solana_sdk/
secp256k1_instruction.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
//! Instructions for the [secp256k1 native program][np].
//!
//! [np]: https://docs.solanalabs.com/runtime/programs#secp256k1-program
//!
//! _This module provides low-level cryptographic building blocks that must be
//! used carefully to ensure proper security. Read this documentation and
//! accompanying links thoroughly._
//!
//! The secp26k1 native program peforms flexible verification of [secp256k1]
//! ECDSA signatures, as used by Ethereum. It can verify up to 255 signatures on
//! up to 255 messages, with those signatures, messages, and their public keys
//! arbitrarily distributed across the instruction data of any instructions in
//! the same transaction as the secp256k1 instruction.
//!
//! The secp256k1 native program ID is located in the [`secp256k1_program`] module.
//!
//! The instruction is designed for Ethereum interoperability, but may be useful
//! for other purposes. It operates on Ethereum addresses, which are [`keccak`]
//! hashes of secp256k1 public keys, and internally is implemented using the
//! secp256k1 key recovery algorithm. Ethereum address can be created for
//! secp256k1 public keys with the [`construct_eth_pubkey`] function.
//!
//! [`keccak`]: crate::keccak
//!
//! This instruction does not directly allow for key recovery as in Ethereum's
//! [`ecrecover`] precompile. For that Solana provides the [`secp256k1_recover`]
//! syscall.
//!
//! [secp256k1]: https://en.bitcoin.it/wiki/Secp256k1
//! [`secp256k1_program`]: solana_program::secp256k1_program
//! [`secp256k1_recover`]: solana_program::secp256k1_recover
//! [`ecrecover`]: https://docs.soliditylang.org/en/v0.8.14/units-and-global-variables.html?highlight=ecrecover#mathematical-and-cryptographic-functions
//!
//! Use cases for the secp256k1 instruction include:
//!
//! - Verifying Ethereum transaction signatures.
//! - Verifying Ethereum [EIP-712] signatures.
//! - Verifying arbitrary secp256k1 signatures.
//! - Signing a single message with multiple signatures.
//!
//! [EIP-712]: https://eips.ethereum.org/EIPS/eip-712
//!
//! The [`new_secp256k1_instruction`] function is suitable for building a
//! secp256k1 program instruction for basic use cases were a single message must
//! be signed by a known secret key. For other uses cases, including many
//! Ethereum-integration use cases, construction of the secp256k1 instruction
//! must be done manually.
//!
//! # How to use this program
//!
//! Transactions that uses the secp256k1 native program will typically include
//! at least two instructions: one for the secp256k1 program to verify the
//! signatures, and one for a custom program that will check that the secp256k1
//! instruction data matches what the program expects (using
//! [`load_instruction_at_checked`] or [`get_instruction_relative`]). The
//! signatures, messages, and Ethereum addresses being verified may reside in the
//! instruction data of either of these instructions, or in the instruction data
//! of one or more additional instructions, as long as those instructions are in
//! the same transaction.
//!
//! [`load_instruction_at_checked`]: crate::sysvar::instructions::load_instruction_at_checked
//! [`get_instruction_relative`]: crate::sysvar::instructions::get_instruction_relative
//!
//! Correct use of this program involves multiple steps, in client code and
//! program code:
//!
//! - In the client:
//!   - Sign the [`keccak`]-hashed messages with a secp256k1 ECDSA library,
//!     like the [`libsecp256k1`] crate.
//!   - Build any custom instruction data that contain signature, message, or
//!     Ethereum address data that will be used by the secp256k1 instruction.
//!   - Build the secp256k1 program instruction data, specifying the number of
//!     signatures to verify, the instruction indexes within the transaction,
//!     and offsets within those instruction's data, where the signatures,
//!     messages, and Ethereum addresses are located.
//!   - Build the custom instruction for the program that will check the results
//!     of the secp256k1 native program.
//!   - Package all instructions into a single transaction and submit them.
//! - In the program:
//!   - Load the secp256k1 instruction data with
//!     [`load_instruction_at_checked`]. or [`get_instruction_relative`].
//!   - Check that the secp256k1 program ID is equal to
//!     [`secp256k1_program::ID`], so that the signature verification cannot be
//!     faked with a malicious program.
//!   - Check that the public keys and messages are the expected values per
//!     the program's requirements.
//!
//! [`secp256k1_program::ID`]: crate::secp256k1_program::ID
//!
//! The signature, message, or Ethereum addresses may reside in the secp256k1
//! instruction data itself as additional data, their bytes following the bytes
//! of the protocol required by the secp256k1 instruction to locate the
//! signature, message, and Ethereum address data. This is the technique used by
//! `new_secp256k1_instruction` for simple signature verification.
//!
//! The `solana_sdk` crate provides few APIs for building the instructions and
//! transactions necessary for properly using the secp256k1 native program.
//! Many steps must be done manually.
//!
//! The `solana_program` crate provides no APIs to assist in interpreting
//! the the secp256k1 instruction data. It must be done manually.
//!
//! The secp256k1 program is implemented with the [`libsecp256k1`] crate,
//! which clients may also want to use.
//!
//! [`libsecp256k1`]: https://docs.rs/libsecp256k1/latest/libsecp256k1
//!
//! # Layout and interpretation of the secp256k1 instruction data
//!
//! The secp256k1 instruction data contains:
//!
//! - 1 byte indicating the number of signatures to verify, 0 - 255,
//! - A number of _signature offset_ structures that indicate where in the
//!   transaction to locate each signature, message, and Ethereum address.
//! - 0 or more bytes of arbitrary data, which may contain signatures,
//!   messages or Ethereum addresses.
//!
//! The signature offset structure is defined by [`SecpSignatureOffsets`],
//! and can be serialized to the correct format with [`bincode::serialize_into`].
//! Note that the bincode format may not be stable,
//! and callers should ensure they use the same version of `bincode` as the Solana SDK.
//! This data structure is not provided to Solana programs,
//! which are expected to interpret the signature offsets manually.
//!
//! [`bincode::serialize_into`]: https://docs.rs/bincode/1.3.3/bincode/fn.serialize_into.html
//!
//! The serialized signature offset structure has the following 11-byte layout,
//! with data types in little-endian encoding.
//!
//! | index  | bytes | type  | description |
//! |--------|-------|-------|-------------|
//! | 0      | 2     | `u16` | `signature_offset` - offset to 64-byte signature plus 1-byte recovery ID. |
//! | 2      | 1     | `u8`  | `signature_offset_instruction_index` - within the transaction, the index of the transaction whose instruction data contains the signature. |
//! | 3      | 2     | `u16` | `eth_address_offset` - offset to 20-byte Ethereum address. |
//! | 5      | 1     | `u8`  | `eth_address_instruction_index` - within the transaction, the index of the instruction whose instruction data contains the Ethereum address. |
//! | 6      | 2     | `u16` | `message_data_offset` - Offset to start of message data. |
//! | 8      | 2     | `u16` | `message_data_size` - Size of message data in bytes. |
//! | 10     | 1     | `u8`  | `message_instruction_index` - Within the transaction, the index of the instruction whose instruction data contains the message data. |
//!
//! # Signature malleability
//!
//! With the ECDSA signature algorithm it is possible for any party, given a
//! valid signature of some message, to create a second signature that is
//! equally valid. This is known as _signature malleability_. In many cases this
//! is not a concern, but in cases where applications rely on signatures to have
//! a unique representation this can be the source of bugs, potentially with
//! security implications.
//!
//! **The solana `secp256k1_recover` function does not prevent signature
//! malleability**. This is in contrast to the Bitcoin secp256k1 library, which
//! does prevent malleability by default. Solana accepts signatures with `S`
//! values that are either in the _high order_ or in the _low order_, and it
//! is trivial to produce one from the other.
//!
//! For more complete documentation of the subject, and techniques to prevent
//! malleability, see the documentation for the [`secp256k1_recover`] syscall.
//!
//! # Additional security considerations
//!
//! Most programs will want to be conservative about the layout of the secp256k1 instruction
