solana_sdk/transaction/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
//! Atomically-committed sequences of instructions.
//!
//! While [`Instruction`]s are the basic unit of computation in Solana, they are
//! submitted by clients in [`Transaction`]s containing one or more
//! instructions, and signed by one or more [`Signer`]s. Solana executes the
//! instructions in a transaction in order, and only commits any changes if all
//! instructions terminate without producing an error or exception.
//!
//! Transactions do not directly contain their instructions but instead include
//! a [`Message`], a precompiled representation of a sequence of instructions.
//! `Message`'s constructors handle the complex task of reordering the
//! individual lists of accounts required by each instruction into a single flat
//! list of deduplicated accounts required by the Solana runtime. The
//! `Transaction` type has constructors that build the `Message` so that clients
//! don't need to interact with them directly.
//!
//! Prior to submission to the network, transactions must be signed by one or or
//! more keypairs, and this signing is typically performed by an abstract
//! [`Signer`], which may be a [`Keypair`] but may also be other types of
//! signers including remote wallets, such as Ledger devices, as represented by
//! the [`RemoteKeypair`] type in the [`solana-remote-wallet`] crate.
//!
//! [`Signer`]: crate::signer::Signer
//! [`Keypair`]: crate::signer::keypair::Keypair
//! [`solana-remote-wallet`]: https://docs.rs/solana-remote-wallet/latest/
//! [`RemoteKeypair`]: https://docs.rs/solana-remote-wallet/latest/solana_remote_wallet/remote_keypair/struct.RemoteKeypair.html
//!
//! Every transaction must be signed by a fee-paying account, the account from
//! which the cost of executing the transaction is withdrawn. Other required
//! signatures are determined by the requirements of the programs being executed
//! by each instruction, and are conventionally specified by that program's
//! documentation.
//!
//! When signing a transaction, a recent blockhash must be provided (which can
//! be retrieved with [`RpcClient::get_latest_blockhash`]). This allows
//! validators to drop old but unexecuted transactions; and to distinguish
//! between accidentally duplicated transactions and intentionally duplicated
//! transactions — any identical transactions will not be executed more
//! than once, so updating the blockhash between submitting otherwise identical
//! transactions makes them unique. If a client must sign a transaction long
//! before submitting it to the network, then it can use the _[durable
//! transaction nonce]_ mechanism instead of a recent blockhash to ensure unique
//! transactions.
//!
//! [`RpcClient::get_latest_blockhash`]: https://docs.rs/solana-rpc-client/latest/solana_rpc_client/rpc_client/struct.RpcClient.html#method.get_latest_blockhash
//! [durable transaction nonce]: https://docs.solanalabs.com/implemented-proposals/durable-tx-nonces
//!
//! # Examples
//!
//! This example uses the [`solana_rpc_client`] and [`anyhow`] crates.
//!
//! [`solana_rpc_client`]: https://docs.rs/solana-rpc-client
//! [`anyhow`]: https://docs.rs/anyhow
//!
//! ```
//! # use solana_sdk::example_mocks::solana_rpc_client;
//! use anyhow::Result;
//! use borsh::{BorshSerialize, BorshDeserialize};
//! use solana_rpc_client::rpc_client::RpcClient;
//! use solana_sdk::{
//! instruction::Instruction,
//! message::Message,
//! pubkey::Pubkey,
//! signature::{Keypair, Signer},
//! transaction::Transaction,
//! };
//!
//! // A custom program instruction. This would typically be defined in
//! // another crate so it can be shared between the on-chain program and
//! // the client.
//! #[derive(BorshSerialize, BorshDeserialize)]
//! enum BankInstruction {
//! Initialize,
//! Deposit { lamports: u64 },
//! Withdraw { lamports: u64 },
//! }
//!
//! fn send_initialize_tx(
//! client: &RpcClient,
//! program_id: Pubkey,
//! payer: &Keypair
//! ) -> Result<()> {
//!
//! let bank_instruction = BankInstruction::Initialize;
//!
//! let instruction = Instruction::new_with_borsh(
//! program_id,
//! &bank_instruction,
//! vec![],
//! );
//!
//! let blockhash = client.get_latest_blockhash()?;
//! let mut tx = Transaction::new_signed_with_payer(
//! &[instruction],
//! Some(&payer.pubkey()),
//! &[payer],
//! blockhash,
//! );
//! client.send_and_confirm_transaction(&tx)?;
//!
//! Ok(())
//! }
//! #
//! # let client = RpcClient::new(String::new());
//! # let program_id = Pubkey::new_unique();
//! # let payer = Keypair::new();
//! # send_initialize_tx(&client, program_id, &payer)?;
//! #
//! # Ok::<(), anyhow::Error>(())
//! ```
#![cfg(feature = "full")]
#[cfg(target_arch = "wasm32")]
use crate::wasm_bindgen;
use {
crate::{
hash::Hash,
instruction::{CompiledInstruction, Instruction},
message::Message,
nonce::NONCED_TX_MARKER_IX_INDEX,
precompiles::verify_if_precompile,
program_utils::limited_deserialize,
pubkey::Pubkey,
signature::{Signature, SignerError},
signers::Signers,
},
serde::Serialize,
solana_feature_set as feature_set,
solana_program::{system_instruction::SystemInstruction, system_program},
solana_sanitize::{Sanitize, SanitizeError},
solana_short_vec as short_vec,
std::result,
};
mod sanitized;
mod versioned;
#[deprecated(since = "2.1.0", note = "Use solana_transaction_error crate instead")]
pub use solana_transaction_error::*;
pub use {sanitized::*, versioned::*};
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub enum TransactionVerificationMode {
HashOnly,
HashAndVerifyPrecompiles,
FullVerification,
}
pub type Result<T> = result::Result<T, TransactionError>;
/// An atomically-committed sequence of instructions.
///
/// While [`Instruction`]s are the basic unit of computation in Solana,
/// they are submitted by clients in [`Transaction`]s containing one or
/// more instructions, and signed by one or more [`Signer`]s.
///
/// [`Signer`]: crate::signer::Signer
///
/// See the [module documentation] for more details about transactions.
///
/// [module documentation]: self
///
/// Some constructors accept an optional `payer`, the account responsible for
/// paying the cost of executing a transaction. In most cases, callers should
/// specify the payer explicitly in these constructors. In some cases though,
/// the caller is not _required_ to specify the payer, but is still allowed to:
/// in the [`Message`] structure, the first account is always the fee-payer, so
/// if the caller has knowledge that the first account of the constructed
/// transaction's `Message` is both a signer and the expected fee-payer, then
/// redundantly specifying the fee-payer is not strictly required.
#[cfg(not(target_arch = "wasm32"))]
#[cfg_attr(
feature = "frozen-abi",
derive(AbiExample),
frozen_abi(digest = "686AAhRhjXpqKidmJEdHHcJCL9XxCxebu8Xmku9shp83")
)]
#[derive(Debug, PartialEq, Default, Eq, Clone, Serialize, Deserialize)]
pub struct Transaction {
/// A set of signatures of a serialized [`Message`], signed by the first
/// keys of the `Message`'s [`account_keys`], where the number of signatures
/// is equal to [`num_required_signatures`] of the `Message`'s
/// [`MessageHeader`].
///
/// [`account_keys`]: Message::account_keys
/// [`MessageHeader`]: crate::message::MessageHeader
/// [`num_required_signatures`]: crate::message::MessageHeader::num_required_signatures
// NOTE: Serialization-related changes must be paired with the direct read at sigverify.
