1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
#![allow(rustdoc::private_intra_doc_links)]
//! The task (transaction) scheduling code for the unified scheduler
//!
//! ### High-level API and design
//!
//! The most important type is [`SchedulingStateMachine`]. It takes new tasks (= transactions) and
//! may return back them if runnable via
//! [`::schedule_task()`](SchedulingStateMachine::schedule_task) while maintaining the account
//! readonly/writable lock rules. Those returned runnable tasks are guaranteed to be safe to
//! execute in parallel. Lastly, `SchedulingStateMachine` should be notified about the completion
//! of the exeuction via [`::deschedule_task()`](SchedulingStateMachine::deschedule_task), so that
//! conflicting tasks can be returned from
//! [`::schedule_next_unblocked_task()`](SchedulingStateMachine::schedule_next_unblocked_task) as
//! newly-unblocked runnable ones.
//!
//! The design principle of this crate (`solana-unified-scheduler-logic`) is simplicity for the
//! separation of concern. It is interacted only with a few of its public API by
//! `solana-unified-scheduler-pool`. This crate doesn't know about banks, slots, solana-runtime,
//! threads, crossbeam-channel at all. Becasue of this, it's deterministic, easy-to-unit-test, and
//! its perf footprint is well understood. It really focuses on its single job: sorting
//! transactions in executable order.
//!
//! ### Algorithm
//!
//! The algorithm can be said it's based on per-address FIFO queues, which are updated every time
//! both new task is coming (= called _scheduling_) and runnable (= _post-scheduling_) task is
//! finished (= called _descheduling_).
//!
//! For the _non-conflicting scheduling_ case, the story is very simple; it just remembers that all
//! of accessed addresses are write-locked or read-locked with the number of active (=
//! _currently-scheduled-and-not-descheduled-yet_) tasks. Correspondingly, descheduling does the
//! opposite book-keeping process, regardless whether a finished task has been conflicted or not.
//!
//! For the _conflicting scheduling_ case, it remembers that each of **non-conflicting addresses**
//! like the non-conflicting case above. As for **conflicting addresses**, each task is recorded to
//! respective FIFO queues attached to the (conflicting) addresses. Importantly, the number of
//! conflicting addresses of the conflicting task is also remembered.
//!
//! The last missing piece is that the scheduler actually tries to reschedule previously blocked
//! tasks while deschduling, in addition to the above-mentioned book-keeping processing. Namely,
//! when given address is ready for new fresh locking resulted from descheduling a task (i.e. write
//! lock is released or read lock count has reached zero), it pops out the first element of the
//! FIFO blocked-task queue of the address. Then, it immediately marks the address as relocked. It
//! also decrements the number of conflicting addresses of the popped-out task. As the final step,
//! if the number reaches to the zero, it means the task has fully finished locking all of its
//! addresses and is directly routed to be runnable. Lastly, if the next first element of the
//! blocked-task queue is trying to read-lock the address like the popped-out one, this
//! rescheduling is repeated as an optimization to increase parallelism of task execution.
//!
//! Put differently, this algorithm tries to gradually lock all of addresses of tasks at different
//! timings while not deviating the execution order from the original task ingestion order. This
//! implies there's no locking retries in general, which is the primary source of non-linear perf.
//! degration.
//!
//! As a ballpark number from a synthesized micro benchmark on usual CPU for `mainnet-beta`
//! validators, it takes roughly 100ns to schedule and deschedule a transaction with 10 accounts.
//! And 1us for a transaction with 100 accounts. Note that this excludes crossbeam communication
//! overhead at all. That's said, it's not unrealistic to say the whole unified scheduler can
//! attain 100k-1m tps overall, assuming those transaction executions aren't bottlenecked.
//!
//! ### Runtime performance characteristics and data structure arrangement
//!
//! Its algorithm is very fast for high throughput, real-time for low latency. The whole
//! unified-scheduler architecture is designed from grounds up to support the fastest execution of
//! this scheduling code. For that end, unified scheduler pre-loads address-specific locking state
//! data structures (called [`UsageQueue`]) for all of transaction's accounts, in order to offload
//! the job to other threads from the scheduler thread. This preloading is done inside
//! [`create_task()`](SchedulingStateMachine::create_task). In this way, task scheduling
//! computational complexity is basically reduced to several word-sized loads and stores in the
//! schduler thread (i.e. constant; no allocations nor syscalls), while being proportional to the
//! number of addresses in a given transaction. Note that this statement is held true, regardless
//! of conflicts. This is because the preloading also pre-allocates some scratch-pad area
//! ([`blocked_usages_from_tasks`](UsageQueueInner::blocked_usages_from_tasks)) to stash blocked
//! ones. So, a conflict only incurs some additional fixed number of mem stores, within error
//! margin of the constant complexity. And additional memory allocation for the scratchpad could
//! said to be amortized, if such an unusual event should occur.
//!
//! [`Arc`] is used to implement this preloading mechanism, because `UsageQueue`s are shared across
//! tasks accessing the same account, and among threads due to the preloading. Also, interior
//! mutability is needed. However, `SchedulingStateMachine` doesn't use conventional locks like
//! RwLock. Leveraging the fact it's the only state-mutating exclusive thread, it instead uses
//! `UnsafeCell`, which is sugar-coated by a tailored wrapper called [`TokenCell`]. `TokenCell`
//! imposes an overly restrictive aliasing rule via rust type system to maintain the memory safety.
//! By localizing any synchronization to the message passing, the scheduling code itself attains
//! maximally possible single-threaed execution without stalling cpu pipelines at all, only
//! constrained to mem access latency, while efficiently utilizing L1-L3 cpu cache with full of
//! `UsageQueue`s.
//!
//! ### Buffer bloat insignificance
//!
//! The scheduler code itself doesn't care about the buffer bloat problem, which can occur in
//! unified scheduler, where a run of heavily linearized and blocked tasks could be severely
//! hampered by very large number of interleaved runnable tasks along side. The reason is again
//! for separation of concerns. This is acceptable because the scheduling code itself isn't
//! susceptible to the buffer bloat problem by itself as explained by the description and validated
//! by the mentioned benchmark above. Thus, this should be solved elsewhere, specifically at the
//! scheduler pool.
use {
crate::utils::{ShortCounter, Token, TokenCell},
assert_matches::assert_matches,
solana_sdk::{pubkey::Pubkey, transaction::SanitizedTransaction},
static_assertions::const_assert_eq,
std::{collections::VecDeque, mem, sync::Arc},
};
/// Internal utilities. Namely this contains [`ShortCounter`] and [`TokenCell`].
mod utils {
use std::{
any::{self, TypeId},
cell::{RefCell, UnsafeCell},
collections::BTreeSet,
marker::PhantomData,
thread,
};
/// A really tiny counter to hide `.checked_{add,sub}` all over the place.