//! to prevent unforeseen bugs. The following checks may be desirable:
//!
//! - That there are exactly the expected number of signatures.
//! - That the three indexes, `signature_offset_instruction_index`,
//!   `eth_address_instruction_index`, and `message_instruction_index` are as
//!   expected, placing the signature, message and Ethereum address in the
//!   expected instruction.
//!
//! Loading the secp256k1 instruction data within a program requires access to
//! the [instructions sysvar][is], which must be passed to the program by its
//! caller. Programs must verify the ID of this program to avoid calling an
//! imposter program. This does not need to be done manually though, as long as
//! it is only used through the [`load_instruction_at_checked`] or
//! [`get_instruction_relative`] functions. Both of these functions check their
//! sysvar argument to ensure it is the known instruction sysvar.
//!
//! [is]: crate::sysvar::instructions
//!
//! Programs should _always_ verify that the secp256k1 program ID loaded through
//! the instructions sysvar has the same value as in the [`secp256k1_program`]
//! module. Again this prevents imposter programs.
//!
//! [`secp256k1_program`]: crate::secp256k1_program
//!
//! # Errors
//!
//! The transaction will fail if any of the following are true:
//!
//! - Any signature was not created by the secret key corresponding to the
//!   specified public key.
//! - Any signature is invalid.
//! - Any signature is "overflowing", a non-standard condition.
//! - The instruction data is empty.
//! - The first byte of instruction data is equal to 0 (indicating no signatures),
//!   but the instruction data's length is greater than 1.
//! - The instruction data is not long enough to hold the number of signature
//!   offsets specified in the first byte.
//! - Any instruction indexes specified in the signature offsets are greater or
//!   equal to the number of instructions in the transaction.
//! - Any bounds specified in the signature offsets exceed the bounds of the
//!   instruction data to which they are indexed.
//!
//! # Examples
//!
//! Both of the following examples make use of the following module definition
//! to parse the secp256k1 instruction data from within a Solana program.
//!
//! ```no_run
//! mod secp256k1_defs {
//!     use solana_program::program_error::ProgramError;
//!     use std::iter::Iterator;
//!
//!     pub const HASHED_PUBKEY_SERIALIZED_SIZE: usize = 20;
//!     pub const SIGNATURE_SERIALIZED_SIZE: usize = 64;
//!     pub const SIGNATURE_OFFSETS_SERIALIZED_SIZE: usize = 11;
//!
//!     /// The structure encoded in the secp2256k1 instruction data.
//!     pub struct SecpSignatureOffsets {
//!         pub signature_offset: u16,
//!         pub signature_instruction_index: u8,
//!         pub eth_address_offset: u16,
//!         pub eth_address_instruction_index: u8,
//!         pub message_data_offset: u16,
//!         pub message_data_size: u16,
//!         pub message_instruction_index: u8,
//!     }
//!
//!     pub fn iter_signature_offsets(
//!        secp256k1_instr_data: &[u8],
//!     ) -> Result<impl Iterator<Item = SecpSignatureOffsets> + '_, ProgramError> {
//!         // First element is the number of `SecpSignatureOffsets`.
//!         let num_structs = *secp256k1_instr_data
//!             .get(0)
//!             .ok_or(ProgramError::InvalidArgument)?;
//!
//!         let all_structs_size = SIGNATURE_OFFSETS_SERIALIZED_SIZE * num_structs as usize;
//!         let all_structs_slice = secp256k1_instr_data
//!             .get(1..all_structs_size + 1)
//!             .ok_or(ProgramError::InvalidArgument)?;
//!
//!         fn decode_u16(chunk: &[u8], index: usize) -> u16 {
//!             u16::from_le_bytes(<[u8; 2]>::try_from(&chunk[index..index + 2]).unwrap())
//!         }
//!
//!         Ok(all_structs_slice
//!             .chunks(SIGNATURE_OFFSETS_SERIALIZED_SIZE)
//!             .map(|chunk| SecpSignatureOffsets {
//!                 signature_offset: decode_u16(chunk, 0),
//!                 signature_instruction_index: chunk[2],
//!                 eth_address_offset: decode_u16(chunk, 3),
//!                 eth_address_instruction_index: chunk[5],
//!                 message_data_offset: decode_u16(chunk, 6),
//!                 message_data_size: decode_u16(chunk, 8),
//!                 message_instruction_index: chunk[10],
//!             }))
//!     }
//! }
//! ```
//!
//! ## Example: Signing and verifying with `new_secp256k1_instruction`
//!
//! This example demonstrates the simplest way to use the secp256k1 program, by
//! calling [`new_secp256k1_instruction`] to sign a single message and build the
//! corresponding secp256k1 instruction.
//!
//! This example has two components: a Solana program, and an RPC client that
//! sends a transaction to call it. The RPC client will sign a single message,
//! and the Solana program will introspect the secp256k1 instruction to verify
//! that the signer matches a known authorized public key.
//!
//! The Solana program. Note that it uses `libsecp256k1` version 0.7.0 to parse
//! the secp256k1 signature to prevent malleability.
//!
//! ```no_run
//! # mod secp256k1_defs {
//! #     use solana_program::program_error::ProgramError;
//! #     use std::iter::Iterator;
//! #
//! #     pub const HASHED_PUBKEY_SERIALIZED_SIZE: usize = 20;
//! #     pub const SIGNATURE_SERIALIZED_SIZE: usize = 64;
//! #     pub const SIGNATURE_OFFSETS_SERIALIZED_SIZE: usize = 11;
//! #
//! #     /// The structure encoded in the secp2256k1 instruction data.
//! #     pub struct SecpSignatureOffsets {
//! #         pub signature_offset: u16,
//! #         pub signature_instruction_index: u8,
//! #         pub eth_address_offset: u16,
//! #         pub eth_address_instruction_index: u8,
//! #         pub message_data_offset: u16,
//! #         pub message_data_size: u16,
//! #         pub message_instruction_index: u8,
//! #     }
//! #
//! #     pub fn iter_signature_offsets(
//! #        secp256k1_instr_data: &[u8],
//! #     ) -> Result<impl Iterator<Item = SecpSignatureOffsets> + '_, ProgramError> {
//! #         // First element is the number of `SecpSignatureOffsets`.
//! #         let num_structs = *secp256k1_instr_data
//! #             .get(0)
//! #             .ok_or(ProgramError::InvalidArgument)?;
//! #
//! #         let all_structs_size = SIGNATURE_OFFSETS_SERIALIZED_SIZE * num_structs as usize;
//! #         let all_structs_slice = secp256k1_instr_data
//! #             .get(1..all_structs_size + 1)
//! #             .ok_or(ProgramError::InvalidArgument)?;
//! #
//! #         fn decode_u16(chunk: &[u8], index: usize) -> u16 {
//! #             u16::from_le_bytes(<[u8; 2]>::try_from(&chunk[index..index + 2]).unwrap())
//! #         }
//! #
//! #         Ok(all_structs_slice
//! #             .chunks(SIGNATURE_OFFSETS_SERIALIZED_SIZE)
//! #             .map(|chunk| SecpSignatureOffsets {
//! #                 signature_offset: decode_u16(chunk, 0),
//! #                 signature_instruction_index: chunk[2],
//! #                 eth_address_offset: decode_u16(chunk, 3),
//! #                 eth_address_instruction_index: chunk[5],
//! #                 message_data_offset: decode_u16(chunk, 6),
//! #                 message_data_size: decode_u16(chunk, 8),
//! #                 message_instruction_index: chunk[10],
//! #             }))
//! #     }
//! # }
//! use solana_program::{
//!     account_info::{next_account_info, AccountInfo},
//!     entrypoint::ProgramResult,
//!     msg,
//!     program_error::ProgramError,
//!     secp256k1_program,
//!     sysvar,
//! };
//!
//! /// An Ethereum address corresponding to a secp256k1 secret key that is
//! /// authorized to sign our messages.
//! const AUTHORIZED_ETH_ADDRESS: [u8; 20] = [
//!     0x18, 0x8a, 0x5c, 0xf2, 0x3b, 0x0e, 0xff, 0xe9, 0xa8, 0xe1, 0x42, 0x64, 0x5b, 0x82, 0x2f, 0x3a,
//!     0x6b, 0x8b, 0x52, 0x35,
//! ];
//!
//! /// Check the secp256k1 instruction to ensure it was signed by
//! /// `AUTHORIZED_ETH_ADDRESS`s key.
//! ///
//! /// `accounts` is the slice of all accounts passed to the program
//! /// entrypoint. The only account it should contain is the instructions sysvar.
//! fn demo_secp256k1_verify_basic(
//!    accounts: &[AccountInfo],
//! ) -> ProgramResult {
//!     let account_info_iter = &mut accounts.iter();
//!
//!     // The instructions sysvar gives access to the instructions in the transaction.
//!     let instructions_sysvar_account = next_account_info(account_info_iter)?;
//!     assert!(sysvar::instructions::check_id(
//!         instructions_sysvar_account.key
//!     ));
//!
//!     // Load the secp256k1 instruction.
//!     // `new_secp256k1_instruction` generates an instruction that must be at index 0.
//!     let secp256k1_instr =