#[serde(with = "short_vec")]
pub signatures: Vec<Signature>,
/// The message to sign.
pub message: Message,
}
/// wasm-bindgen version of the Transaction struct.
/// This duplication is required until https://github.com/rustwasm/wasm-bindgen/issues/3671
/// is fixed. This must not diverge from the regular non-wasm Transaction struct.
#[cfg(target_arch = "wasm32")]
#[wasm_bindgen]
#[cfg_attr(
feature = "frozen-abi",
derive(AbiExample),
frozen_abi(digest = "H7xQFcd1MtMv9QKZWGatBAXwhg28tpeX59P3s8ZZLAY4")
)]
#[derive(Debug, PartialEq, Default, Eq, Clone, Serialize, Deserialize)]
pub struct Transaction {
#[wasm_bindgen(skip)]
#[serde(with = "short_vec")]
pub signatures: Vec<Signature>,
#[wasm_bindgen(skip)]
pub message: Message,
}
impl Sanitize for Transaction {
fn sanitize(&self) -> std::result::Result<(), SanitizeError> {
if self.message.header.num_required_signatures as usize > self.signatures.len() {
return Err(SanitizeError::IndexOutOfBounds);
}
if self.signatures.len() > self.message.account_keys.len() {
return Err(SanitizeError::IndexOutOfBounds);
}
self.message.sanitize()
}
}
impl Transaction {
/// Create an unsigned transaction from a [`Message`].
///
/// # Examples
///
/// This example uses the [`solana_rpc_client`] and [`anyhow`] crates.
///
/// [`solana_rpc_client`]: https://docs.rs/solana-rpc-client
/// [`anyhow`]: https://docs.rs/anyhow
///
/// ```
/// # use solana_sdk::example_mocks::solana_rpc_client;
/// use anyhow::Result;
/// use borsh::{BorshSerialize, BorshDeserialize};
/// use solana_rpc_client::rpc_client::RpcClient;
/// use solana_sdk::{
/// instruction::Instruction,
/// message::Message,
/// pubkey::Pubkey,
/// signature::{Keypair, Signer},
/// transaction::Transaction,
/// };
///
/// // A custom program instruction. This would typically be defined in
/// // another crate so it can be shared between the on-chain program and
/// // the client.
/// #[derive(BorshSerialize, BorshDeserialize)]
/// enum BankInstruction {
/// Initialize,
/// Deposit { lamports: u64 },
/// Withdraw { lamports: u64 },
/// }
///
/// fn send_initialize_tx(
/// client: &RpcClient,
/// program_id: Pubkey,
/// payer: &Keypair
/// ) -> Result<()> {
///
/// let bank_instruction = BankInstruction::Initialize;
///
/// let instruction = Instruction::new_with_borsh(
/// program_id,
/// &bank_instruction,
/// vec![],
/// );
///
/// let message = Message::new(
/// &[instruction],
/// Some(&payer.pubkey()),
/// );
///
/// let mut tx = Transaction::new_unsigned(message);
/// let blockhash = client.get_latest_blockhash()?;
/// tx.sign(&[payer], blockhash);
/// client.send_and_confirm_transaction(&tx)?;
///
/// Ok(())
/// }
/// #
/// # let client = RpcClient::new(String::new());
/// # let program_id = Pubkey::new_unique();
/// # let payer = Keypair::new();
/// # send_initialize_tx(&client, program_id, &payer)?;
/// #
/// # Ok::<(), anyhow::Error>(())
/// ```
pub fn new_unsigned(message: Message) -> Self {
Self {
signatures: vec![Signature::default(); message.header.num_required_signatures as usize],
message,
}
}
/// Create a fully-signed transaction from a [`Message`].
///
/// # Panics
///
/// Panics when signing fails. See [`Transaction::try_sign`] and
/// [`Transaction::try_partial_sign`] for a full description of failure
/// scenarios.
///
/// # Examples
///
/// This example uses the [`solana_rpc_client`] and [`anyhow`] crates.
///
/// [`solana_rpc_client`]: https://docs.rs/solana-rpc-client
/// [`anyhow`]: https://docs.rs/anyhow
///
/// ```
/// # use solana_sdk::example_mocks::solana_rpc_client;
/// use anyhow::Result;
/// use borsh::{BorshSerialize, BorshDeserialize};
/// use solana_rpc_client::rpc_client::RpcClient;
/// use solana_sdk::{
/// instruction::Instruction,
/// message::Message,
/// pubkey::Pubkey,
/// signature::{Keypair, Signer},
/// transaction::Transaction,
/// };
///
/// // A custom program instruction. This would typically be defined in
/// // another crate so it can be shared between the on-chain program and
/// // the client.
/// #[derive(BorshSerialize, BorshDeserialize)]
/// enum BankInstruction {
/// Initialize,
/// Deposit { lamports: u64 },
/// Withdraw { lamports: u64 },
/// }
///
/// fn send_initialize_tx(
/// client: &RpcClient,
/// program_id: Pubkey,
/// payer: &Keypair
/// ) -> Result<()> {
///
/// let bank_instruction = BankInstruction::Initialize;
///
/// let instruction = Instruction::new_with_borsh(
/// program_id,
/// &bank_instruction,
/// vec![],
/// );
///
/// let message = Message::new(
/// &[instruction],
/// Some(&payer.pubkey()),
/// );
///
/// let blockhash = client.get_latest_blockhash()?;
/// let mut tx = Transaction::new(&[payer], message, blockhash);
/// client.send_and_confirm_transaction(&tx)?;
///
/// Ok(())
/// }
/// #
/// # let client = RpcClient::new(String::new());
/// # let program_id = Pubkey::new_unique();
/// # let payer = Keypair::new();
/// # send_initialize_tx(&client, program_id, &payer)?;
/// #
/// # Ok::<(), anyhow::Error>(())
/// ```
pub fn new<T: Signers + ?Sized>(
from_keypairs: &T,
message: Message,
recent_blockhash: Hash,
) -> Transaction {
let mut tx = Self::new_unsigned(message);
tx.sign(from_keypairs, recent_blockhash);
tx
}
/// Create an unsigned transaction from a list of [`Instruction`]s.
///
/// `payer` is the account responsible for paying the cost of executing the
/// transaction. It is typically provided, but is optional in some cases.
/// See the [`Transaction`] docs for more.
///
/// # Examples
///
/// This example uses the [`solana_rpc_client`] and [`anyhow`] crates.
///
/// [`solana_rpc_client`]: https://docs.rs/solana-rpc-client
/// [`anyhow`]: https://docs.rs/anyhow
///
/// ```
/// # use solana_sdk::example_mocks::solana_rpc_client;
/// use anyhow::Result;
/// use borsh::{BorshSerialize, BorshDeserialize};
/// use solana_rpc_client::rpc_client::RpcClient;
/// use solana_sdk::{
/// instruction::Instruction,
/// message::Message,
/// pubkey::Pubkey,
/// signature::{Keypair, Signer},
/// transaction::Transaction,
/// };
///
/// // A custom program instruction. This would typically be defined in
/// // another crate so it can be shared between the on-chain program and
/// // the client.