///
/// It's caller's reponsibility to ensure this (backed by [`u32`]) never overflow.
#[derive(Debug, Clone, Copy)]
pub(super) struct ShortCounter(u32);
impl ShortCounter {
pub(super) fn zero() -> Self {
Self(0)
}
pub(super) fn one() -> Self {
Self(1)
}
pub(super) fn is_one(&self) -> bool {
self.0 == 1
}
pub(super) fn is_zero(&self) -> bool {
self.0 == 0
}
pub(super) fn current(&self) -> u32 {
self.0
}
#[must_use]
pub(super) fn increment(self) -> Self {
Self(self.0.checked_add(1).unwrap())
}
#[must_use]
pub(super) fn decrement(self) -> Self {
Self(self.0.checked_sub(1).unwrap())
}
pub(super) fn increment_self(&mut self) -> &mut Self {
*self = self.increment();
self
}
pub(super) fn decrement_self(&mut self) -> &mut Self {
*self = self.decrement();
self
}
pub(super) fn reset_to_zero(&mut self) -> &mut Self {
self.0 = 0;
self
}
}
/// A conditionally [`Send`]-able and [`Sync`]-able cell leveraging scheduler's one-by-one data
/// access pattern with zero runtime synchronization cost.
///
/// To comply with Rust's aliasing rules, these cells require a carefully-created [`Token`] to
/// be passed around to access the inner values. The token is a special-purpose phantom object
/// to get rid of its inherent `unsafe`-ness in [`UnsafeCell`], which is internally used for
/// the interior mutability.
///
/// The final objective of [`Token`] is to ensure there's only one mutable reference to the
/// [`TokenCell`] at most _at any given moment_. To that end, it's `unsafe` to create it,
/// shifting the responsibility of binding the only singleton instance to a particular thread
/// and not creating more than one, onto the API consumers. And its constructor is non-`const`,
/// and the type is `!Clone` (and `!Copy` as well), `!Default`, `!Send` and `!Sync` to make it
/// relatively hard to cross thread boundaries accidentally.
///
/// In other words, the token semantically _owns_ all of its associated instances of
/// [`TokenCell`]s. And `&mut Token` is needed to access one of them as if the one is of
/// [`Token`]'s `*_mut()` getters. Thus, the Rust aliasing rule for `UnsafeCell` can
/// transitively be proven to be satisfied simply based on the usual borrow checking of the
/// `&mut` reference of [`Token`] itself via
/// [`::with_borrow_mut()`](TokenCell::with_borrow_mut).
///
/// By extension, it's allowed to create _multiple_ tokens in a _single_ process as long as no
/// instance of [`TokenCell`] is shared by multiple instances of [`Token`].
///
/// Note that this is overly restrictive in that it's forbidden, yet, technically possible
/// to _have multiple mutable references to the inner values at the same time, if and only
/// if the respective cells aren't aliased to each other (i.e. different instances)_. This
/// artificial restriction is acceptable for its intended use by the unified scheduler's code
/// because its algorithm only needs to access each instance of [`TokenCell`]-ed data once at a
/// time. Finally, this restriction is traded off for restoration of Rust aliasing rule at zero
/// runtime cost. Without this token mechanism, there's no way to realize this.
#[derive(Debug, Default)]
pub(super) struct TokenCell<V>(UnsafeCell<V>);
impl<V> TokenCell<V> {
/// Creates a new `TokenCell` with the `value` typed as `V`.
///
/// Note that this isn't parametric over the its accompanied `Token`'s lifetime to avoid
/// complex handling of non-`'static` heaped data in general. Instead, it's manually
/// required to ensure this instance is accessed only via its associated Token for the
/// entire lifetime.
///
/// This is intentionally left to be non-`const` to forbid unprotected sharing via static
/// variables among threads.
pub(super) fn new(value: V) -> Self {
Self(UnsafeCell::new(value))
}
/// Acquires a mutable reference inside a given closure, while borrowing the mutable
/// reference of the given token.
///
/// In this way, any additional reborrow can never happen at the same time across all
/// instances of [`TokenCell<V>`] conceptually owned by the instance of [`Token<V>`] (a
/// particular thread), unless previous borrow is released. After the release, the used
/// singleton token should be free to be reused for reborrows.
///
/// Note that lifetime of the acquired reference is still restricted to 'self, not
/// 'token, in order to avoid use-after-free undefined behaviors.
pub(super) fn with_borrow_mut<R>(
&self,
_token: &mut Token<V>,
f: impl FnOnce(&mut V) -> R,
) -> R {
f(unsafe { &mut *self.0.get() })
}
}
// Safety: Once after a (`Send`-able) `TokenCell` is transferred to a thread from other
// threads, access to `TokenCell` is assumed to be only from the single thread by proper use of
// Token. Thereby, implementing `Sync` can be thought as safe and doing so is needed for the
// particular implementation pattern in the unified scheduler (multi-threaded off-loading).
//
// In other words, TokenCell is technically still `!Sync`. But there should be no
// legalized usage which depends on real `Sync` to avoid undefined behaviors.
unsafe impl<V> Sync for TokenCell<V> {}
/// A auxiliary zero-sized type to enforce aliasing rule to [`TokenCell`] via rust type system
///
/// Token semantically owns a collection of `TokenCell` objects and governs the _unique_
/// existence of mutable access over them by requiring the token itself to be mutably borrowed
/// to get a mutable reference to the internal value of `TokenCell`.
// *mut is used to make this type !Send and !Sync
pub(super) struct Token<V: 'static>(PhantomData<*mut V>);
impl<V> Token<V> {
/// Returns the token to acquire a mutable reference to the inner value of [TokenCell].
///
/// This is intentionally left to be non-`const` to forbid unprotected sharing via static
/// variables among threads.
///
/// # Panics
///
/// This function will `panic!()` if called multiple times with same type `V` from the same
/// thread to detect potential misuses.
///
/// # Safety
///
/// This method should be called exactly once for each thread at most to avoid undefined
/// behavior when used with [`Token`].