//!         sysvar::instructions::load_instruction_at_checked(0, instructions_sysvar_account)?;
//!
//!     // Verify it is a secp256k1 instruction.
//!     // This is security-critical - what if the transaction uses an imposter secp256k1 program?
//!     assert!(secp256k1_program::check_id(&secp256k1_instr.program_id));
//!
//!     // There must be at least one byte. This is also verified by the runtime,
//!     // and doesn't strictly need to be checked.
//!     assert!(secp256k1_instr.data.len() > 1);
//!
//!     let num_signatures = secp256k1_instr.data[0];
//!     // `new_secp256k1_instruction` generates an instruction that contains one signature.
//!     assert_eq!(1, num_signatures);
//!
//!     // Load the first and only set of signature offsets.
//!     let offsets: secp256k1_defs::SecpSignatureOffsets =
//!         secp256k1_defs::iter_signature_offsets(&secp256k1_instr.data)?
//!             .next()
//!             .ok_or(ProgramError::InvalidArgument)?;
//!
//!     // `new_secp256k1_instruction` generates an instruction that only uses instruction index 0.
//!     assert_eq!(0, offsets.signature_instruction_index);
//!     assert_eq!(0, offsets.eth_address_instruction_index);
//!     assert_eq!(0, offsets.message_instruction_index);
//!
//!     // Reject high-s value signatures to prevent malleability.
//!     // Solana does not do this itself.
//!     // This may or may not be necessary depending on use case.
//!     {
//!         let signature = &secp256k1_instr.data[offsets.signature_offset as usize
//!             ..offsets.signature_offset as usize + secp256k1_defs::SIGNATURE_SERIALIZED_SIZE];
//!         let signature = libsecp256k1::Signature::parse_standard_slice(signature)
//!             .map_err(|_| ProgramError::InvalidArgument)?;
//!
//!         if signature.s.is_high() {
//!             msg!("signature with high-s value");
//!             return Err(ProgramError::InvalidArgument);
//!         }
//!     }
//!
//!     // There is likely at least one more verification step a real program needs
//!     // to do here to ensure it trusts the secp256k1 instruction, e.g.:
//!     //
//!     // - verify the tx signer is authorized
//!     // - verify the secp256k1 signer is authorized
//!
//!     // Here we are checking the secp256k1 pubkey against a known authorized pubkey.
//!     let eth_address = &secp256k1_instr.data[offsets.eth_address_offset as usize
//!         ..offsets.eth_address_offset as usize + secp256k1_defs::HASHED_PUBKEY_SERIALIZED_SIZE];
//!
//!     if eth_address != AUTHORIZED_ETH_ADDRESS {
//!         return Err(ProgramError::InvalidArgument);
//!     }
//!
//!     Ok(())
//! }
//! ```
//!
//! The client program:
//!
//! ```no_run
//! # use solana_sdk::example_mocks::solana_rpc_client;
//! use anyhow::Result;
//! use solana_rpc_client::rpc_client::RpcClient;
//! use solana_sdk::{
//!     instruction::{AccountMeta, Instruction},
//!     secp256k1_instruction,
//!     signature::{Keypair, Signer},
//!     sysvar,
//!     transaction::Transaction,
//! };
//!
//! fn demo_secp256k1_verify_basic(
//!     payer_keypair: &Keypair,
//!     secp256k1_secret_key: &libsecp256k1::SecretKey,
//!     client: &RpcClient,
//!     program_keypair: &Keypair,
//! ) -> Result<()> {
//!     // Internally to `new_secp256k1_instruction` and
//!     // `secp256k_instruction::verify` (the secp256k1 program), this message is
//!     // keccak-hashed before signing.
//!     let msg = b"hello world";
//!     let secp256k1_instr = secp256k1_instruction::new_secp256k1_instruction(&secp256k1_secret_key, msg);
//!
//!     let program_instr = Instruction::new_with_bytes(
//!         program_keypair.pubkey(),
//!         &[],
//!         vec![
//!             AccountMeta::new_readonly(sysvar::instructions::ID, false)
//!         ],
//!     );
//!
//!     let blockhash = client.get_latest_blockhash()?;
//!     let tx = Transaction::new_signed_with_payer(
//!         &[secp256k1_instr, program_instr],
//!         Some(&payer_keypair.pubkey()),
//!         &[payer_keypair],
//!         blockhash,
//!     );
//!
//!     client.send_and_confirm_transaction(&tx)?;
//!
//!     Ok(())
//! }
//! ```
//!
//! ## Example: Verifying multiple signatures in one instruction
//!
//! This examples demonstrates manually creating a secp256k1 instruction
//! containing many signatures, and a Solana program that parses them all. This
//! example on its own has no practical purpose. It simply demonstrates advanced
//! use of the secp256k1 program.
//!
//! Recall that the secp256k1 program will accept signatures, messages, and
//! Ethereum addresses that reside in any instruction contained in the same
//! transaction. In the _previous_ example, the Solana program asserted that all
//! signatures, messages, and addresses were stored in the instruction at 0. In
//! this next example the Solana program supports signatures, messages, and
//! addresses stored in any instruction. For simplicity the client still only
//! stores signatures, messages, and addresses in a single instruction, the
//! secp256k1 instruction. The code for storing this data across multiple
//! instructions would be complex, and may not be necessary in practice.
//!
//! This example has two components: a Solana program, and an RPC client that
//! sends a transaction to call it.
//!
//! The Solana program:
//!
//! ```no_run
//! # mod secp256k1_defs {
//! #     use solana_program::program_error::ProgramError;
//! #     use std::iter::Iterator;
//! #
//! #     pub const HASHED_PUBKEY_SERIALIZED_SIZE: usize = 20;
//! #     pub const SIGNATURE_SERIALIZED_SIZE: usize = 64;
//! #     pub const SIGNATURE_OFFSETS_SERIALIZED_SIZE: usize = 11;
//! #
//! #     /// The structure encoded in the secp2256k1 instruction data.
//! #     pub struct SecpSignatureOffsets {
//! #         pub signature_offset: u16,
//! #         pub signature_instruction_index: u8,
//! #         pub eth_address_offset: u16,
//! #         pub eth_address_instruction_index: u8,
//! #         pub message_data_offset: u16,
//! #         pub message_data_size: u16,
//! #         pub message_instruction_index: u8,
//! #     }
//! #
//! #     pub fn iter_signature_offsets(
//! #        secp256k1_instr_data: &[u8],
//! #     ) -> Result<impl Iterator<Item = SecpSignatureOffsets> + '_, ProgramError> {
//! #         // First element is the number of `SecpSignatureOffsets`.
//! #         let num_structs = *secp256k1_instr_data
//! #             .get(0)
//! #             .ok_or(ProgramError::InvalidArgument)?;
//! #
//! #         let all_structs_size = SIGNATURE_OFFSETS_SERIALIZED_SIZE * num_structs as usize;
//! #         let all_structs_slice = secp256k1_instr_data
//! #             .get(1..all_structs_size + 1)
//! #             .ok_or(ProgramError::InvalidArgument)?;
//! #
//! #         fn decode_u16(chunk: &[u8], index: usize) -> u16 {
//! #             u16::from_le_bytes(<[u8; 2]>::try_from(&chunk[index..index + 2]).unwrap())
//! #         }
//! #
//! #         Ok(all_structs_slice
//! #             .chunks(SIGNATURE_OFFSETS_SERIALIZED_SIZE)
//! #             .map(|chunk| SecpSignatureOffsets {
//! #                 signature_offset: decode_u16(chunk, 0),
//! #                 signature_instruction_index: chunk[2],
//! #                 eth_address_offset: decode_u16(chunk, 3),
//! #                 eth_address_instruction_index: chunk[5],
//! #                 message_data_offset: decode_u16(chunk, 6),
//! #                 message_data_size: decode_u16(chunk, 8),
//! #                 message_instruction_index: chunk[10],
//! #             }))
//! #     }
//! # }
//! use solana_program::{
//!     account_info::{next_account_info, AccountInfo},
//!     entrypoint::ProgramResult,
//!     msg,
//!     program_error::ProgramError,
//!     secp256k1_program,
//!     sysvar,
//! };
//!
//! /// A struct to hold the values specified in the `SecpSignatureOffsets` struct.
//! struct SecpSignature {
//!     signature: [u8; secp256k1_defs::SIGNATURE_SERIALIZED_SIZE],
//!     recovery_id: u8,
//!     eth_address: [u8; secp256k1_defs::HASHED_PUBKEY_SERIALIZED_SIZE],
//!     message: Vec<u8>,
//! }
//!
//! /// Load all signatures indicated in the secp256k1 instruction.
//! ///
//! /// This function is quite inefficient for reloading the same instructions
//! /// repeatedly and making copies and allocations.
//! fn load_signatures(
//!     secp256k1_instr_data: &[u8],
//!     instructions_sysvar_account: &AccountInfo,
//! ) -> Result<Vec<SecpSignature>, ProgramError> {
//!     let mut sigs = vec![];
//!     for offsets in secp256k1_defs::iter_signature_offsets(secp256k1_instr_data)? {
//!         let signature_instr = sysvar::instructions::load_instruction_at_checked(
//!             offsets.signature_instruction_index as usize,
//!             instructions_sysvar_account,