/// #[derive(BorshSerialize, BorshDeserialize)]
/// enum BankInstruction {
/// Initialize,
/// Deposit { lamports: u64 },
/// Withdraw { lamports: u64 },
/// }
///
/// fn send_initialize_tx(
/// client: &RpcClient,
/// program_id: Pubkey,
/// payer: &Keypair
/// ) -> Result<()> {
///
/// let bank_instruction = BankInstruction::Initialize;
///
/// let instruction = Instruction::new_with_borsh(
/// program_id,
/// &bank_instruction,
/// vec![],
/// );
///
/// let mut tx = Transaction::new_with_payer(&[instruction], Some(&payer.pubkey()));
/// let blockhash = client.get_latest_blockhash()?;
/// tx.sign(&[payer], blockhash);
/// client.send_and_confirm_transaction(&tx)?;
///
/// Ok(())
/// }
/// #
/// # let client = RpcClient::new(String::new());
/// # let program_id = Pubkey::new_unique();
/// # let payer = Keypair::new();
/// # send_initialize_tx(&client, program_id, &payer)?;
/// #
/// # Ok::<(), anyhow::Error>(())
/// ```
pub fn new_with_payer(instructions: &[Instruction], payer: Option<&Pubkey>) -> Self {
let message = Message::new(instructions, payer);
Self::new_unsigned(message)
}
/// Create a fully-signed transaction from a list of [`Instruction`]s.
///
/// `payer` is the account responsible for paying the cost of executing the
/// transaction. It is typically provided, but is optional in some cases.
/// See the [`Transaction`] docs for more.
///
/// # Panics
///
/// Panics when signing fails. See [`Transaction::try_sign`] and
/// [`Transaction::try_partial_sign`] for a full description of failure
/// scenarios.
///
/// # Examples
///
/// This example uses the [`solana_rpc_client`] and [`anyhow`] crates.
///
/// [`solana_rpc_client`]: https://docs.rs/solana-rpc-client
/// [`anyhow`]: https://docs.rs/anyhow
///
/// ```
/// # use solana_sdk::example_mocks::solana_rpc_client;
/// use anyhow::Result;
/// use borsh::{BorshSerialize, BorshDeserialize};
/// use solana_rpc_client::rpc_client::RpcClient;
/// use solana_sdk::{
/// instruction::Instruction,
/// message::Message,
/// pubkey::Pubkey,
/// signature::{Keypair, Signer},
/// transaction::Transaction,
/// };
///
/// // A custom program instruction. This would typically be defined in
/// // another crate so it can be shared between the on-chain program and
/// // the client.
/// #[derive(BorshSerialize, BorshDeserialize)]
/// enum BankInstruction {
/// Initialize,
/// Deposit { lamports: u64 },
/// Withdraw { lamports: u64 },
/// }
///
/// fn send_initialize_tx(
/// client: &RpcClient,
/// program_id: Pubkey,
/// payer: &Keypair
/// ) -> Result<()> {
///
/// let bank_instruction = BankInstruction::Initialize;
///
/// let instruction = Instruction::new_with_borsh(
/// program_id,
/// &bank_instruction,
/// vec![],
/// );
///
/// let blockhash = client.get_latest_blockhash()?;
/// let mut tx = Transaction::new_signed_with_payer(
/// &[instruction],
/// Some(&payer.pubkey()),
/// &[payer],
/// blockhash,
/// );
/// client.send_and_confirm_transaction(&tx)?;
///
/// Ok(())
/// }
/// #
/// # let client = RpcClient::new(String::new());
/// # let program_id = Pubkey::new_unique();
/// # let payer = Keypair::new();
/// # send_initialize_tx(&client, program_id, &payer)?;
/// #
/// # Ok::<(), anyhow::Error>(())
/// ```
pub fn new_signed_with_payer<T: Signers + ?Sized>(
instructions: &[Instruction],
payer: Option<&Pubkey>,
signing_keypairs: &T,
recent_blockhash: Hash,
) -> Self {
let message = Message::new(instructions, payer);
Self::new(signing_keypairs, message, recent_blockhash)
}
/// Create a fully-signed transaction from pre-compiled instructions.
///
/// # Arguments
///
/// * `from_keypairs` - The keys used to sign the transaction.
/// * `keys` - The keys for the transaction. These are the program state
/// instances or lamport recipient keys.
/// * `recent_blockhash` - The PoH hash.
/// * `program_ids` - The keys that identify programs used in the `instruction` vector.
/// * `instructions` - Instructions that will be executed atomically.
///
/// # Panics
///
/// Panics when signing fails. See [`Transaction::try_sign`] and for a full
/// description of failure conditions.
pub fn new_with_compiled_instructions<T: Signers + ?Sized>(
from_keypairs: &T,
keys: &[Pubkey],
recent_blockhash: Hash,
program_ids: Vec<Pubkey>,
instructions: Vec<CompiledInstruction>,
) -> Self {
let mut account_keys = from_keypairs.pubkeys();
let from_keypairs_len = account_keys.len();
account_keys.extend_from_slice(keys);
account_keys.extend(&program_ids);
let message = Message::new_with_compiled_instructions(
from_keypairs_len as u8,
0,
program_ids.len() as u8,
account_keys,
Hash::default(),
instructions,
);
Transaction::new(from_keypairs, message, recent_blockhash)
}
/// Get the data for an instruction at the given index.
///
/// The `instruction_index` corresponds to the [`instructions`] vector of
/// the `Transaction`'s [`Message`] value.
///
/// [`instructions`]: Message::instructions
///
/// # Panics
///
/// Panics if `instruction_index` is greater than or equal to the number of
/// instructions in the transaction.
pub fn data(&self, instruction_index: usize) -> &[u8] {
&self.message.instructions[instruction_index].data
}
fn key_index(&self, instruction_index: usize, accounts_index: usize) -> Option<usize> {
self.message
.instructions
.get(instruction_index)
.and_then(|instruction| instruction.accounts.get(accounts_index))
.map(|&account_keys_index| account_keys_index as usize)
}
/// Get the `Pubkey` of an account required by one of the instructions in
/// the transaction.
///
/// The `instruction_index` corresponds to the [`instructions`] vector of
/// the `Transaction`'s [`Message`] value; and the `account_index` to the
/// [`accounts`] vector of the message's [`CompiledInstruction`]s.
///
/// [`instructions`]: Message::instructions
/// [`accounts`]: CompiledInstruction::accounts
/// [`CompiledInstruction`]: CompiledInstruction
///
/// Returns `None` if `instruction_index` is greater than or equal to the
/// number of instructions in the transaction; or if `accounts_index` is
/// greater than or equal to the number of accounts in the instruction.
pub fn key(&self, instruction_index: usize, accounts_index: usize) -> Option<&Pubkey> {
self.key_index(instruction_index, accounts_index)
.and_then(|account_keys_index| self.message.account_keys.get(account_keys_index))
}
/// Get the `Pubkey` of a signing account required by one of the
/// instructions in the transaction.
///
/// The transaction does not need to be signed for this function to return a
/// signing account's pubkey.
///
/// Returns `None` if the indexed account is not required to sign the
/// transaction. Returns `None` if the [`signatures`] field does not contain
/// enough elements to hold a signature for the indexed account (this should
/// only be possible if `Transaction` has been manually constructed).
///
/// [`signatures`]: Transaction::signatures
///
/// Returns `None` if `instruction_index` is greater than or equal to the
/// number of instructions in the transaction; or if `accounts_index` is
/// greater than or equal to the number of accounts in the instruction.
pub fn signer_key(&self, instruction_index: usize, accounts_index: usize) -> Option<&Pubkey> {
match self.key_index(instruction_index, accounts_index) {
None => None,
Some(signature_index) => {
if signature_index >= self.signatures.len() {
return None;
}
self.message.account_keys.get(signature_index)
}
}
}
/// Return the message containing all data that should be signed.
pub fn message(&self) -> &Message {
&self.message
}
/// Return the serialized message data to sign.
pub fn message_data(&self) -> Vec<u8> {
self.message().serialize()
}
/// Sign the transaction.