#[must_use]
pub(super) unsafe fn assume_exclusive_mutating_thread() -> Self {
thread_local! {
static TOKENS: RefCell<BTreeSet<TypeId>> = const { RefCell::new(BTreeSet::new()) };
}
// TOKEN.with_borrow_mut can't panic because it's the only non-overlapping
// bound-to-local-variable borrow of the _thread local_ variable.
assert!(
TOKENS.with_borrow_mut(|tokens| tokens.insert(TypeId::of::<Self>())),
"{:?} is wrongly initialized twice on {:?}",
any::type_name::<Self>(),
thread::current()
);
Self(PhantomData)
}
}
#[cfg(test)]
mod tests {
use {
super::{Token, TokenCell},
std::{mem, sync::Arc, thread},
};
#[test]
#[should_panic(
expected = "\"solana_unified_scheduler_logic::utils::Token<usize>\" is wrongly \
initialized twice on Thread"
)]
fn test_second_creation_of_tokens_in_a_thread() {
unsafe {
let _ = Token::<usize>::assume_exclusive_mutating_thread();
let _ = Token::<usize>::assume_exclusive_mutating_thread();
}
}
#[derive(Debug)]
struct FakeQueue {
v: Vec<u8>,
}
// As documented above, it's illegal to create multiple tokens inside a single thread to
// acquire multiple mutable references to the same TokenCell at the same time.
#[test]
// Trigger (harmless) UB unless running under miri by conditionally #[ignore]-ing,
// confirming false-positive result to conversely show the merit of miri!
#[cfg_attr(miri, ignore)]
fn test_ub_illegally_created_multiple_tokens() {
// Unauthorized token minting!
let mut token1 = unsafe { mem::transmute::<(), Token<FakeQueue>>(()) };
let mut token2 = unsafe { mem::transmute::<(), Token<FakeQueue>>(()) };
let queue = TokenCell::new(FakeQueue {
v: Vec::with_capacity(20),
});
queue.with_borrow_mut(&mut token1, |queue_mut1| {
queue_mut1.v.push(1);
queue.with_borrow_mut(&mut token2, |queue_mut2| {
queue_mut2.v.push(2);
queue_mut1.v.push(3);
});
queue_mut1.v.push(4);
});
// It's in ub already, so we can't assert reliably, so dbg!(...) just for fun
#[cfg(not(miri))]
dbg!(queue.0.into_inner());
// Return successfully to indicate an unexpected outcome, because this test should
// have aborted by now.
}
// As documented above, it's illegal to share (= co-own) the same instance of TokenCell
// across threads. Unfortunately, we can't prevent this from happening with some
// type-safety magic to cause compile errors... So sanity-check here test fails due to a
// runtime error of the known UB, when run under miri.
#[test]
// Trigger (harmless) UB unless running under miri by conditionally #[ignore]-ing,
// confirming false-positive result to conversely show the merit of miri!
#[cfg_attr(miri, ignore)]
fn test_ub_illegally_shared_token_cell() {
let queue1 = Arc::new(TokenCell::new(FakeQueue {
v: Vec::with_capacity(20),
}));
let queue2 = queue1.clone();
#[cfg(not(miri))]
let queue3 = queue1.clone();
// Usually miri immediately detects the data race; but just repeat enough time to avoid
// being flaky
for _ in 0..10 {
let (queue1, queue2) = (queue1.clone(), queue2.clone());
let thread1 = thread::spawn(move || {
let mut token = unsafe { Token::assume_exclusive_mutating_thread() };
queue1.with_borrow_mut(&mut token, |queue| {
// this is UB
queue.v.push(3);
});
});
// Immediately spawn next thread without joining thread1 to ensure there's a data race
// definitely. Otherwise, joining here wouldn't cause UB.
let thread2 = thread::spawn(move || {
let mut token = unsafe { Token::assume_exclusive_mutating_thread() };
queue2.with_borrow_mut(&mut token, |queue| {
// this is UB
queue.v.push(4);
});
});
thread1.join().unwrap();
thread2.join().unwrap();
}
// It's in ub already, so we can't assert reliably, so dbg!(...) just for fun
#[cfg(not(miri))]
{
drop((queue1, queue2));
dbg!(Arc::into_inner(queue3).unwrap().0.into_inner());
}
// Return successfully to indicate an unexpected outcome, because this test should
// have aborted by now
}
}
}
/// [`Result`] for locking a [usage_queue](UsageQueue) with particular
/// [current_usage](RequestedUsage).
type LockResult = Result<(), ()>;
const_assert_eq!(mem::size_of::<LockResult>(), 1);
/// Something to be scheduled; usually a wrapper of [`SanitizedTransaction`].
pub type Task = Arc<TaskInner>;
const_assert_eq!(mem::size_of::<Task>(), 8);
/// [`Token`] for [`UsageQueue`].
type UsageQueueToken = Token<UsageQueueInner>;
const_assert_eq!(mem::size_of::<UsageQueueToken>(), 0);
/// [`Token`] for [task](Task)'s [internal mutable data](`TaskInner::blocked_usage_count`).
type BlockedUsageCountToken = Token<ShortCounter>;
const_assert_eq!(mem::size_of::<BlockedUsageCountToken>(), 0);
/// Internal scheduling data about a particular task.
#[derive(Debug)]
pub struct TaskInner {
transaction: SanitizedTransaction,
/// The index of a transaction in ledger entries; not used by SchedulingStateMachine by itself.
/// Carrying this along with the transaction is needed to properly record the execution result
/// of it.
index: usize,
lock_contexts: Vec<LockContext>,
blocked_usage_count: TokenCell<ShortCounter>,
}
impl TaskInner {
pub fn task_index(&self) -> usize {
self.index
}
pub fn transaction(&self) -> &SanitizedTransaction {
&self.transaction
}
fn lock_contexts(&self) -> &[LockContext] {
&self.lock_contexts
}
fn set_blocked_usage_count(&self, token: &mut BlockedUsageCountToken, count: ShortCounter) {
self.blocked_usage_count
.with_borrow_mut(token, |usage_count| {
*usage_count = count;
})
}
#[must_use]
fn try_unblock(self: Task, token: &mut BlockedUsageCountToken) -> Option<Task> {
let did_unblock = self
.blocked_usage_count
.with_borrow_mut(token, |usage_count| usage_count.decrement_self().is_zero());
did_unblock.then_some(self)
}
}
/// [`Task`]'s per-address context to lock a [usage_queue](UsageQueue) with [certain kind of
/// request](RequestedUsage).
#[derive(Debug)]
struct LockContext {
usage_queue: UsageQueue,
requested_usage: RequestedUsage,
}
const_assert_eq!(mem::size_of::<LockContext>(), 16);
impl LockContext {
fn new(usage_queue: UsageQueue, requested_usage: RequestedUsage) -> Self {
Self {
usage_queue,
requested_usage,
}
}
fn with_usage_queue_mut<R>(
&self,
usage_queue_token: &mut UsageQueueToken,
f: impl FnOnce(&mut UsageQueueInner) -> R,
) -> R {
self.usage_queue.0.with_borrow_mut(usage_queue_token, f)
}
}
/// Status about how the [`UsageQueue`] is used currently.