//!         )?;
//!         let eth_address_instr = sysvar::instructions::load_instruction_at_checked(
//!             offsets.eth_address_instruction_index as usize,
//!             instructions_sysvar_account,
//!         )?;
//!         let message_instr = sysvar::instructions::load_instruction_at_checked(
//!             offsets.message_instruction_index as usize,
//!             instructions_sysvar_account,
//!         )?;
//!
//!         // These indexes must all be valid because the runtime already verified them.
//!         let signature = &signature_instr.data[offsets.signature_offset as usize
//!             ..offsets.signature_offset as usize + secp256k1_defs::SIGNATURE_SERIALIZED_SIZE];
//!         let recovery_id = signature_instr.data
//!             [offsets.signature_offset as usize + secp256k1_defs::SIGNATURE_SERIALIZED_SIZE];
//!         let eth_address = &eth_address_instr.data[offsets.eth_address_offset as usize
//!             ..offsets.eth_address_offset as usize + secp256k1_defs::HASHED_PUBKEY_SERIALIZED_SIZE];
//!         let message = &message_instr.data[offsets.message_data_offset as usize
//!             ..offsets.message_data_offset as usize + offsets.message_data_size as usize];
//!
//!         let signature =
//!             <[u8; secp256k1_defs::SIGNATURE_SERIALIZED_SIZE]>::try_from(signature).unwrap();
//!         let eth_address =
//!             <[u8; secp256k1_defs::HASHED_PUBKEY_SERIALIZED_SIZE]>::try_from(eth_address).unwrap();
//!         let message = Vec::from(message);
//!
//!         sigs.push(SecpSignature {
//!             signature,
//!             recovery_id,
//!             eth_address,
//!             message,
//!         })
//!     }
//!     Ok(sigs)
//! }
//!
//! fn demo_secp256k1_custom_many(
//!     accounts: &[AccountInfo],
//! ) -> ProgramResult {
//!     let account_info_iter = &mut accounts.iter();
//!
//!     let instructions_sysvar_account = next_account_info(account_info_iter)?;
//!     assert!(sysvar::instructions::check_id(
//!         instructions_sysvar_account.key
//!     ));
//!
//!     let secp256k1_instr =
//!         sysvar::instructions::get_instruction_relative(-1, instructions_sysvar_account)?;
//!
//!     assert!(secp256k1_program::check_id(&secp256k1_instr.program_id));
//!
//!     let signatures = load_signatures(&secp256k1_instr.data, instructions_sysvar_account)?;
//!     for (idx, signature_bundle) in signatures.iter().enumerate() {
//!         let signature = hex::encode(&signature_bundle.signature);
//!         let eth_address = hex::encode(&signature_bundle.eth_address);
//!         let message = hex::encode(&signature_bundle.message);
//!         msg!("sig {}: {:?}", idx, signature);
//!         msg!("recid: {}: {}", idx, signature_bundle.recovery_id);
//!         msg!("eth address {}: {}", idx, eth_address);
//!         msg!("message {}: {}", idx, message);
//!     }
//!
//!     Ok(())
//! }
//! ```
//!
//! The client program:
//!
//! ```no_run
//! # use solana_sdk::example_mocks::solana_rpc_client;
//! use anyhow::Result;
//! use solana_rpc_client::rpc_client::RpcClient;
//! use solana_sdk::{
//!     instruction::{AccountMeta, Instruction},
//!     keccak,
//!     secp256k1_instruction::{
//!         self, SecpSignatureOffsets, HASHED_PUBKEY_SERIALIZED_SIZE,
//!         SIGNATURE_OFFSETS_SERIALIZED_SIZE, SIGNATURE_SERIALIZED_SIZE,
//!     },
//!     signature::{Keypair, Signer},
//!     sysvar,
//!     transaction::Transaction,
//! };
//!
//! /// A struct to hold the values specified in the `SecpSignatureOffsets` struct.
//! struct SecpSignature {
//!     signature: [u8; SIGNATURE_SERIALIZED_SIZE],
//!     recovery_id: u8,
//!     eth_address: [u8; HASHED_PUBKEY_SERIALIZED_SIZE],
//!     message: Vec<u8>,
//! }
//!
//! /// Create the instruction data for a secp256k1 instruction.
//! ///
//! /// `instruction_index` is the index the secp256k1 instruction will appear
//! /// within the transaction. For simplicity, this function only supports packing
//! /// the signatures into the secp256k1 instruction data, and not into any other
//! /// instructions within the transaction.
//! fn make_secp256k1_instruction_data(
//!     signatures: &[SecpSignature],
//!     instruction_index: u8,
//! ) -> Result<Vec<u8>> {
//!     assert!(signatures.len() <= u8::max_value().into());
//!
//!     // We're going to pack all the signatures into the secp256k1 instruction data.
//!     // Before our signatures though is the signature offset structures
//!     // the secp256k1 program parses to find those signatures.
//!     // This value represents the byte offset where the signatures begin.
//!     let data_start = 1 + signatures.len() * SIGNATURE_OFFSETS_SERIALIZED_SIZE;
//!
//!     let mut signature_offsets = vec![];
//!     let mut signature_buffer = vec![];
//!
//!     for signature_bundle in signatures {
//!         let data_start = data_start
//!             .checked_add(signature_buffer.len())
//!             .expect("overflow");
//!
//!         let signature_offset = data_start;
//!         let eth_address_offset = data_start
//!             .checked_add(SIGNATURE_SERIALIZED_SIZE + 1)
//!             .expect("overflow");
//!         let message_data_offset = eth_address_offset
//!             .checked_add(HASHED_PUBKEY_SERIALIZED_SIZE)
//!             .expect("overflow");
//!         let message_data_size = signature_bundle.message.len();
//!
//!         let signature_offset = u16::try_from(signature_offset)?;
//!         let eth_address_offset = u16::try_from(eth_address_offset)?;
//!         let message_data_offset = u16::try_from(message_data_offset)?;
//!         let message_data_size = u16::try_from(message_data_size)?;
//!
//!         signature_offsets.push(SecpSignatureOffsets {
//!             signature_offset,
//!             signature_instruction_index: instruction_index,
//!             eth_address_offset,
//!             eth_address_instruction_index: instruction_index,
//!             message_data_offset,
//!             message_data_size,
//!             message_instruction_index: instruction_index,
//!         });
//!
//!         signature_buffer.extend(signature_bundle.signature);
//!         signature_buffer.push(signature_bundle.recovery_id);
//!         signature_buffer.extend(&signature_bundle.eth_address);
//!         signature_buffer.extend(&signature_bundle.message);
//!     }
//!
//!     let mut instr_data = vec![];
//!     instr_data.push(signatures.len() as u8);
//!
//!     for offsets in signature_offsets {
//!         let offsets = bincode::serialize(&offsets)?;
//!         instr_data.extend(offsets);
//!     }
//!
//!     instr_data.extend(signature_buffer);
//!
//!     Ok(instr_data)
//! }
//!
//! fn demo_secp256k1_custom_many(
//!     payer_keypair: &Keypair,
//!     client: &RpcClient,
//!     program_keypair: &Keypair,
//! ) -> Result<()> {
//!     // Sign some messages.
//!     let mut signatures = vec![];
//!     for idx in 0..2 {
//!         let secret_key = libsecp256k1::SecretKey::random(&mut rand0_7::thread_rng());
//!         let message = format!("hello world {}", idx).into_bytes();
//!         let message_hash = {
//!             let mut hasher = keccak::Hasher::default();
//!             hasher.hash(&message);
//!             hasher.result()
//!         };
//!         let secp_message = libsecp256k1::Message::parse(&message_hash.0);
//!         let (signature, recovery_id) = libsecp256k1::sign(&secp_message, &secret_key);
//!         let signature = signature.serialize();
//!         let recovery_id = recovery_id.serialize();
//!
//!         let public_key = libsecp256k1::PublicKey::from_secret_key(&secret_key);
//!         let eth_address = secp256k1_instruction::construct_eth_pubkey(&public_key);
//!
//!         signatures.push(SecpSignature {
//!             signature,
//!             recovery_id,
//!             eth_address,
//!             message,
//!         });
//!     }
//!
//!     let secp256k1_instr_data = make_secp256k1_instruction_data(&signatures, 0)?;
//!     let secp256k1_instr = Instruction::new_with_bytes(
//!         solana_sdk::secp256k1_program::ID,
//!         &secp256k1_instr_data,
//!         vec![],
//!     );
//!
//!     let program_instr = Instruction::new_with_bytes(
//!         program_keypair.pubkey(),
//!         &[],
//!         vec![
//!             AccountMeta::new_readonly(sysvar::instructions::ID, false)
//!         ],
//!     );
//!
//!     let blockhash = client.get_latest_blockhash()?;
//!     let tx = Transaction::new_signed_with_payer(
//!         &[secp256k1_instr, program_instr],
//!         Some(&payer_keypair.pubkey()),
//!         &[payer_keypair],
//!         blockhash,
//!     );
//!
//!     client.send_and_confirm_transaction(&tx)?;
//!
//!     Ok(())
//! }
//! ```