///
/// This method fully signs a transaction with all required signers, which
/// must be present in the `keypairs` slice. To sign with only some of the
/// required signers, use [`Transaction::partial_sign`].
///
/// If `recent_blockhash` is different than recorded in the transaction message's
/// [`recent_blockhash`] field, then the message's `recent_blockhash` will be updated
/// to the provided `recent_blockhash`, and any prior signatures will be cleared.
///
/// [`recent_blockhash`]: Message::recent_blockhash
///
/// # Panics
///
/// Panics when signing fails. Use [`Transaction::try_sign`] to handle the
/// error. See the documentation for [`Transaction::try_sign`] for a full description of
/// failure conditions.
///
/// # Examples
///
/// This example uses the [`solana_rpc_client`] and [`anyhow`] crates.
///
/// [`solana_rpc_client`]: https://docs.rs/solana-rpc-client
/// [`anyhow`]: https://docs.rs/anyhow
///
/// ```
/// # use solana_sdk::example_mocks::solana_rpc_client;
/// use anyhow::Result;
/// use borsh::{BorshSerialize, BorshDeserialize};
/// use solana_rpc_client::rpc_client::RpcClient;
/// use solana_sdk::{
/// instruction::Instruction,
/// message::Message,
/// pubkey::Pubkey,
/// signature::{Keypair, Signer},
/// transaction::Transaction,
/// };
///
/// // A custom program instruction. This would typically be defined in
/// // another crate so it can be shared between the on-chain program and
/// // the client.
/// #[derive(BorshSerialize, BorshDeserialize)]
/// enum BankInstruction {
/// Initialize,
/// Deposit { lamports: u64 },
/// Withdraw { lamports: u64 },
/// }
///
/// fn send_initialize_tx(
/// client: &RpcClient,
/// program_id: Pubkey,
/// payer: &Keypair
/// ) -> Result<()> {
///
/// let bank_instruction = BankInstruction::Initialize;
///
/// let instruction = Instruction::new_with_borsh(
/// program_id,
/// &bank_instruction,
/// vec![],
/// );
///
/// let mut tx = Transaction::new_with_payer(&[instruction], Some(&payer.pubkey()));
/// let blockhash = client.get_latest_blockhash()?;
/// tx.sign(&[payer], blockhash);
/// client.send_and_confirm_transaction(&tx)?;
///
/// Ok(())
/// }
/// #
/// # let client = RpcClient::new(String::new());
/// # let program_id = Pubkey::new_unique();
/// # let payer = Keypair::new();
/// # send_initialize_tx(&client, program_id, &payer)?;
/// #
/// # Ok::<(), anyhow::Error>(())
/// ```
pub fn sign<T: Signers + ?Sized>(&mut self, keypairs: &T, recent_blockhash: Hash) {
if let Err(e) = self.try_sign(keypairs, recent_blockhash) {
panic!("Transaction::sign failed with error {e:?}");
}
}
/// Sign the transaction with a subset of required keys.
///
/// Unlike [`Transaction::sign`], this method does not require all keypairs
/// to be provided, allowing a transaction to be signed in multiple steps.
///
/// It is permitted to sign a transaction with the same keypair multiple
/// times.
///
/// If `recent_blockhash` is different than recorded in the transaction message's
/// [`recent_blockhash`] field, then the message's `recent_blockhash` will be updated
/// to the provided `recent_blockhash`, and any prior signatures will be cleared.
///
/// [`recent_blockhash`]: Message::recent_blockhash
///
/// # Panics
///
/// Panics when signing fails. Use [`Transaction::try_partial_sign`] to
/// handle the error. See the documentation for
/// [`Transaction::try_partial_sign`] for a full description of failure
/// conditions.
pub fn partial_sign<T: Signers + ?Sized>(&mut self, keypairs: &T, recent_blockhash: Hash) {
if let Err(e) = self.try_partial_sign(keypairs, recent_blockhash) {
panic!("Transaction::partial_sign failed with error {e:?}");
}
}
/// Sign the transaction with a subset of required keys.
///
/// This places each of the signatures created from `keypairs` in the
/// corresponding position, as specified in the `positions` vector, in the
/// transactions [`signatures`] field. It does not verify that the signature
/// positions are correct.
///
/// [`signatures`]: Transaction::signatures
///
/// # Panics
///
/// Panics if signing fails. Use [`Transaction::try_partial_sign_unchecked`]
/// to handle the error.
pub fn partial_sign_unchecked<T: Signers + ?Sized>(
&mut self,
keypairs: &T,
positions: Vec<usize>,
recent_blockhash: Hash,
) {
if let Err(e) = self.try_partial_sign_unchecked(keypairs, positions, recent_blockhash) {
panic!("Transaction::partial_sign_unchecked failed with error {e:?}");
}
}
/// Sign the transaction, returning any errors.
///
/// This method fully signs a transaction with all required signers, which
/// must be present in the `keypairs` slice. To sign with only some of the
/// required signers, use [`Transaction::try_partial_sign`].
///
/// If `recent_blockhash` is different than recorded in the transaction message's
/// [`recent_blockhash`] field, then the message's `recent_blockhash` will be updated
/// to the provided `recent_blockhash`, and any prior signatures will be cleared.
///
/// [`recent_blockhash`]: Message::recent_blockhash
///
/// # Errors
///
/// Signing will fail if some required signers are not provided in
/// `keypairs`; or, if the transaction has previously been partially signed,
/// some of the remaining required signers are not provided in `keypairs`.
/// In other words, the transaction must be fully signed as a result of
/// calling this function. The error is [`SignerError::NotEnoughSigners`].
///
/// Signing will fail for any of the reasons described in the documentation
/// for [`Transaction::try_partial_sign`].
///
/// # Examples
///
/// This example uses the [`solana_rpc_client`] and [`anyhow`] crates.
///
/// [`solana_rpc_client`]: https://docs.rs/solana-rpc-client
/// [`anyhow`]: https://docs.rs/anyhow
///
/// ```
/// # use solana_sdk::example_mocks::solana_rpc_client;
/// use anyhow::Result;
/// use borsh::{BorshSerialize, BorshDeserialize};
/// use solana_rpc_client::rpc_client::RpcClient;
/// use solana_sdk::{
/// instruction::Instruction,
/// message::Message,
/// pubkey::Pubkey,
/// signature::{Keypair, Signer},
/// transaction::Transaction,
/// };
///
/// // A custom program instruction. This would typically be defined in
/// // another crate so it can be shared between the on-chain program and
/// // the client.