#[derive(Copy, Clone, Debug)]
enum Usage {
Readonly(ShortCounter),
Writable,
}
const_assert_eq!(mem::size_of::<Usage>(), 8);
impl From<RequestedUsage> for Usage {
fn from(requested_usage: RequestedUsage) -> Self {
match requested_usage {
RequestedUsage::Readonly => Usage::Readonly(ShortCounter::one()),
RequestedUsage::Writable => Usage::Writable,
}
}
}
/// Status about how a task is requesting to use a particular [`UsageQueue`].
#[derive(Clone, Copy, Debug)]
enum RequestedUsage {
Readonly,
Writable,
}
/// Internal scheduling data about a particular address.
///
/// Specifically, it holds the current [`Usage`] (or no usage with [`Usage::Unused`]) and which
/// [`Task`]s are blocked to be executed after the current task is notified to be finished via
/// [`::deschedule_task`](`SchedulingStateMachine::deschedule_task`)
#[derive(Debug)]
struct UsageQueueInner {
current_usage: Option<Usage>,
blocked_usages_from_tasks: VecDeque<UsageFromTask>,
}
type UsageFromTask = (RequestedUsage, Task);
impl Default for UsageQueueInner {
fn default() -> Self {
Self {
current_usage: None,
// Capacity should be configurable to create with large capacity like 1024 inside the
// (multi-threaded) closures passed to create_task(). In this way, reallocs can be
// avoided happening in the scheduler thread. Also, this configurability is desired for
// unified-scheduler-logic's motto: separation of concerns (the pure logic should be
// sufficiently distanced from any some random knob's constants needed for messy
// reality for author's personal preference...).
//
// Note that large cap should be accompanied with proper scheduler cleaning after use,
// which should be handled by higher layers (i.e. scheduler pool).
blocked_usages_from_tasks: VecDeque::with_capacity(128),
}
}
}
impl UsageQueueInner {
fn try_lock(&mut self, requested_usage: RequestedUsage) -> LockResult {
match self.current_usage {
None => Some(Usage::from(requested_usage)),
Some(Usage::Readonly(count)) => match requested_usage {
RequestedUsage::Readonly => Some(Usage::Readonly(count.increment())),
RequestedUsage::Writable => None,
},
Some(Usage::Writable) => None,
}
.inspect(|&new_usage| {
self.current_usage = Some(new_usage);
})
.map(|_| ())
.ok_or(())
}
#[must_use]
fn unlock(&mut self, requested_usage: RequestedUsage) -> Option<UsageFromTask> {
let mut is_unused_now = false;
match &mut self.current_usage {
Some(Usage::Readonly(ref mut count)) => match requested_usage {
RequestedUsage::Readonly => {
if count.is_one() {
is_unused_now = true;
} else {
count.decrement_self();
}
}
RequestedUsage::Writable => unreachable!(),
},
Some(Usage::Writable) => match requested_usage {
RequestedUsage::Writable => {
is_unused_now = true;
}
RequestedUsage::Readonly => unreachable!(),
},
None => unreachable!(),
}
if is_unused_now {
self.current_usage = None;
self.blocked_usages_from_tasks.pop_front()
} else {
None
}
}
fn push_blocked_usage_from_task(&mut self, usage_from_task: UsageFromTask) {
assert_matches!(self.current_usage, Some(_));
self.blocked_usages_from_tasks.push_back(usage_from_task);
}
#[must_use]
fn pop_unblocked_readonly_usage_from_task(&mut self) -> Option<UsageFromTask> {
if matches!(
self.blocked_usages_from_tasks.front(),
Some((RequestedUsage::Readonly, _))
) {
assert_matches!(self.current_usage, Some(Usage::Readonly(_)));
self.blocked_usages_from_tasks.pop_front()
} else {
None
}
}
fn has_no_blocked_usage(&self) -> bool {
self.blocked_usages_from_tasks.is_empty()
}
}
const_assert_eq!(mem::size_of::<TokenCell<UsageQueueInner>>(), 40);
/// Scheduler's internal data for each address ([`Pubkey`](`solana_sdk::pubkey::Pubkey`)). Very
/// opaque wrapper type; no methods just with [`::clone()`](Clone::clone) and
/// [`::default()`](Default::default).
#[derive(Debug, Clone, Default)]
pub struct UsageQueue(Arc<TokenCell<UsageQueueInner>>);
const_assert_eq!(mem::size_of::<UsageQueue>(), 8);
/// A high-level `struct`, managing the overall scheduling of [tasks](Task), to be used by
/// `solana-unified-scheduler-pool`.
pub struct SchedulingStateMachine {
unblocked_task_queue: VecDeque<Task>,
active_task_count: ShortCounter,
handled_task_count: ShortCounter,
unblocked_task_count: ShortCounter,
total_task_count: ShortCounter,
count_token: BlockedUsageCountToken,
usage_queue_token: UsageQueueToken,
}
const_assert_eq!(mem::size_of::<SchedulingStateMachine>(), 48);
impl SchedulingStateMachine {
pub fn has_no_active_task(&self) -> bool {
self.active_task_count.is_zero()
}
pub fn has_unblocked_task(&self) -> bool {
!self.unblocked_task_queue.is_empty()
}
pub fn unblocked_task_queue_count(&self) -> usize {
self.unblocked_task_queue.len()
}
pub fn active_task_count(&self) -> u32 {
self.active_task_count.current()
}
pub fn handled_task_count(&self) -> u32 {
self.handled_task_count.current()
}
pub fn unblocked_task_count(&self) -> u32 {
self.unblocked_task_count.current()
}
pub fn total_task_count(&self) -> u32 {
self.total_task_count.current()
}
/// Schedules given `task`, returning it if successful.
///
/// Returns `Some(task)` if it's immediately scheduled. Otherwise, returns `None`,
/// indicating the scheduled task is blocked currently.
///
/// Note that this function takes ownership of the task to allow for future optimizations.
#[must_use]
pub fn schedule_task(&mut self, task: Task) -> Option<Task> {
self.total_task_count.increment_self();
self.active_task_count.increment_self();
self.try_lock_usage_queues(task)
}
#[must_use]
pub fn schedule_next_unblocked_task(&mut self) -> Option<Task> {
self.unblocked_task_queue.pop_front().inspect(|_| {
self.unblocked_task_count.increment_self();
})
}
/// Deschedules given scheduled `task`.
///
/// This must be called exactly once for all scheduled tasks to uphold both
/// `SchedulingStateMachine` and `UsageQueue` internal state consistency at any given moment of
/// time. It's serious logic error to call this twice with the same task or none at all after
/// scheduling. Similarly, calling this with not scheduled task is also forbidden.