#![cfg(feature = "full")]

use {
    crate::{
        feature_set::{
            libsecp256k1_fail_on_bad_count, libsecp256k1_fail_on_bad_count2, FeatureSet,
        },
        instruction::Instruction,
        precompiles::PrecompileError,
    },
    digest::Digest,
    serde_derive::{Deserialize, Serialize},
};

pub const HASHED_PUBKEY_SERIALIZED_SIZE: usize = 20;
pub const SIGNATURE_SERIALIZED_SIZE: usize = 64;
pub const SIGNATURE_OFFSETS_SERIALIZED_SIZE: usize = 11;
pub const DATA_START: usize = SIGNATURE_OFFSETS_SERIALIZED_SIZE + 1;

/// Offsets of signature data within a secp256k1 instruction.
///
/// See the [module documentation][md] for a complete description.
///
/// [md]: self
#[derive(Default, Serialize, Deserialize, Debug, Eq, PartialEq)]
pub struct SecpSignatureOffsets {
    /// Offset to 64-byte signature plus 1-byte recovery ID.
    pub signature_offset: u16,
    /// Within the transaction, the index of the instruction whose instruction data contains the signature.
    pub signature_instruction_index: u8,
    /// Offset to 20-byte Ethereum address.
    pub eth_address_offset: u16,
    /// Within the transaction, the index of the instruction whose instruction data contains the address.
    pub eth_address_instruction_index: u8,
    /// Offset to start of message data.
    pub message_data_offset: u16,
    /// Size of message data in bytes.
    pub message_data_size: u16,
    /// Within the transaction, the index of the instruction whose instruction data contains the message.
    pub message_instruction_index: u8,
}