/// #[derive(BorshSerialize, BorshDeserialize)]
/// enum BankInstruction {
/// Initialize,
/// Deposit { lamports: u64 },
/// Withdraw { lamports: u64 },
/// }
///
/// fn send_initialize_tx(
/// client: &RpcClient,
/// program_id: Pubkey,
/// payer: &Keypair
/// ) -> Result<()> {
///
/// let bank_instruction = BankInstruction::Initialize;
///
/// let instruction = Instruction::new_with_borsh(
/// program_id,
/// &bank_instruction,
/// vec![],
/// );
///
/// let mut tx = Transaction::new_with_payer(&[instruction], Some(&payer.pubkey()));
/// let blockhash = client.get_latest_blockhash()?;
/// tx.try_sign(&[payer], blockhash)?;
/// client.send_and_confirm_transaction(&tx)?;
///
/// Ok(())
/// }
/// #
/// # let client = RpcClient::new(String::new());
/// # let program_id = Pubkey::new_unique();
/// # let payer = Keypair::new();
/// # send_initialize_tx(&client, program_id, &payer)?;
/// #
/// # Ok::<(), anyhow::Error>(())
/// ```
pub fn try_sign<T: Signers + ?Sized>(
&mut self,
keypairs: &T,
recent_blockhash: Hash,
) -> result::Result<(), SignerError> {
self.try_partial_sign(keypairs, recent_blockhash)?;
if !self.is_signed() {
Err(SignerError::NotEnoughSigners)
} else {
Ok(())
}
}
/// Sign the transaction with a subset of required keys, returning any errors.
///
/// Unlike [`Transaction::try_sign`], this method does not require all
/// keypairs to be provided, allowing a transaction to be signed in multiple
/// steps.
///
/// It is permitted to sign a transaction with the same keypair multiple
/// times.
///
/// If `recent_blockhash` is different than recorded in the transaction message's
/// [`recent_blockhash`] field, then the message's `recent_blockhash` will be updated
/// to the provided `recent_blockhash`, and any prior signatures will be cleared.
///
/// [`recent_blockhash`]: Message::recent_blockhash
///
/// # Errors
///
/// Signing will fail if
///
/// - The transaction's [`Message`] is malformed such that the number of
/// required signatures recorded in its header
/// ([`num_required_signatures`]) is greater than the length of its
/// account keys ([`account_keys`]). The error is
/// [`SignerError::TransactionError`] where the interior
/// [`TransactionError`] is [`TransactionError::InvalidAccountIndex`].
/// - Any of the provided signers in `keypairs` is not a required signer of
/// the message. The error is [`SignerError::KeypairPubkeyMismatch`].
/// - Any of the signers is a [`Presigner`], and its provided signature is
/// incorrect. The error is [`SignerError::PresignerError`] where the
/// interior [`PresignerError`] is
/// [`PresignerError::VerificationFailure`].
/// - The signer is a [`RemoteKeypair`] and
/// - It does not understand the input provided ([`SignerError::InvalidInput`]).
/// - The device cannot be found ([`SignerError::NoDeviceFound`]).
/// - The user cancels the signing ([`SignerError::UserCancel`]).
/// - An error was encountered connecting ([`SignerError::Connection`]).
/// - Some device-specific protocol error occurs ([`SignerError::Protocol`]).
/// - Some other error occurs ([`SignerError::Custom`]).
///
/// See the documentation for the [`solana-remote-wallet`] crate for details
/// on the operation of [`RemoteKeypair`] signers.
///
/// [`num_required_signatures`]: crate::message::MessageHeader::num_required_signatures
/// [`account_keys`]: Message::account_keys
/// [`Presigner`]: crate::signer::presigner::Presigner
/// [`PresignerError`]: crate::signer::presigner::PresignerError
/// [`PresignerError::VerificationFailure`]: crate::signer::presigner::PresignerError::VerificationFailure
/// [`solana-remote-wallet`]: https://docs.rs/solana-remote-wallet/latest/
/// [`RemoteKeypair`]: https://docs.rs/solana-remote-wallet/latest/solana_remote_wallet/remote_keypair/struct.RemoteKeypair.html
pub fn try_partial_sign<T: Signers + ?Sized>(
&mut self,
keypairs: &T,
recent_blockhash: Hash,
) -> result::Result<(), SignerError> {
let positions = self.get_signing_keypair_positions(&keypairs.pubkeys())?;
if positions.iter().any(|pos| pos.is_none()) {
return Err(SignerError::KeypairPubkeyMismatch);
}
let positions: Vec<usize> = positions.iter().map(|pos| pos.unwrap()).collect();
self.try_partial_sign_unchecked(keypairs, positions, recent_blockhash)
}
/// Sign the transaction with a subset of required keys, returning any
/// errors.
///
/// This places each of the signatures created from `keypairs` in the
/// corresponding position, as specified in the `positions` vector, in the
/// transactions [`signatures`] field. It does not verify that the signature
/// positions are correct.
///
/// [`signatures`]: Transaction::signatures
///
/// # Errors
///
/// Returns an error if signing fails.
pub fn try_partial_sign_unchecked<T: Signers + ?Sized>(
&mut self,
keypairs: &T,
positions: Vec<usize>,
recent_blockhash: Hash,
) -> result::Result<(), SignerError> {
// if you change the blockhash, you're re-signing...
if recent_blockhash != self.message.recent_blockhash {
self.message.recent_blockhash = recent_blockhash;
self.signatures
.iter_mut()
.for_each(|signature| *signature = Signature::default());
}
let signatures = keypairs.try_sign_message(&self.message_data())?;
for i in 0..positions.len() {
self.signatures[positions[i]] = signatures[i];
}
Ok(())
}
/// Returns a signature that is not valid for signing this transaction.
pub fn get_invalid_signature() -> Signature {
Signature::default()
}
/// Verifies that all signers have signed the message.
///
/// # Errors
///
/// Returns [`TransactionError::SignatureFailure`] on error.
pub fn verify(&self) -> Result<()> {
let message_bytes = self.message_data();
if !self
._verify_with_results(&message_bytes)
.iter()
.all(|verify_result| *verify_result)
{
Err(TransactionError::SignatureFailure)
} else {
Ok(())
}
}
/// Verify the transaction and hash its message.
///
/// # Errors
///
/// Returns [`TransactionError::SignatureFailure`] on error.
pub fn verify_and_hash_message(&self) -> Result<Hash> {
let message_bytes = self.message_data();
if !self
._verify_with_results(&message_bytes)
.iter()
.all(|verify_result| *verify_result)
{
Err(TransactionError::SignatureFailure)
} else {
Ok(Message::hash_raw_message(&message_bytes))
}
}
/// Verifies that all signers have signed the message.
///
/// Returns a vector with the length of required signatures, where each
/// element is either `true` if that signer has signed, or `false` if not.
pub fn verify_with_results(&self) -> Vec<bool> {
self._verify_with_results(&self.message_data())
}
pub(crate) fn _verify_with_results(&self, message_bytes: &[u8]) -> Vec<bool> {
self.signatures
.iter()
.zip(&self.message.account_keys)
.map(|(signature, pubkey)| signature.verify(pubkey.as_ref(), message_bytes))
.collect()
}
/// Verify the precompiled programs in this transaction.
pub fn verify_precompiles(&self, feature_set: &feature_set::FeatureSet) -> Result<()> {
for instruction in &self.message().instructions {
// The Transaction may not be sanitized at this point
if instruction.program_id_index as usize >= self.message().account_keys.len() {
return Err(TransactionError::AccountNotFound);
}
let program_id = &self.message().account_keys[instruction.program_id_index as usize];
verify_if_precompile(
program_id,
instruction,
&self.message().instructions,
feature_set,
)
.map_err(|_| TransactionError::InvalidAccountIndex)?;
}
Ok(())
}
/// Get the positions of the pubkeys in `account_keys` associated with signing keypairs.