///
/// Note that this function intentionally doesn't take ownership of the task to avoid dropping
/// tasks inside `SchedulingStateMachine` to provide an offloading-based optimization
/// opportunity for callers.
pub fn deschedule_task(&mut self, task: &Task) {
self.active_task_count.decrement_self();
self.handled_task_count.increment_self();
self.unlock_usage_queues(task);
}
#[must_use]
fn try_lock_usage_queues(&mut self, task: Task) -> Option<Task> {
let mut blocked_usage_count = ShortCounter::zero();
for context in task.lock_contexts() {
context.with_usage_queue_mut(&mut self.usage_queue_token, |usage_queue| {
let lock_result = if usage_queue.has_no_blocked_usage() {
usage_queue.try_lock(context.requested_usage)
} else {
LockResult::Err(())
};
if let Err(()) = lock_result {
blocked_usage_count.increment_self();
let usage_from_task = (context.requested_usage, task.clone());
usage_queue.push_blocked_usage_from_task(usage_from_task);
}
});
}
// no blocked usage count means success
if blocked_usage_count.is_zero() {
Some(task)
} else {
task.set_blocked_usage_count(&mut self.count_token, blocked_usage_count);
None
}
}
fn unlock_usage_queues(&mut self, task: &Task) {
for context in task.lock_contexts() {
context.with_usage_queue_mut(&mut self.usage_queue_token, |usage_queue| {
let mut unblocked_task_from_queue = usage_queue.unlock(context.requested_usage);
while let Some((requested_usage, task_with_unblocked_queue)) =
unblocked_task_from_queue
{
// When `try_unblock()` returns `None` as a failure of unblocking this time,
// this means the task is still blocked by other active task's usages. So,
// don't push task into unblocked_task_queue yet. It can be assumed that every
// task will eventually succeed to be unblocked, and enter in this condition
// clause as long as `SchedulingStateMachine` is used correctly.
if let Some(task) = task_with_unblocked_queue.try_unblock(&mut self.count_token)
{
self.unblocked_task_queue.push_back(task);
}
match usage_queue.try_lock(requested_usage) {
LockResult::Ok(()) => {
// Try to further schedule blocked task for parallelism in the case of
// readonly usages
unblocked_task_from_queue =
if matches!(requested_usage, RequestedUsage::Readonly) {
usage_queue.pop_unblocked_readonly_usage_from_task()
} else {
None
};
}
LockResult::Err(()) => panic!("should never fail in this context"),
}
}
});
}
}
/// Creates a new task with [`SanitizedTransaction`] with all of its corresponding
/// [`UsageQueue`]s preloaded.
///
/// Closure (`usage_queue_loader`) is used to delegate the (possibly multi-threaded)
/// implementation of [`UsageQueue`] look-up by [`pubkey`](Pubkey) to callers. It's the
/// caller's responsibility to ensure the same instance is returned from the closure, given a
/// particular pubkey.
///
/// Closure is used here to delegate the responsibility of primary ownership of `UsageQueue`
/// (and caching/pruning if any) to the caller. `SchedulingStateMachine` guarantees that all of
/// shared owndership of `UsageQueue`s are released and UsageQueue state is identical to just
/// after created, if `has_no_active_task()` is `true`. Also note that this is desired for
/// separation of concern.
pub fn create_task(
transaction: SanitizedTransaction,
index: usize,
usage_queue_loader: &mut impl FnMut(Pubkey) -> UsageQueue,
) -> Task {
// Calling the _unchecked() version here is safe for faster operation, because
// `get_account_locks()` (the safe variant) is ensured to be called in
// DefaultTransactionHandler::handle() via Bank::prepare_unlocked_batch_from_single_tx().
//
// The safe variant has additional account-locking related verifications, which is crucial.
//
// Currently the replaying stage is redundantly calling `get_account_locks()` when unified
// scheduler is enabled on the given transaction at the blockstore. This will be relaxed
// for optimization in the future. As for banking stage with unified scheduler, it will
// need to run .get_account_locks() at least once somewhere in the code path. In the
// distant future, this function `create_task()` should be adjusted so that both stages do
// the checks before calling this (say, with some ad-hoc type like
// `SanitizedTransactionWithCheckedAccountLocks`) or do the checks here, resulting in
// eliminating the redundant one in the replaying stage and in the handler.
let locks = transaction.get_account_locks_unchecked();
let writable_locks = locks
.writable
.iter()
.map(|address| (address, RequestedUsage::Writable));
let readonly_locks = locks
.readonly
.iter()
.map(|address| (address, RequestedUsage::Readonly));
let lock_contexts = writable_locks
.chain(readonly_locks)
.map(|(address, requested_usage)| {
LockContext::new(usage_queue_loader(**address), requested_usage)
})
.collect();
Task::new(TaskInner {
transaction,
index,
lock_contexts,
blocked_usage_count: TokenCell::new(ShortCounter::zero()),
})
}
/// Rewind the inactive state machine to be initialized
///
/// This isn't called _reset_ to indicate this isn't safe to call this at any given moment.
/// This panics if the state machine hasn't properly been finished (i.e. there should be no
/// active task) to uphold invariants of [`UsageQueue`]s.
///
/// This method is intended to reuse SchedulingStateMachine instance (to avoid its `unsafe`
/// [constructor](SchedulingStateMachine::exclusively_initialize_current_thread_for_scheduling)
/// as much as possible) and its (possibly cached) associated [`UsageQueue`]s for processing
/// other slots.
pub fn reinitialize(&mut self) {
assert!(self.has_no_active_task());
assert_eq!(self.unblocked_task_queue.len(), 0);
// nice trick to ensure all fields are handled here if new one is added.
let Self {
unblocked_task_queue: _,
active_task_count,
handled_task_count,
unblocked_task_count,
total_task_count,
count_token: _,
usage_queue_token: _,
// don't add ".." here
} = self;
active_task_count.reset_to_zero();
handled_task_count.reset_to_zero();
unblocked_task_count.reset_to_zero();
total_task_count.reset_to_zero();
}
/// Creates a new instance of [`SchedulingStateMachine`] with its `unsafe` fields created as
/// well, thus carrying over `unsafe`.
///
/// # Safety
/// Call this exactly once for each thread. See [`TokenCell`] for details.