/// Sign a message and create a secp256k1 program instruction to verify the signature.
///
/// This function is suitable for simple uses of the secp256k1 program.
/// More complex uses must encode the secp256k1 instruction data manually.
/// See the [module documentation][md] for examples.
///
/// [md]: self
///
/// The instruction generated by this function must be the first instruction
/// included in a transaction or it will not verify. The
/// [`SecpSignatureOffsets`] structure encoded in the instruction data specify
/// the instruction indexes as 0.
///
/// `message_arr` is hashed with the [`keccak`] hash function prior to signing.
///
/// [`keccak`]: crate::keccak
pub fn new_secp256k1_instruction(
    priv_key: &libsecp256k1::SecretKey,
    message_arr: &[u8],
) -> Instruction {
    let secp_pubkey = libsecp256k1::PublicKey::from_secret_key(priv_key);
    let eth_pubkey = construct_eth_pubkey(&secp_pubkey);
    let mut hasher = sha3::Keccak256::new();
    hasher.update(message_arr);
    let message_hash = hasher.finalize();
    let mut message_hash_arr = [0u8; 32];
    message_hash_arr.copy_from_slice(message_hash.as_slice());
    let message = libsecp256k1::Message::parse(&message_hash_arr);
    let (signature, recovery_id) = libsecp256k1::sign(&message, priv_key);
    let signature_arr = signature.serialize();
    assert_eq!(signature_arr.len(), SIGNATURE_SERIALIZED_SIZE);

    let instruction_data_len = DATA_START
        .saturating_add(eth_pubkey.len())
        .saturating_add(signature_arr.len())
        .saturating_add(message_arr.len())
        .saturating_add(1);
    let mut instruction_data = vec![0; instruction_data_len];

    let eth_address_offset = DATA_START;
    instruction_data[eth_address_offset..eth_address_offset.saturating_add(eth_pubkey.len())]
        .copy_from_slice(&eth_pubkey);

    let signature_offset = DATA_START.saturating_add(eth_pubkey.len());
    instruction_data[signature_offset..signature_offset.saturating_add(signature_arr.len())]
        .copy_from_slice(&signature_arr);

    instruction_data[signature_offset.saturating_add(signature_arr.len())] =
        recovery_id.serialize();

    let message_data_offset = signature_offset
        .saturating_add(signature_arr.len())
        .saturating_add(1);
    instruction_data[message_data_offset..].copy_from_slice(message_arr);

    let num_signatures = 1;
    instruction_data[0] = num_signatures;
    let offsets = SecpSignatureOffsets {
        signature_offset: signature_offset as u16,
        signature_instruction_index: 0,
        eth_address_offset: eth_address_offset as u16,
        eth_address_instruction_index: 0,
        message_data_offset: message_data_offset as u16,
        message_data_size: message_arr.len() as u16,
        message_instruction_index: 0,
    };
    let writer = std::io::Cursor::new(&mut instruction_data[1..DATA_START]);
    bincode::serialize_into(writer, &offsets).unwrap();

    Instruction {
        program_id: solana_sdk::secp256k1_program::id(),
        accounts: vec![],
        data: instruction_data,
    }
}

/// Creates an Ethereum address from a secp256k1 public key.
pub fn construct_eth_pubkey(
    pubkey: &libsecp256k1::PublicKey,
) -> [u8; HASHED_PUBKEY_SERIALIZED_SIZE] {
    let mut addr = [0u8; HASHED_PUBKEY_SERIALIZED_SIZE];
    addr.copy_from_slice(&sha3::Keccak256::digest(&pubkey.serialize()[1..])[12..]);
    assert_eq!(addr.len(), HASHED_PUBKEY_SERIALIZED_SIZE);
    addr
}