///
/// [`account_keys`]: Message::account_keys
pub fn get_signing_keypair_positions(&self, pubkeys: &[Pubkey]) -> Result<Vec<Option<usize>>> {
if self.message.account_keys.len() < self.message.header.num_required_signatures as usize {
return Err(TransactionError::InvalidAccountIndex);
}
let signed_keys =
&self.message.account_keys[0..self.message.header.num_required_signatures as usize];
Ok(pubkeys
.iter()
.map(|pubkey| signed_keys.iter().position(|x| x == pubkey))
.collect())
}
/// Replace all the signatures and pubkeys.
pub fn replace_signatures(&mut self, signers: &[(Pubkey, Signature)]) -> Result<()> {
let num_required_signatures = self.message.header.num_required_signatures as usize;
if signers.len() != num_required_signatures
|| self.signatures.len() != num_required_signatures
|| self.message.account_keys.len() < num_required_signatures
{
return Err(TransactionError::InvalidAccountIndex);
}
for (index, account_key) in self
.message
.account_keys
.iter()
.enumerate()
.take(num_required_signatures)
{
if let Some((_pubkey, signature)) =
signers.iter().find(|(key, _signature)| account_key == key)
{
self.signatures[index] = *signature
} else {
return Err(TransactionError::InvalidAccountIndex);
}
}
self.verify()
}
pub fn is_signed(&self) -> bool {
self.signatures
.iter()
.all(|signature| *signature != Signature::default())
}
}
/// Returns true if transaction begins with an advance nonce instruction.
pub fn uses_durable_nonce(tx: &Transaction) -> Option<&CompiledInstruction> {
let message = tx.message();
message
.instructions
.get(NONCED_TX_MARKER_IX_INDEX as usize)
.filter(|instruction| {
// Is system program
matches!(
message.account_keys.get(instruction.program_id_index as usize),
Some(program_id) if system_program::check_id(program_id)
)
// Is a nonce advance instruction
&& matches!(
limited_deserialize(&instruction.data),
Ok(SystemInstruction::AdvanceNonceAccount)
)
})
}
#[cfg(test)]
mod tests {
#![allow(deprecated)]
use {
super::*,
crate::{
hash::hash,
instruction::AccountMeta,
signature::{Keypair, Presigner, Signer},
system_instruction,
},
bincode::{deserialize, serialize, serialized_size},
std::mem::size_of,
};
fn get_program_id(tx: &Transaction, instruction_index: usize) -> &Pubkey {
let message = tx.message();
let instruction = &message.instructions[instruction_index];
instruction.program_id(&message.account_keys)
}
#[test]
fn test_refs() {
let key = Keypair::new();
let key1 = solana_sdk::pubkey::new_rand();
let key2 = solana_sdk::pubkey::new_rand();
let prog1 = solana_sdk::pubkey::new_rand();
let prog2 = solana_sdk::pubkey::new_rand();
let instructions = vec![
CompiledInstruction::new(3, &(), vec![0, 1]),
CompiledInstruction::new(4, &(), vec![0, 2]),
];
let tx = Transaction::new_with_compiled_instructions(
&[&key],
&[key1, key2],
Hash::default(),
vec![prog1, prog2],
instructions,
);
assert!(tx.sanitize().is_ok());
assert_eq!(tx.key(0, 0), Some(&key.pubkey()));
assert_eq!(tx.signer_key(0, 0), Some(&key.pubkey()));
assert_eq!(tx.key(1, 0), Some(&key.pubkey()));
assert_eq!(tx.signer_key(1, 0), Some(&key.pubkey()));
assert_eq!(tx.key(0, 1), Some(&key1));
assert_eq!(tx.signer_key(0, 1), None);
assert_eq!(tx.key(1, 1), Some(&key2));
assert_eq!(tx.signer_key(1, 1), None);
assert_eq!(tx.key(2, 0), None);
assert_eq!(tx.signer_key(2, 0), None);
assert_eq!(tx.key(0, 2), None);
assert_eq!(tx.signer_key(0, 2), None);
assert_eq!(*get_program_id(&tx, 0), prog1);
assert_eq!(*get_program_id(&tx, 1), prog2);
}
#[test]
fn test_refs_invalid_program_id() {
let key = Keypair::new();
let instructions = vec![CompiledInstruction::new(1, &(), vec![])];
let tx = Transaction::new_with_compiled_instructions(
&[&key],
&[],
Hash::default(),
vec![],
instructions,
);
assert_eq!(tx.sanitize(), Err(SanitizeError::IndexOutOfBounds));
}
#[test]
fn test_refs_invalid_account() {
let key = Keypair::new();
let instructions = vec![CompiledInstruction::new(1, &(), vec![2])];
let tx = Transaction::new_with_compiled_instructions(
&[&key],
&[],
Hash::default(),
vec![Pubkey::default()],
instructions,
);
assert_eq!(*get_program_id(&tx, 0), Pubkey::default());
assert_eq!(tx.sanitize(), Err(SanitizeError::IndexOutOfBounds));
}
#[test]
fn test_sanitize_txs() {
let key = Keypair::new();
let id0 = Pubkey::default();
let program_id = solana_sdk::pubkey::new_rand();
let ix = Instruction::new_with_bincode(
program_id,
&0,
vec![
AccountMeta::new(key.pubkey(), true),
AccountMeta::new(id0, true),
],
);
let mut tx = Transaction::new_with_payer(&[ix], Some(&key.pubkey()));
let o = tx.clone();
assert_eq!(tx.sanitize(), Ok(()));
assert_eq!(tx.message.account_keys.len(), 3);
tx = o.clone();
tx.message.header.num_required_signatures = 3;
assert_eq!(tx.sanitize(), Err(SanitizeError::IndexOutOfBounds));
tx = o.clone();
tx.message.header.num_readonly_signed_accounts = 4;
tx.message.header.num_readonly_unsigned_accounts = 0;
assert_eq!(tx.sanitize(), Err(SanitizeError::IndexOutOfBounds));
tx = o.clone();
tx.message.header.num_readonly_signed_accounts = 2;
tx.message.header.num_readonly_unsigned_accounts = 2;
assert_eq!(tx.sanitize(), Err(SanitizeError::IndexOutOfBounds));
tx = o.clone();
tx.message.header.num_readonly_signed_accounts = 0;
tx.message.header.num_readonly_unsigned_accounts = 4;
assert_eq!(tx.sanitize(), Err(SanitizeError::IndexOutOfBounds));
tx = o.clone();
tx.message.instructions[0].program_id_index = 3;
assert_eq!(tx.sanitize(), Err(SanitizeError::IndexOutOfBounds));
tx = o.clone();
tx.message.instructions[0].accounts[0] = 3;
assert_eq!(tx.sanitize(), Err(SanitizeError::IndexOutOfBounds));
tx = o.clone();
tx.message.instructions[0].program_id_index = 0;
assert_eq!(tx.sanitize(), Err(SanitizeError::IndexOutOfBounds));
tx = o.clone();
tx.message.header.num_readonly_signed_accounts = 2;
tx.message.header.num_readonly_unsigned_accounts = 3;
tx.message.account_keys.resize(4, Pubkey::default());
assert_eq!(tx.sanitize(), Err(SanitizeError::IndexOutOfBounds));
tx = o;
tx.message.header.num_readonly_signed_accounts = 2;
tx.message.header.num_required_signatures = 1;
assert_eq!(tx.sanitize(), Err(SanitizeError::IndexOutOfBounds));
}
fn create_sample_transaction() -> Transaction {
let keypair = Keypair::from_bytes(&[
255, 101, 36, 24, 124, 23, 167, 21, 132, 204, 155, 5, 185, 58, 121, 75, 156, 227, 116,
193, 215, 38, 142, 22, 8, 14, 229, 239, 119, 93, 5, 218, 36, 100, 158, 252, 33, 161,
97, 185, 62, 89, 99, 195, 250, 249, 187, 189, 171, 118, 241, 90, 248, 14, 68, 219, 231,
62, 157, 5, 142, 27, 210, 117,
])
.unwrap();
let to = Pubkey::from([
1, 1, 1, 4, 5, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 7, 6, 5, 4,
1, 1, 1,
]);
let program_id = Pubkey::from([
2, 2, 2, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 8, 7, 6, 5, 4,
2, 2, 2,
]);
let account_metas = vec![
AccountMeta::new(keypair.pubkey(), true),
AccountMeta::new(to, false),
];
let instruction =
Instruction::new_with_bincode(program_id, &(1u8, 2u8, 3u8), account_metas);
let message = Message::new(&[instruction], Some(&keypair.pubkey()));
let tx = Transaction::new(&[&keypair], message, Hash::default());
tx.verify().expect("valid sample transaction signatures");
tx
}
#[test]
fn test_transaction_serialize() {
let tx = create_sample_transaction();
let ser = serialize(&tx).unwrap();
let deser = deserialize(&ser).unwrap();
assert_eq!(tx, deser);
}
/// Detect changes to the serialized size of payment transactions, which affects TPS.