#[must_use]
pub unsafe fn exclusively_initialize_current_thread_for_scheduling() -> Self {
Self {
// It's very unlikely this is desired to be configurable, like
// `UsageQueueInner::blocked_usages_from_tasks`'s cap.
unblocked_task_queue: VecDeque::with_capacity(1024),
active_task_count: ShortCounter::zero(),
handled_task_count: ShortCounter::zero(),
unblocked_task_count: ShortCounter::zero(),
total_task_count: ShortCounter::zero(),
count_token: unsafe { BlockedUsageCountToken::assume_exclusive_mutating_thread() },
usage_queue_token: unsafe { UsageQueueToken::assume_exclusive_mutating_thread() },
}
}
}
#[cfg(test)]
mod tests {
use {
super::*,
solana_sdk::{
instruction::{AccountMeta, Instruction},
message::Message,
pubkey::Pubkey,
signature::Signer,
signer::keypair::Keypair,
transaction::{SanitizedTransaction, Transaction},
},
std::{cell::RefCell, collections::HashMap, rc::Rc},
};
fn simplest_transaction() -> SanitizedTransaction {
let payer = Keypair::new();
let message = Message::new(&[], Some(&payer.pubkey()));
let unsigned = Transaction::new_unsigned(message);
SanitizedTransaction::from_transaction_for_tests(unsigned)
}
fn transaction_with_readonly_address(address: Pubkey) -> SanitizedTransaction {
let instruction = Instruction {
program_id: Pubkey::default(),
accounts: vec![AccountMeta::new_readonly(address, false)],
data: vec![],
};
let message = Message::new(&[instruction], Some(&Pubkey::new_unique()));
let unsigned = Transaction::new_unsigned(message);
SanitizedTransaction::from_transaction_for_tests(unsigned)
}
fn transaction_with_writable_address(address: Pubkey) -> SanitizedTransaction {
let instruction = Instruction {
program_id: Pubkey::default(),
accounts: vec![AccountMeta::new(address, false)],
data: vec![],
};
let message = Message::new(&[instruction], Some(&Pubkey::new_unique()));
let unsigned = Transaction::new_unsigned(message);
SanitizedTransaction::from_transaction_for_tests(unsigned)
}
fn create_address_loader(
usage_queues: Option<Rc<RefCell<HashMap<Pubkey, UsageQueue>>>>,
) -> impl FnMut(Pubkey) -> UsageQueue {
let usage_queues = usage_queues.unwrap_or_default();
move |address| {
usage_queues
.borrow_mut()
.entry(address)
.or_default()
.clone()
}
}
#[test]
fn test_scheduling_state_machine_creation() {
let state_machine = unsafe {
SchedulingStateMachine::exclusively_initialize_current_thread_for_scheduling()
};
assert_eq!(state_machine.active_task_count(), 0);
assert_eq!(state_machine.total_task_count(), 0);
assert!(state_machine.has_no_active_task());
}
#[test]
fn test_scheduling_state_machine_good_reinitialization() {
let mut state_machine = unsafe {
SchedulingStateMachine::exclusively_initialize_current_thread_for_scheduling()
};
state_machine.total_task_count.increment_self();
assert_eq!(state_machine.total_task_count(), 1);
state_machine.reinitialize();
assert_eq!(state_machine.total_task_count(), 0);
}
#[test]
#[should_panic(expected = "assertion failed: self.has_no_active_task()")]
fn test_scheduling_state_machine_bad_reinitialization() {
let mut state_machine = unsafe {
SchedulingStateMachine::exclusively_initialize_current_thread_for_scheduling()
};
let address_loader = &mut create_address_loader(None);
let task = SchedulingStateMachine::create_task(simplest_transaction(), 3, address_loader);
state_machine.schedule_task(task).unwrap();
state_machine.reinitialize();
}
#[test]
fn test_create_task() {
let sanitized = simplest_transaction();
let task = SchedulingStateMachine::create_task(sanitized.clone(), 3, &mut |_| {
UsageQueue::default()
});
assert_eq!(task.task_index(), 3);
assert_eq!(task.transaction(), &sanitized);
}
#[test]
fn test_non_conflicting_task_related_counts() {
let sanitized = simplest_transaction();
let address_loader = &mut create_address_loader(None);
let task = SchedulingStateMachine::create_task(sanitized.clone(), 3, address_loader);
let mut state_machine = unsafe {
SchedulingStateMachine::exclusively_initialize_current_thread_for_scheduling()
};
let task = state_machine.schedule_task(task).unwrap();
assert_eq!(state_machine.active_task_count(), 1);
assert_eq!(state_machine.total_task_count(), 1);
state_machine.deschedule_task(&task);
assert_eq!(state_machine.active_task_count(), 0);
assert_eq!(state_machine.total_task_count(), 1);
assert!(state_machine.has_no_active_task());
}
#[test]
fn test_conflicting_task_related_counts() {
let sanitized = simplest_transaction();
let address_loader = &mut create_address_loader(None);
let task1 = SchedulingStateMachine::create_task(sanitized.clone(), 101, address_loader);
let task2 = SchedulingStateMachine::create_task(sanitized.clone(), 102, address_loader);
let task3 = SchedulingStateMachine::create_task(sanitized.clone(), 103, address_loader);
let mut state_machine = unsafe {
SchedulingStateMachine::exclusively_initialize_current_thread_for_scheduling()
};
assert_matches!(
state_machine
.schedule_task(task1.clone())
.map(|t| t.task_index()),
Some(101)
);
assert_matches!(state_machine.schedule_task(task2.clone()), None);
state_machine.deschedule_task(&task1);
assert!(state_machine.has_unblocked_task());
assert_eq!(state_machine.unblocked_task_queue_count(), 1);
// unblocked_task_count() should be incremented
assert_eq!(state_machine.unblocked_task_count(), 0);
assert_eq!(
state_machine
.schedule_next_unblocked_task()
.map(|t| t.task_index()),
Some(102)
);
assert_eq!(state_machine.unblocked_task_count(), 1);
// there's no blocked task anymore; calling schedule_next_unblocked_task should be noop and
// shouldn't increment the unblocked_task_count().