/// Verifies the signatures specified in the secp256k1 instruction data.
///
/// This is same the verification routine executed by the runtime's secp256k1 native program,
/// and is primarily of use to the runtime.
///
/// `data` is the secp256k1 program's instruction data. `instruction_datas` is
/// the full slice of instruction datas for all instructions in the transaction,
/// including the secp256k1 program's instruction data.
///
/// `feature_set` is the set of active Solana features. It is used to enable or
/// disable a few minor additional checks that were activated on chain
/// subsequent to the addition of the secp256k1 native program. For many
/// purposes passing `FeatureSet::all_enabled()` is reasonable.
pub fn verify(
    data: &[u8],
    instruction_datas: &[&[u8]],
    feature_set: &FeatureSet,
) -> Result<(), PrecompileError> {
    if data.is_empty() {
        return Err(PrecompileError::InvalidInstructionDataSize);
    }
    let count = data[0] as usize;
    if (feature_set.is_active(&libsecp256k1_fail_on_bad_count::id())
        || feature_set.is_active(&libsecp256k1_fail_on_bad_count2::id()))
        && count == 0
        && data.len() > 1
    {
        // count is zero but the instruction data indicates that is probably not
        // correct, fail the instruction to catch probable invalid secp256k1
        // instruction construction.
        return Err(PrecompileError::InvalidInstructionDataSize);
    }
    let expected_data_size = count
        .saturating_mul(SIGNATURE_OFFSETS_SERIALIZED_SIZE)
        .saturating_add(1);
    if data.len() < expected_data_size {
        return Err(PrecompileError::InvalidInstructionDataSize);
    }
    for i in 0..count {
        let start = i
            .saturating_mul(SIGNATURE_OFFSETS_SERIALIZED_SIZE)
            .saturating_add(1);
        let end = start.saturating_add(SIGNATURE_OFFSETS_SERIALIZED_SIZE);

        let offsets: SecpSignatureOffsets = bincode::deserialize(&data[start..end])
            .map_err(|_| PrecompileError::InvalidSignature)?;

        // Parse out signature
        let signature_index = offsets.signature_instruction_index as usize;
        if signature_index >= instruction_datas.len() {
            return Err(PrecompileError::InvalidInstructionDataSize);
        }
        let signature_instruction = instruction_datas[signature_index];
        let sig_start = offsets.signature_offset as usize;
        let sig_end = sig_start.saturating_add(SIGNATURE_SERIALIZED_SIZE);
        if sig_end >= signature_instruction.len() {
            return Err(PrecompileError::InvalidSignature);
        }

        let signature = libsecp256k1::Signature::parse_standard_slice(
            &signature_instruction[sig_start..sig_end],
        )
        .map_err(|_| PrecompileError::InvalidSignature)?;

        let recovery_id = libsecp256k1::RecoveryId::parse(signature_instruction[sig_end])
            .map_err(|_| PrecompileError::InvalidRecoveryId)?;

        // Parse out pubkey
        let eth_address_slice = get_data_slice(
            instruction_datas,
            offsets.eth_address_instruction_index,
            offsets.eth_address_offset,
            HASHED_PUBKEY_SERIALIZED_SIZE,
        )?;

        // Parse out message
        let message_slice = get_data_slice(
            instruction_datas,
            offsets.message_instruction_index,
            offsets.message_data_offset,
            offsets.message_data_size as usize,
        )?;

        let mut hasher = sha3::Keccak256::new();
        hasher.update(message_slice);
        let message_hash = hasher.finalize();

        let pubkey = libsecp256k1::recover(
            &libsecp256k1::Message::parse_slice(&message_hash).unwrap(),
            &signature,
            &recovery_id,
        )
        .map_err(|_| PrecompileError::InvalidSignature)?;
        let eth_address = construct_eth_pubkey(&pubkey);

        if eth_address_slice != eth_address {
            return Err(PrecompileError::InvalidSignature);
        }
    }
    Ok(())
}

fn get_data_slice<'a>(
    instruction_datas: &'a [&[u8]],
    instruction_index: u8,
    offset_start: u16,
    size: usize,
) -> Result<&'a [u8], PrecompileError> {
    let signature_index = instruction_index as usize;
    if signature_index >= instruction_datas.len() {
        return Err(PrecompileError::InvalidDataOffsets);
    }
    let signature_instruction = &instruction_datas[signature_index];
    let start = offset_start as usize;
    let end = start.saturating_add(size);
    if end > signature_instruction.len() {
        return Err(PrecompileError::InvalidSignature);
    }

    Ok(&instruction_datas[signature_index][start..end])
}

#[cfg(test)]
pub mod test {
    use {
        super::*,
        crate::{
            feature_set,
            hash::Hash,
            keccak,
            secp256k1_instruction::{
                new_secp256k1_instruction, SecpSignatureOffsets, SIGNATURE_OFFSETS_SERIALIZED_SIZE,
            },
            signature::{Keypair, Signer},
            transaction::Transaction,
        },
        rand0_7::{thread_rng, Rng},
    };

    fn test_case(
        num_signatures: u8,
        offsets: &SecpSignatureOffsets,
    ) -> Result<(), PrecompileError> {
        let mut instruction_data = vec![0u8; DATA_START];
        instruction_data[0] = num_signatures;
        let writer = std::io::Cursor::new(&mut instruction_data[1..]);
        bincode::serialize_into(writer, &offsets).unwrap();
        let feature_set = FeatureSet::all_enabled();
        verify(&instruction_data, &[&[0u8; 100]], &feature_set)
    }

    #[test]
    fn test_invalid_offsets() {
        solana_logger::setup();

        let mut instruction_data = vec![0u8; DATA_START];
        let offsets = SecpSignatureOffsets::default();
        instruction_data[0] = 1;
        let writer = std::io::Cursor::new(&mut instruction_data[1..]);
        bincode::serialize_into(writer, &offsets).unwrap();
        instruction_data.truncate(instruction_data.len() - 1);
        let feature_set = FeatureSet::all_enabled();

        assert_eq!(
            verify(&instruction_data, &[&[0u8; 100]], &feature_set),
            Err(PrecompileError::InvalidInstructionDataSize)
        );

        let offsets = SecpSignatureOffsets {
            signature_instruction_index: 1,
            ..SecpSignatureOffsets::default()
        };
        assert_eq!(
            test_case(1, &offsets),
            Err(PrecompileError::InvalidInstructionDataSize)
        );

        let offsets = SecpSignatureOffsets {
            message_instruction_index: 1,
            ..SecpSignatureOffsets::default()
        };
        assert_eq!(
            test_case(1, &offsets),
            Err(PrecompileError::InvalidDataOffsets)
        );

        let offsets = SecpSignatureOffsets {
            eth_address_instruction_index: 1,
            ..SecpSignatureOffsets::default()
        };
        assert_eq!(
            test_case(1, &offsets),
            Err(PrecompileError::InvalidDataOffsets)
        );
    }