#[test]
fn test_transaction_minimum_serialized_size() {
let alice_keypair = Keypair::new();
let alice_pubkey = alice_keypair.pubkey();
let bob_pubkey = solana_sdk::pubkey::new_rand();
let ix = system_instruction::transfer(&alice_pubkey, &bob_pubkey, 42);
let expected_data_size = size_of::<u32>() + size_of::<u64>();
assert_eq!(expected_data_size, 12);
assert_eq!(
ix.data.len(),
expected_data_size,
"unexpected system instruction size"
);
let expected_instruction_size = 1 + 1 + ix.accounts.len() + 1 + expected_data_size;
assert_eq!(expected_instruction_size, 17);
let message = Message::new(&[ix], Some(&alice_pubkey));
assert_eq!(
serialized_size(&message.instructions[0]).unwrap() as usize,
expected_instruction_size,
"unexpected Instruction::serialized_size"
);
let tx = Transaction::new(&[&alice_keypair], message, Hash::default());
let len_size = 1;
let num_required_sigs_size = 1;
let num_readonly_accounts_size = 2;
let blockhash_size = size_of::<Hash>();
let expected_transaction_size = len_size
+ (tx.signatures.len() * size_of::<Signature>())
+ num_required_sigs_size
+ num_readonly_accounts_size
+ len_size
+ (tx.message.account_keys.len() * size_of::<Pubkey>())
+ blockhash_size
+ len_size
+ expected_instruction_size;
assert_eq!(expected_transaction_size, 215);
assert_eq!(
serialized_size(&tx).unwrap() as usize,
expected_transaction_size,
"unexpected serialized transaction size"
);
}
/// Detect binary changes in the serialized transaction data, which could have a downstream
/// affect on SDKs and applications
#[test]
fn test_sdk_serialize() {
assert_eq!(
serialize(&create_sample_transaction()).unwrap(),
vec![
1, 120, 138, 162, 185, 59, 209, 241, 157, 71, 157, 74, 131, 4, 87, 54, 28, 38, 180,
222, 82, 64, 62, 61, 62, 22, 46, 17, 203, 187, 136, 62, 43, 11, 38, 235, 17, 239,
82, 240, 139, 130, 217, 227, 214, 9, 242, 141, 223, 94, 29, 184, 110, 62, 32, 87,
137, 63, 139, 100, 221, 20, 137, 4, 5, 1, 0, 1, 3, 36, 100, 158, 252, 33, 161, 97,
185, 62, 89, 99, 195, 250, 249, 187, 189, 171, 118, 241, 90, 248, 14, 68, 219, 231,
62, 157, 5, 142, 27, 210, 117, 1, 1, 1, 4, 5, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9,
9, 9, 9, 9, 9, 9, 9, 8, 7, 6, 5, 4, 1, 1, 1, 2, 2, 2, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 8, 7, 6, 5, 4, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 0, 1,
3, 1, 2, 3
]
);
}
#[test]
#[should_panic]
fn test_transaction_missing_key() {
let keypair = Keypair::new();
let message = Message::new(&[], None);
Transaction::new_unsigned(message).sign(&[&keypair], Hash::default());
}
#[test]
#[should_panic]
fn test_partial_sign_mismatched_key() {
let keypair = Keypair::new();
let fee_payer = solana_sdk::pubkey::new_rand();
let ix = Instruction::new_with_bincode(
Pubkey::default(),
&0,
vec![AccountMeta::new(fee_payer, true)],
);
let message = Message::new(&[ix], Some(&fee_payer));
Transaction::new_unsigned(message).partial_sign(&[&keypair], Hash::default());
}
#[test]
fn test_partial_sign() {
let keypair0 = Keypair::new();
let keypair1 = Keypair::new();
let keypair2 = Keypair::new();
let ix = Instruction::new_with_bincode(
Pubkey::default(),
&0,
vec![
AccountMeta::new(keypair0.pubkey(), true),
AccountMeta::new(keypair1.pubkey(), true),
AccountMeta::new(keypair2.pubkey(), true),
],
);
let message = Message::new(&[ix], Some(&keypair0.pubkey()));
let mut tx = Transaction::new_unsigned(message);
tx.partial_sign(&[&keypair0, &keypair2], Hash::default());
assert!(!tx.is_signed());
tx.partial_sign(&[&keypair1], Hash::default());
assert!(tx.is_signed());
let hash = hash(&[1]);
tx.partial_sign(&[&keypair1], hash);
assert!(!tx.is_signed());
tx.partial_sign(&[&keypair0, &keypair2], hash);
assert!(tx.is_signed());
}
#[test]
#[should_panic]
fn test_transaction_missing_keypair() {
let program_id = Pubkey::default();
let keypair0 = Keypair::new();
let id0 = keypair0.pubkey();
let ix = Instruction::new_with_bincode(program_id, &0, vec![AccountMeta::new(id0, true)]);
let message = Message::new(&[ix], Some(&id0));
Transaction::new_unsigned(message).sign(&Vec::<&Keypair>::new(), Hash::default());
}
#[test]
#[should_panic]
fn test_transaction_wrong_key() {
let program_id = Pubkey::default();
let keypair0 = Keypair::new();
let wrong_id = Pubkey::default();
let ix =
Instruction::new_with_bincode(program_id, &0, vec![AccountMeta::new(wrong_id, true)]);
let message = Message::new(&[ix], Some(&wrong_id));
Transaction::new_unsigned(message).sign(&[&keypair0], Hash::default());
}
#[test]
fn test_transaction_correct_key() {
let program_id = Pubkey::default();
let keypair0 = Keypair::new();
let id0 = keypair0.pubkey();
let ix = Instruction::new_with_bincode(program_id, &0, vec![AccountMeta::new(id0, true)]);
let message = Message::new(&[ix], Some(&id0));
let mut tx = Transaction::new_unsigned(message);
tx.sign(&[&keypair0], Hash::default());
assert_eq!(
tx.message.instructions[0],
CompiledInstruction::new(1, &0, vec![0])
);
assert!(tx.is_signed());
}
#[test]
fn test_transaction_instruction_with_duplicate_keys() {
let program_id = Pubkey::default();
let keypair0 = Keypair::new();
let id0 = keypair0.pubkey();
let id1 = solana_sdk::pubkey::new_rand();
let ix = Instruction::new_with_bincode(
program_id,
&0,
vec![
AccountMeta::new(id0, true),
AccountMeta::new(id1, false),
AccountMeta::new(id0, false),
AccountMeta::new(id1, false),
],
);
let message = Message::new(&[ix], Some(&id0));
let mut tx = Transaction::new_unsigned(message);
tx.sign(&[&keypair0], Hash::default());
assert_eq!(
tx.message.instructions[0],
CompiledInstruction::new(2, &0, vec![0, 1, 0, 1])
);