assert!(!state_machine.has_unblocked_task());
assert_matches!(state_machine.schedule_next_unblocked_task(), None);
assert_eq!(state_machine.unblocked_task_count(), 1);
assert_eq!(state_machine.unblocked_task_queue_count(), 0);
state_machine.deschedule_task(&task2);
assert_matches!(
state_machine
.schedule_task(task3.clone())
.map(|task| task.task_index()),
Some(103)
);
state_machine.deschedule_task(&task3);
assert!(state_machine.has_no_active_task());
}
#[test]
fn test_existing_blocking_task_then_newly_scheduled_task() {
let sanitized = simplest_transaction();
let address_loader = &mut create_address_loader(None);
let task1 = SchedulingStateMachine::create_task(sanitized.clone(), 101, address_loader);
let task2 = SchedulingStateMachine::create_task(sanitized.clone(), 102, address_loader);
let task3 = SchedulingStateMachine::create_task(sanitized.clone(), 103, address_loader);
let mut state_machine = unsafe {
SchedulingStateMachine::exclusively_initialize_current_thread_for_scheduling()
};
assert_matches!(
state_machine
.schedule_task(task1.clone())
.map(|t| t.task_index()),
Some(101)
);
assert_matches!(state_machine.schedule_task(task2.clone()), None);
assert_eq!(state_machine.unblocked_task_queue_count(), 0);
state_machine.deschedule_task(&task1);
assert_eq!(state_machine.unblocked_task_queue_count(), 1);
// new task is arriving after task1 is already descheduled and task2 got unblocked
assert_matches!(state_machine.schedule_task(task3.clone()), None);
assert_eq!(state_machine.unblocked_task_count(), 0);
assert_matches!(
state_machine
.schedule_next_unblocked_task()
.map(|t| t.task_index()),
Some(102)
);
assert_eq!(state_machine.unblocked_task_count(), 1);
state_machine.deschedule_task(&task2);
assert_matches!(
state_machine
.schedule_next_unblocked_task()
.map(|t| t.task_index()),
Some(103)
);
assert_eq!(state_machine.unblocked_task_count(), 2);
state_machine.deschedule_task(&task3);
assert!(state_machine.has_no_active_task());
}
#[test]
fn test_multiple_readonly_task_and_counts() {
let conflicting_address = Pubkey::new_unique();
let sanitized1 = transaction_with_readonly_address(conflicting_address);
let sanitized2 = transaction_with_readonly_address(conflicting_address);
let address_loader = &mut create_address_loader(None);
let task1 = SchedulingStateMachine::create_task(sanitized1, 101, address_loader);
let task2 = SchedulingStateMachine::create_task(sanitized2, 102, address_loader);
let mut state_machine = unsafe {
SchedulingStateMachine::exclusively_initialize_current_thread_for_scheduling()
};
// both of read-only tasks should be immediately runnable
assert_matches!(
state_machine
.schedule_task(task1.clone())
.map(|t| t.task_index()),
Some(101)
);
assert_matches!(
state_machine
.schedule_task(task2.clone())
.map(|t| t.task_index()),
Some(102)
);
assert_eq!(state_machine.active_task_count(), 2);
assert_eq!(state_machine.handled_task_count(), 0);
assert_eq!(state_machine.unblocked_task_queue_count(), 0);
state_machine.deschedule_task(&task1);
assert_eq!(state_machine.active_task_count(), 1);
assert_eq!(state_machine.handled_task_count(), 1);
assert_eq!(state_machine.unblocked_task_queue_count(), 0);
state_machine.deschedule_task(&task2);
assert_eq!(state_machine.active_task_count(), 0);
assert_eq!(state_machine.handled_task_count(), 2);
assert!(state_machine.has_no_active_task());
}
#[test]
fn test_all_blocking_readable_tasks_block_writable_task() {
let conflicting_address = Pubkey::new_unique();
let sanitized1 = transaction_with_readonly_address(conflicting_address);
let sanitized2 = transaction_with_readonly_address(conflicting_address);
let sanitized3 = transaction_with_writable_address(conflicting_address);
let address_loader = &mut create_address_loader(None);
let task1 = SchedulingStateMachine::create_task(sanitized1, 101, address_loader);
let task2 = SchedulingStateMachine::create_task(sanitized2, 102, address_loader);
let task3 = SchedulingStateMachine::create_task(sanitized3, 103, address_loader);
let mut state_machine = unsafe {
SchedulingStateMachine::exclusively_initialize_current_thread_for_scheduling()
};
assert_matches!(
state_machine
.schedule_task(task1.clone())
.map(|t| t.task_index()),
Some(101)
);
assert_matches!(
state_machine
.schedule_task(task2.clone())
.map(|t| t.task_index()),
Some(102)
);
assert_matches!(state_machine.schedule_task(task3.clone()), None);
assert_eq!(state_machine.active_task_count(), 3);
assert_eq!(state_machine.handled_task_count(), 0);
assert_eq!(state_machine.unblocked_task_queue_count(), 0);
state_machine.deschedule_task(&task1);
assert_eq!(state_machine.active_task_count(), 2);
assert_eq!(state_machine.handled_task_count(), 1);
assert_eq!(state_machine.unblocked_task_queue_count(), 0);
assert_matches!(state_machine.schedule_next_unblocked_task(), None);
state_machine.deschedule_task(&task2);
assert_eq!(state_machine.active_task_count(), 1);
assert_eq!(state_machine.handled_task_count(), 2);
assert_eq!(state_machine.unblocked_task_queue_count(), 1);
// task3 is finally unblocked after all of readable tasks (task1 and task2) is finished.
