Write the high side of the relocate address
                        let imm_slice = elf_bytes
                            .get_mut(
                                imm_high_offset
                                    ..imm_high_offset.saturating_add(BYTE_LENGTH_IMMEDIATE),
                            )
                            .ok_or(ElfError::ValueOutOfBounds)?;
                        LittleEndian::write_u32(
                            imm_slice,
                            addr.checked_shr(32).unwrap_or_default() as u32,
                        );
                    } else {
                        let imm_slice = elf_bytes
                            .get_mut(imm_offset..imm_offset.saturating_add(8))
                            .ok_or(ElfError::ValueOutOfBounds)?;
                        LittleEndian::write_u64(imm_slice, addr);
                    }
                }
                Some(BpfRelocationType::R_Bpf_64_Relative) => {
                    // Relocation between different sections, where the target
                    // memory is not associated to a symbol (eg some compiler
                    // generated rodata that doesn't have an explicit symbol).

                    // Offset of the immediate field
                    let imm_offset = r_offset.saturating_add(BYTE_OFFSET_IMMEDIATE);

                    if text_section
                        .file_range()
                        .unwrap_or_default()
                        .contains(&r_offset)
                    {
                        // We're relocating a lddw instruction, which spans two
                        // instruction slots. The address to be relocated is
                        // split in two halves in the two imms of the
                        // instruction slots.
                        let imm_low_offset = imm_offset;
                        let imm_high_offset = r_offset
                            .saturating_add(INSN_SIZE)
                            .saturating_add(BYTE_OFFSET_IMMEDIATE);

                        // Read the low side of the address
                        let imm_slice = elf_bytes
                            .get(
                                imm_low_offset
                                    ..imm_low_offset.saturating_add(BYTE_LENGTH_IMMEDIATE),
                            )
                            .ok_or(ElfError::ValueOutOfBounds)?;
                        let va_low = LittleEndian::read_u32(imm_slice) as u64;

                        // Read the high side of the address
                        let imm_slice = elf_bytes
                            .get(
                                imm_high_offset
                                    ..imm_high_offset.saturating_add(BYTE_LENGTH_IMMEDIATE),
                            )
                            .ok_or(ElfError::ValueOutOfBounds)?;
                        let va_high = LittleEndian::read_u32(imm_slice) as u64;

                        // Put the address back together
                        let mut refd_addr = va_high.checked_shl(32).unwrap_or_default() | va_low;

                        if refd_addr == 0 {
                            return Err(ElfError::InvalidVirtualAddress(refd_addr));
                        }

                        if refd_addr < ebpf::MM_RODATA_START {
                            // The linker hasn't already placed rodata within
                            // MM_RODATA_START, so we do so now
                            refd_addr = ebpf::MM_RODATA_START.saturating_add(refd_addr);
                        }

                        // Write back the low half
                        let imm_slice = elf_bytes
                            .get_mut(
                                imm_low_offset
                                    ..imm_low_offset.saturating_add(BYTE_LENGTH_IMMEDIATE),
                            )
                            .ok_or(ElfError::ValueOutOfBounds)?;
                        LittleEndian::write_u32(imm_slice, (refd_addr & 0xFFFFFFFF) as u32);

                        // Write back the high half
                        let imm_slice = elf_bytes
                            .get_mut(
                                imm_high_offset
                                    ..imm_high_offset.saturating_add(BYTE_LENGTH_IMMEDIATE),
                            )
                            .ok_or(ElfError::ValueOutOfBounds)?;
                        LittleEndian::write_u32(
                            imm_slice,
                            refd_addr.checked_shr(32).unwrap_or_default() as u32,
                        );
                    } else {
                        let refd_addr = if sbpf_version != SBPFVersion::V0 {
                            // We're relocating an address inside a data section (eg .rodata). The
                            // address is encoded as a simple u64.

                            let addr_slice = elf_bytes
                                .get(r_offset..r_offset.saturating_add(mem::size_of::<u64>()))
                                .ok_or(ElfError::ValueOutOfBounds)?;
                            let mut refd_addr = LittleEndian::read_u64(addr_slice);
                            if refd_addr < ebpf::MM_RODATA_START {
                                // Not within MM_RODATA_START, do it now
                                refd_addr = ebpf::MM_RODATA_START.saturating_add(refd_addr);
                            }
                            refd_addr
                        } else {
                            // There used to be a bug in toolchains before
                            // https://github.com/solana-labs/llvm-project/pull/35 where for 64 bit
                            // relocations we were encoding only the low 32 bits, shifted 32 bits to
                            // the left. Our relocation code used to be compatible with that, so we
                            // need to keep supporting this case for backwards compatibility.
                            let addr_slice = elf_bytes
                                .get(imm_offset..imm_offset.saturating_add(BYTE_LENGTH_IMMEDIATE))
                                .ok_or(ElfError::ValueOutOfBounds)?;
                            let refd_addr = LittleEndian::read_u32(addr_slice) as u64;
                            ebpf::MM_RODATA_START.saturating_add(refd_addr)
                        };

                        let addr_slice = elf_bytes
                            .get_mut(r_offset..r_offset.saturating_add(mem::size_of::<u64>()))
                            .ok_or(ElfError::ValueOutOfBounds)?;
                        LittleEndian::write_u64(addr_slice, refd_addr);
                    }
                }
                Some(BpfRelocationType::R_Bpf_64_32) => {
                    // The .text section has an unresolved call to symbol instruction
                    // Hash the symbol name and stick it into the call instruction's imm
                    // field.  Later that hash will be used to look up the function location.