assert!(tx.is_signed());
}
#[test]
fn test_try_sign_dyn_keypairs() {
let program_id = Pubkey::default();
let keypair = Keypair::new();
let pubkey = keypair.pubkey();
let presigner_keypair = Keypair::new();
let presigner_pubkey = presigner_keypair.pubkey();
let ix = Instruction::new_with_bincode(
program_id,
&0,
vec![
AccountMeta::new(pubkey, true),
AccountMeta::new(presigner_pubkey, true),
],
);
let message = Message::new(&[ix], Some(&pubkey));
let mut tx = Transaction::new_unsigned(message);
let presigner_sig = presigner_keypair.sign_message(&tx.message_data());
let presigner = Presigner::new(&presigner_pubkey, &presigner_sig);
let signers: Vec<&dyn Signer> = vec![&keypair, &presigner];
let res = tx.try_sign(&signers, Hash::default());
assert_eq!(res, Ok(()));
assert_eq!(tx.signatures[0], keypair.sign_message(&tx.message_data()));
assert_eq!(tx.signatures[1], presigner_sig);
// Wrong key should error, not panic
let another_pubkey = solana_sdk::pubkey::new_rand();
let ix = Instruction::new_with_bincode(
program_id,
&0,
vec![
AccountMeta::new(another_pubkey, true),
AccountMeta::new(presigner_pubkey, true),
],
);
let message = Message::new(&[ix], Some(&another_pubkey));
let mut tx = Transaction::new_unsigned(message);
let res = tx.try_sign(&signers, Hash::default());
assert!(res.is_err());
assert_eq!(
tx.signatures,
vec![Signature::default(), Signature::default()]
);
}
fn nonced_transfer_tx() -> (Pubkey, Pubkey, Transaction) {
let from_keypair = Keypair::new();
let from_pubkey = from_keypair.pubkey();
let nonce_keypair = Keypair::new();
let nonce_pubkey = nonce_keypair.pubkey();
let instructions = [
system_instruction::advance_nonce_account(&nonce_pubkey, &nonce_pubkey),
system_instruction::transfer(&from_pubkey, &nonce_pubkey, 42),
];
let message = Message::new(&instructions, Some(&nonce_pubkey));
let tx = Transaction::new(&[&from_keypair, &nonce_keypair], message, Hash::default());
(from_pubkey, nonce_pubkey, tx)
}
#[test]
fn tx_uses_nonce_ok() {
let (_, _, tx) = nonced_transfer_tx();
assert!(uses_durable_nonce(&tx).is_some());
}
#[test]
fn tx_uses_nonce_empty_ix_fail() {
assert!(uses_durable_nonce(&Transaction::default()).is_none());
}
#[test]
fn tx_uses_nonce_bad_prog_id_idx_fail() {
let (_, _, mut tx) = nonced_transfer_tx();
tx.message.instructions.get_mut(0).unwrap().program_id_index = 255u8;
assert!(uses_durable_nonce(&tx).is_none());
}
#[test]
fn tx_uses_nonce_first_prog_id_not_nonce_fail() {
let from_keypair = Keypair::new();
let from_pubkey = from_keypair.pubkey();
let nonce_keypair = Keypair::new();
let nonce_pubkey = nonce_keypair.pubkey();
let instructions = [
system_instruction::transfer(&from_pubkey, &nonce_pubkey, 42),
system_instruction::advance_nonce_account(&nonce_pubkey, &nonce_pubkey),
];
let message = Message::new(&instructions, Some(&from_pubkey));
let tx = Transaction::new(&[&from_keypair, &nonce_keypair], message, Hash::default());
assert!(uses_durable_nonce(&tx).is_none());
}
#[test]
fn tx_uses_nonce_wrong_first_nonce_ix_fail() {
let from_keypair = Keypair::new();
let from_pubkey = from_keypair.pubkey();
let nonce_keypair = Keypair::new();
let nonce_pubkey = nonce_keypair.pubkey();
let instructions = [
system_instruction::withdraw_nonce_account(
&nonce_pubkey,
&nonce_pubkey,
&from_pubkey,
42,
),
system_instruction::transfer(&from_pubkey, &nonce_pubkey, 42),
];
let message = Message::new(&instructions, Some(&nonce_pubkey));
let tx = Transaction::new(&[&from_keypair, &nonce_keypair], message, Hash::default());
assert!(uses_durable_nonce(&tx).is_none());
}
#[test]
fn tx_keypair_pubkey_mismatch() {
let from_keypair = Keypair::new();
let from_pubkey = from_keypair.pubkey();
let to_pubkey = Pubkey::new_unique();
let instructions = [system_instruction::transfer(&from_pubkey, &to_pubkey, 42)];
let mut tx = Transaction::new_with_payer(&instructions, Some(&from_pubkey));
let unused_keypair = Keypair::new();
let err = tx
.try_partial_sign(&[&from_keypair, &unused_keypair], Hash::default())
.unwrap_err();
assert_eq!(err, SignerError::KeypairPubkeyMismatch);
}
#[test]
fn test_unsized_signers() {
fn instructions_to_tx(
instructions: &[Instruction],
signers: Box<dyn Signers>,
) -> Transaction {
let pubkeys = signers.pubkeys();
let first_signer = pubkeys.first().expect("should exist");
let message = Message::new(instructions, Some(first_signer));
Transaction::new(signers.as_ref(), message, Hash::default())
}
let signer: Box<dyn Signer> = Box::new(Keypair::new());
let tx = instructions_to_tx(&[], Box::new(vec![signer]));
assert!(tx.is_signed());
}
#[test]
fn test_replace_signatures() {
let program_id = Pubkey::default();
let keypair0 = Keypair::new();
let keypair1 = Keypair::new();
let pubkey0 = keypair0.pubkey();
let pubkey1 = keypair1.pubkey();
let ix = Instruction::new_with_bincode(
program_id,
&0,
vec![
AccountMeta::new(pubkey0, true),
AccountMeta::new(pubkey1, true),
],
);
let message = Message::new(&[ix], Some(&pubkey0));
let expected_account_keys = message.account_keys.clone();
let mut tx = Transaction::new_unsigned(message);
tx.sign(&[&keypair0, &keypair1], Hash::new_unique());
let signature0 = keypair0.sign_message(&tx.message_data());
let signature1 = keypair1.sign_message(&tx.message_data());
// Replace signatures with order swapped
tx.replace_signatures(&[(pubkey1, signature1), (pubkey0, signature0)])
.unwrap();
// Order of account_keys should not change
assert_eq!(tx.message.account_keys, expected_account_keys);
// Order of signatures should match original account_keys list
assert_eq!(tx.signatures, &[signature0, signature1]);
}
}