    #[test]
    fn test_message_data_offsets() {
        let offsets = SecpSignatureOffsets {
            message_data_offset: 99,
            message_data_size: 1,
            ..SecpSignatureOffsets::default()
        };
        assert_eq!(
            test_case(1, &offsets),
            Err(PrecompileError::InvalidSignature)
        );

        let offsets = SecpSignatureOffsets {
            message_data_offset: 100,
            message_data_size: 1,
            ..SecpSignatureOffsets::default()
        };
        assert_eq!(
            test_case(1, &offsets),
            Err(PrecompileError::InvalidSignature)
        );

        let offsets = SecpSignatureOffsets {
            message_data_offset: 100,
            message_data_size: 1000,
            ..SecpSignatureOffsets::default()
        };
        assert_eq!(
            test_case(1, &offsets),
            Err(PrecompileError::InvalidSignature)
        );

        let offsets = SecpSignatureOffsets {
            message_data_offset: std::u16::MAX,
            message_data_size: std::u16::MAX,
            ..SecpSignatureOffsets::default()
        };
        assert_eq!(
            test_case(1, &offsets),
            Err(PrecompileError::InvalidSignature)
        );
    }

    #[test]
    fn test_eth_offset() {
        let offsets = SecpSignatureOffsets {
            eth_address_offset: std::u16::MAX,
            ..SecpSignatureOffsets::default()
        };
        assert_eq!(
            test_case(1, &offsets),
            Err(PrecompileError::InvalidSignature)
        );

        let offsets = SecpSignatureOffsets {
            eth_address_offset: 100 - HASHED_PUBKEY_SERIALIZED_SIZE as u16 + 1,
            ..SecpSignatureOffsets::default()
        };
        assert_eq!(
            test_case(1, &offsets),
            Err(PrecompileError::InvalidSignature)
        );
    }

    #[test]
    fn test_signature_offset() {
        let offsets = SecpSignatureOffsets {
            signature_offset: std::u16::MAX,
            ..SecpSignatureOffsets::default()
        };
        assert_eq!(
            test_case(1, &offsets),
            Err(PrecompileError::InvalidSignature)
        );

        let offsets = SecpSignatureOffsets {
            signature_offset: 100 - SIGNATURE_SERIALIZED_SIZE as u16 + 1,
            ..SecpSignatureOffsets::default()
        };
        assert_eq!(
            test_case(1, &offsets),
            Err(PrecompileError::InvalidSignature)
        );
    }

    #[test]
    fn test_count_is_zero_but_sig_data_exists() {
        solana_logger::setup();

        let mut instruction_data = vec![0u8; DATA_START];
        let offsets = SecpSignatureOffsets::default();
        instruction_data[0] = 0;
        let writer = std::io::Cursor::new(&mut instruction_data[1..]);
        bincode::serialize_into(writer, &offsets).unwrap();
        let feature_set = FeatureSet::all_enabled();

        assert_eq!(
            verify(&instruction_data, &[&[0u8; 100]], &feature_set),
            Err(PrecompileError::InvalidInstructionDataSize)
        );
    }

    #[test]
    fn test_secp256k1() {
        solana_logger::setup();
        let offsets = SecpSignatureOffsets::default();
        assert_eq!(
            bincode::serialized_size(&offsets).unwrap() as usize,
            SIGNATURE_OFFSETS_SERIALIZED_SIZE
        );

        let secp_privkey = libsecp256k1::SecretKey::random(&mut thread_rng());
        let message_arr = b"hello";
        let mut secp_instruction = new_secp256k1_instruction(&secp_privkey, message_arr);
        let mint_keypair = Keypair::new();
        let feature_set = feature_set::FeatureSet::all_enabled();

        let tx = Transaction::new_signed_with_payer(
            &[secp_instruction.clone()],
            Some(&mint_keypair.pubkey()),
            &[&mint_keypair],
            Hash::default(),
        );

        assert!(tx.verify_precompiles(&feature_set).is_ok());

        let index = thread_rng().gen_range(0, secp_instruction.data.len());
        secp_instruction.data[index] = secp_instruction.data[index].wrapping_add(12);
        let tx = Transaction::new_signed_with_payer(
            &[secp_instruction],
            Some(&mint_keypair.pubkey()),
            &[&mint_keypair],
            Hash::default(),
        );
        assert!(tx.verify_precompiles(&feature_set).is_err());
    }

    // Signatures are malleable.
    #[test]
    fn test_malleability() {
        solana_logger::setup();

        let secret_key = libsecp256k1::SecretKey::random(&mut thread_rng());
        let public_key = libsecp256k1::PublicKey::from_secret_key(&secret_key);
        let eth_address = construct_eth_pubkey(&public_key);

        let message = b"hello";
        let message_hash = {
            let mut hasher = keccak::Hasher::default();
            hasher.hash(message);
            hasher.result()
        };

        let secp_message = libsecp256k1::Message::parse(&message_hash.0);
        let (signature, recovery_id) = libsecp256k1::sign(&secp_message, &secret_key);

        // Flip the S value in the signature to make a different but valid signature.
        let mut alt_signature = signature;
        alt_signature.s = -alt_signature.s;
        let alt_recovery_id = libsecp256k1::RecoveryId::parse(recovery_id.serialize() ^ 1).unwrap();

        let mut data: Vec<u8> = vec![];
        let mut both_offsets = vec![];

        // Verify both signatures of the same message.
        let sigs = [(signature, recovery_id), (alt_signature, alt_recovery_id)];
        for (signature, recovery_id) in sigs.iter() {
            let signature_offset = data.len();
            data.extend(signature.serialize());
            data.push(recovery_id.serialize());
            let eth_address_offset = data.len();
            data.extend(eth_address);
            let message_data_offset = data.len();
            data.extend(message);

            let data_start = 1 + SIGNATURE_OFFSETS_SERIALIZED_SIZE * 2;

            let offsets = SecpSignatureOffsets {
                signature_offset: (signature_offset + data_start) as u16,
                signature_instruction_index: 0,
                eth_address_offset: (eth_address_offset + data_start) as u16,
                eth_address_instruction_index: 0,
                message_data_offset: (message_data_offset + data_start) as u16,
                message_data_size: message.len() as u16,
                message_instruction_index: 0,
            };

            both_offsets.push(offsets);
        }

        let mut instruction_data: Vec<u8> = vec![2];

        for offsets in both_offsets {
            let offsets = bincode::serialize(&offsets).unwrap();
            instruction_data.extend(offsets);
        }

        instruction_data.extend(data);

        verify(
            &instruction_data,
            &[&instruction_data],
            &FeatureSet::all_enabled(),
        )
        .unwrap();
    }
}