                    // Offset of the immediate field
                    let imm_offset = r_offset.saturating_add(BYTE_OFFSET_IMMEDIATE);

                    let symbol = elf
                        .dynamic_symbol_table()
                        .and_then(|table| table.get(relocation.r_sym() as usize).cloned())
                        .ok_or_else(|| ElfError::UnknownSymbol(relocation.r_sym() as usize))?;

                    let name = elf
                        .dynamic_symbol_name(symbol.st_name as Elf64Word)
                        .map_err(|_| ElfError::UnknownSymbol(symbol.st_name as usize))?;

                    // If the symbol is defined, this is a bpf-to-bpf call
                    let key = if symbol.is_function() && symbol.st_value != 0 {
                        if !text_section.vm_range().contains(&symbol.st_value) {
                            return Err(ElfError::ValueOutOfBounds);
                        }
                        let target_pc = (symbol.st_value.saturating_sub(text_section.sh_addr)
                            as usize)
                            .checked_div(ebpf::INSN_SIZE)
                            .unwrap_or_default();
                        function_registry.register_function_hashed_legacy(
                            loader,
                            !sbpf_version.static_syscalls(),
                            name,
                            target_pc,
                        )?
                    } else {
                        // Else it's a syscall
                        let hash = *syscall_cache
                            .entry(symbol.st_name)
                            .or_insert_with(|| ebpf::hash_symbol_name(name));
                        if config.reject_broken_elfs
                            && loader.get_function_registry().lookup_by_key(hash).is_none()
                        {
                            return Err(ElfError::UnresolvedSymbol(
                                String::from_utf8_lossy(name).to_string(),
                                r_offset.checked_div(ebpf::INSN_SIZE).unwrap_or(0),
                                r_offset,
                            ));
                        }
                        hash
                    };

                    let checked_slice = elf_bytes
                        .get_mut(imm_offset..imm_offset.saturating_add(BYTE_LENGTH_IMMEDIATE))
                        .ok_or(ElfError::ValueOutOfBounds)?;
                    LittleEndian::write_u32(checked_slice, key);
                }
                _ => return Err(ElfError::UnknownRelocation(relocation.r_type())),
            }
        }

        if config.enable_symbol_and_section_labels {
            // Register all known function names from the symbol table
            for symbol in elf.symbol_table().ok().flatten().unwrap_or_default().iter() {
                if symbol.st_info & 0xEF != 0x02 {
                    continue;
                }
                if !text_section.vm_range().contains(&symbol.st_value) {
                    return Err(ElfError::ValueOutOfBounds);
                }
                let target_pc = (symbol.st_value.saturating_sub(text_section.sh_addr) as usize)
                    .checked_div(ebpf::INSN_SIZE)
                    .unwrap_or_default();
                let name = elf
                    .symbol_name(symbol.st_name as Elf64Word)
                    .map_err(|_| ElfError::UnknownSymbol(symbol.st_name as usize))?;
                function_registry.register_function_hashed_legacy(
                    loader,
                    !sbpf_version.static_syscalls(),
                    name,
                    target_pc,
                )?;
            }
        }

        Ok(())
    }

    #[allow(dead_code)]
    fn dump_data(name: &str, prog: &[u8]) {
        let mut eight_bytes: Vec<u8> = Vec::new();
        println!("{name}");
        for i in prog.iter() {
            if eight_bytes.len() >= 7 {
                println!("{eight_bytes:02X?}");
                eight_bytes.clear();
            } else {
                eight_bytes.push(*i);
            }
        }
    }
}

/// Creates a [MemoryRegion] for the given [Section]
pub fn get_ro_region(ro_section: &Section, elf: &[u8]) -> MemoryRegion {
    let (offset, ro_data) = match ro_section {
        Section::Owned(offset, data) => (*offset, data.as_slice()),
        Section::Borrowed(offset, byte_range) => (*offset, &elf[byte_range.clone()]),
    };

    // If offset > 0, the region will start at MM_RODATA_START + the offset of
    // the first read only byte. [MM_RODATA_START, MM_RODATA_START + offset)
    // will be unmappable, see MemoryRegion::vm_to_host.
    MemoryRegion::new_readonly(ro_data, offset as u64)
}