assert_matches!(
state_machine
.schedule_next_unblocked_task()
.map(|t| t.task_index()),
Some(103)
);
state_machine.deschedule_task(&task3);
assert!(state_machine.has_no_active_task());
}
#[test]
fn test_readonly_then_writable_then_readonly_linearized() {
let conflicting_address = Pubkey::new_unique();
let sanitized1 = transaction_with_readonly_address(conflicting_address);
let sanitized2 = transaction_with_writable_address(conflicting_address);
let sanitized3 = transaction_with_readonly_address(conflicting_address);
let address_loader = &mut create_address_loader(None);
let task1 = SchedulingStateMachine::create_task(sanitized1, 101, address_loader);
let task2 = SchedulingStateMachine::create_task(sanitized2, 102, address_loader);
let task3 = SchedulingStateMachine::create_task(sanitized3, 103, address_loader);
let mut state_machine = unsafe {
SchedulingStateMachine::exclusively_initialize_current_thread_for_scheduling()
};
assert_matches!(
state_machine
.schedule_task(task1.clone())
.map(|t| t.task_index()),
Some(101)
);
assert_matches!(state_machine.schedule_task(task2.clone()), None);
assert_matches!(state_machine.schedule_task(task3.clone()), None);
assert_matches!(state_machine.schedule_next_unblocked_task(), None);
state_machine.deschedule_task(&task1);
assert_matches!(
state_machine
.schedule_next_unblocked_task()
.map(|t| t.task_index()),
Some(102)
);
assert_matches!(state_machine.schedule_next_unblocked_task(), None);
state_machine.deschedule_task(&task2);
assert_matches!(
state_machine
.schedule_next_unblocked_task()
.map(|t| t.task_index()),
Some(103)
);
assert_matches!(state_machine.schedule_next_unblocked_task(), None);
state_machine.deschedule_task(&task3);
assert!(state_machine.has_no_active_task());
}
#[test]
fn test_readonly_then_writable() {
let conflicting_address = Pubkey::new_unique();
let sanitized1 = transaction_with_readonly_address(conflicting_address);
let sanitized2 = transaction_with_writable_address(conflicting_address);
let address_loader = &mut create_address_loader(None);
let task1 = SchedulingStateMachine::create_task(sanitized1, 101, address_loader);
let task2 = SchedulingStateMachine::create_task(sanitized2, 102, address_loader);
let mut state_machine = unsafe {
SchedulingStateMachine::exclusively_initialize_current_thread_for_scheduling()
};
assert_matches!(
state_machine
.schedule_task(task1.clone())
.map(|t| t.task_index()),
Some(101)
);
assert_matches!(state_machine.schedule_task(task2.clone()), None);
// descheduling read-locking task1 should equate to unblocking write-locking task2
state_machine.deschedule_task(&task1);
assert_matches!(
state_machine
.schedule_next_unblocked_task()
.map(|t| t.task_index()),
Some(102)
);
state_machine.deschedule_task(&task2);
assert!(state_machine.has_no_active_task());
}
#[test]
fn test_blocked_tasks_writable_2_readonly_then_writable() {
let conflicting_address = Pubkey::new_unique();
let sanitized1 = transaction_with_writable_address(conflicting_address);
let sanitized2 = transaction_with_readonly_address(conflicting_address);
let sanitized3 = transaction_with_readonly_address(conflicting_address);
let sanitized4 = transaction_with_writable_address(conflicting_address);
let address_loader = &mut create_address_loader(None);
let task1 = SchedulingStateMachine::create_task(sanitized1, 101, address_loader);
let task2 = SchedulingStateMachine::create_task(sanitized2, 102, address_loader);
let task3 = SchedulingStateMachine::create_task(sanitized3, 103, address_loader);
let task4 = SchedulingStateMachine::create_task(sanitized4, 104, address_loader);
let mut state_machine = unsafe {
SchedulingStateMachine::exclusively_initialize_current_thread_for_scheduling()
};
assert_matches!(
state_machine
.schedule_task(task1.clone())
.map(|t| t.task_index()),
Some(101)
);
assert_matches!(state_machine.schedule_task(task2.clone()), None);
assert_matches!(state_machine.schedule_task(task3.clone()), None);
assert_matches!(state_machine.schedule_task(task4.clone()), None);
state_machine.deschedule_task(&task1);
assert_matches!(
state_machine
.schedule_next_unblocked_task()
.map(|t| t.task_index()),
Some(102)
);
assert_matches!(
state_machine
.schedule_next_unblocked_task()
.map(|t| t.task_index()),
Some(103)
);
// the above deschedule_task(task1) call should only unblock task2 and task3 because these
// are read-locking. And shouldn't unblock task4 because it's write-locking
assert_matches!(state_machine.schedule_next_unblocked_task(), None);
state_machine.deschedule_task(&task2);
// still task4 is blocked...
assert_matches!(state_machine.schedule_next_unblocked_task(), None);
state_machine.deschedule_task(&task3);
// finally task4 should be unblocked
assert_matches!(
state_machine
.schedule_next_unblocked_task()
.map(|t| t.task_index()),
Some(104)
);
state_machine.deschedule_task(&task4);
assert!(state_machine.has_no_active_task());
}
#[test]
fn test_gradual_locking() {
let conflicting_address = Pubkey::new_unique();
let sanitized1 = transaction_with_writable_address(conflicting_address);
let sanitized2 = transaction_with_writable_address(conflicting_address);
let usage_queues = Rc::new(RefCell::new(HashMap::new()));
let address_loader = &mut create_address_loader(Some(usage_queues.clone()));
let task1 = SchedulingStateMachine::create_task(sanitized1, 101, address_loader);
let task2 = SchedulingStateMachine::create_task(sanitized2, 102, address_loader);
let mut state_machine = unsafe {
SchedulingStateMachine::exclusively_initialize_current_thread_for_scheduling()
};
assert_matches!(
state_machine
.schedule_task(task1.clone())
.map(|t| t.task_index()),
Some(101)
);
assert_matches!(state_machine.schedule_task(task2.clone()), None);
let usage_queues = usage_queues.borrow_mut();
let usage_queue = usage_queues.get(&conflicting_address).unwrap();
usage_queue
.0
.with_borrow_mut(&mut state_machine.usage_queue_token, |usage_queue| {
assert_matches!(usage_queue.current_usage, Some(Usage::Writable));
});
// task2's fee payer should have been locked already even if task2 is blocked still via the
// above the schedule_task(task2) call
let fee_payer = task2.transaction().message().fee_payer();
let usage_queue = usage_queues.get(fee_payer).unwrap();
usage_queue
.0
.with_borrow_mut(&mut state_machine.usage_queue_token, |usage_queue| {
assert_matches!(usage_queue.current_usage, Some(Usage::Writable));
});
state_machine.deschedule_task(&task1);
assert_matches!(
state_machine
.schedule_next_unblocked_task()
.map(|t| t.task_index()),
Some(102)
);
state_machine.deschedule_task(&task2);
assert!(state_machine.has_no_active_task());
}
#[test]
#[should_panic(expected = "internal error: entered unreachable code")]
fn test_unreachable_unlock_conditions1() {
let mut state_machine = unsafe {
SchedulingStateMachine::exclusively_initialize_current_thread_for_scheduling()
};
let usage_queue = UsageQueue::default();
usage_queue
.0
.with_borrow_mut(&mut state_machine.usage_queue_token, |usage_queue| {
let _ = usage_queue.unlock(RequestedUsage::Writable);
});
}
#[test]
#[should_panic(expected = "internal error: entered unreachable code")]
fn test_unreachable_unlock_conditions2() {
let mut state_machine = unsafe {
SchedulingStateMachine::exclusively_initialize_current_thread_for_scheduling()
};
let usage_queue = UsageQueue::default();
usage_queue
.0
.with_borrow_mut(&mut state_machine.usage_queue_token, |usage_queue| {
usage_queue.current_usage = Some(Usage::Writable);
let _ = usage_queue.unlock(RequestedUsage::Readonly);
});
}
#[test]
#[should_panic(expected = "internal error: entered unreachable code")]
fn test_unreachable_unlock_conditions3() {
let mut state_machine = unsafe {
SchedulingStateMachine::exclusively_initialize_current_thread_for_scheduling()
};
let usage_queue = UsageQueue::default();
usage_queue
.0
.with_borrow_mut(&mut state_machine.usage_queue_token, |usage_queue| {
usage_queue.current_usage = Some(Usage::Readonly(ShortCounter::one()));
let _ = usage_queue.unlock(RequestedUsage::Writable);
});
}
}