solana_zk_token_sdk/encryption/
auth_encryption.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
//! Authenticated encryption implementation.
//!
//! This module is a simple wrapper of the `Aes128GcmSiv` implementation specialized for SPL
//! token-2022 where the plaintext is always `u64`.
use {
    crate::errors::AuthenticatedEncryptionError,
    base64::{prelude::BASE64_STANDARD, Engine},
    sha3::{Digest, Sha3_512},
    solana_derivation_path::DerivationPath,
    solana_sdk::{
        signature::Signature,
        signer::{
            keypair::generate_seed_from_seed_phrase_and_passphrase, EncodableKey, SeedDerivable,
            Signer, SignerError,
        },
    },
    std::{
        convert::TryInto,
        error, fmt,
        io::{Read, Write},
    },
    subtle::ConstantTimeEq,
    zeroize::Zeroize,
};
#[cfg(not(target_os = "solana"))]
use {
    aes_gcm_siv::{
        aead::{Aead, KeyInit},
        Aes128GcmSiv,
    },
    rand::{rngs::OsRng, Rng},
};

/// Byte length of an authenticated encryption secret key
pub const AE_KEY_LEN: usize = 16;

/// Byte length of an authenticated encryption nonce component
const NONCE_LEN: usize = 12;

/// Byte lenth of an authenticated encryption ciphertext component
const CIPHERTEXT_LEN: usize = 24;

/// Byte length of a complete authenticated encryption ciphertext component that includes the
/// ciphertext and nonce components
const AE_CIPHERTEXT_LEN: usize = 36;

struct AuthenticatedEncryption;
impl AuthenticatedEncryption {
    /// Generates an authenticated encryption key.
    ///
    /// This function is randomized. It internally samples a 128-bit key using `OsRng`.
    #[cfg(not(target_os = "solana"))]
    fn keygen() -> AeKey {
        AeKey(OsRng.gen::<[u8; AE_KEY_LEN]>())
    }

    /// On input of an authenticated encryption key and an amount, the function returns a
    /// corresponding authenticated encryption ciphertext.
    #[cfg(not(target_os = "solana"))]
    fn encrypt(key: &AeKey, balance: u64) -> AeCiphertext {
        let mut plaintext = balance.to_le_bytes();
        let nonce: Nonce = OsRng.gen::<[u8; NONCE_LEN]>();

        // The balance and the nonce have fixed length and therefore, encryption should not fail.
        let ciphertext = Aes128GcmSiv::new(&key.0.into())
            .encrypt(&nonce.into(), plaintext.as_ref())
            .expect("authenticated encryption");

        plaintext.zeroize();

        AeCiphertext {
            nonce,
            ciphertext: ciphertext.try_into().unwrap(),
        }
    }

    /// On input of an authenticated encryption key and a ciphertext, the function returns the
    /// originally encrypted amount.
    #[cfg(not(target_os = "solana"))]
    fn decrypt(key: &AeKey, ciphertext: &AeCiphertext) -> Option<u64> {
        let plaintext = Aes128GcmSiv::new(&key.0.into())
            .decrypt(&ciphertext.nonce.into(), ciphertext.ciphertext.as_ref());

        if let Ok(plaintext) = plaintext {
            let amount_bytes: [u8; 8] = plaintext.try_into().unwrap();
            Some(u64::from_le_bytes(amount_bytes))
        } else {
            None
        }
    }
}

#[derive(Debug, Zeroize, Eq, PartialEq)]
pub struct AeKey([u8; AE_KEY_LEN]);
impl AeKey {
    /// Deterministically derives an authenticated encryption key from a Solana signer and a public
    /// seed.
    ///
    /// This function exists for applications where a user may not wish to maintain a Solana signer
    /// and an authenticated encryption key separately. Instead, a user can derive the ElGamal
    /// keypair on-the-fly whenever encrytion/decryption is needed.
    pub fn new_from_signer(
        signer: &dyn Signer,
        public_seed: &[u8],
    ) -> Result<Self, Box<dyn error::Error>> {
        let seed = Self::seed_from_signer(signer, public_seed)?;
        Self::from_seed(&seed)
    }

    /// Derive a seed from a Solana signer used to generate an authenticated encryption key.
    ///
    /// The seed is derived as the hash of the signature of a public seed.
    pub fn seed_from_signer(
        signer: &dyn Signer,
        public_seed: &[u8],
    ) -> Result<Vec<u8>, SignerError> {
        let message = [b"AeKey", public_seed].concat();
        let signature = signer.try_sign_message(&message)?;

        // Some `Signer` implementations return the default signature, which is not suitable for
        // use as key material
        if bool::from(signature.as_ref().ct_eq(Signature::default().as_ref())) {
            return Err(SignerError::Custom("Rejecting default signature".into()));
        }

        let mut hasher = Sha3_512::new();
        hasher.update(signature.as_ref());
        let result = hasher.finalize();

        Ok(result.to_vec())
    }

    /// Generates a random authenticated encryption key.
    ///
    /// This function is randomized. It internally samples a scalar element using `OsRng`.
    pub fn new_rand() -> Self {
        AuthenticatedEncryption::keygen()
    }

    /// Encrypts an amount under the authenticated encryption key.
    pub fn encrypt(&self, amount: u64) -> AeCiphertext {
        AuthenticatedEncryption::encrypt(self, amount)
    }

    pub fn decrypt(&self, ciphertext: &AeCiphertext) -> Option<u64> {
        AuthenticatedEncryption::decrypt(self, ciphertext)
    }
}

impl EncodableKey for AeKey {
    fn read<R: Read>(reader: &mut R) -> Result<Self, Box<dyn error::Error>> {
        let bytes: [u8; AE_KEY_LEN] = serde_json::from_reader(reader)?;
        Ok(Self(bytes))
    }

    fn write<W: Write>(&self, writer: &mut W) -> Result<String, Box<dyn error::Error>> {
        let bytes = self.0;
        let json = serde_json::to_string(&bytes.to_vec())?;
        writer.write_all(&json.clone().into_bytes())?;
        Ok(json)
    }
}

impl SeedDerivable for AeKey {
    fn from_seed(seed: &[u8]) -> Result<Self, Box<dyn error::Error>> {
        const MINIMUM_SEED_LEN: usize = AE_KEY_LEN;
        const MAXIMUM_SEED_LEN: usize = 65535;

        if seed.len() < MINIMUM_SEED_LEN {
            return Err(AuthenticatedEncryptionError::SeedLengthTooShort.into());
        }
        if seed.len() > MAXIMUM_SEED_LEN {
            return Err(AuthenticatedEncryptionError::SeedLengthTooLong.into());
        }

        let mut hasher = Sha3_512::new();
        hasher.update(seed);
        let result = hasher.finalize();

        Ok(Self(result[..AE_KEY_LEN].try_into()?))
    }

    fn from_seed_and_derivation_path(
        _seed: &[u8],
        _derivation_path: Option<DerivationPath>,
    ) -> Result<Self, Box<dyn error::Error>> {
        Err(AuthenticatedEncryptionError::DerivationMethodNotSupported.into())
    }

    fn from_seed_phrase_and_passphrase(
        seed_phrase: &str,
        passphrase: &str,
    ) -> Result<Self, Box<dyn error::Error>> {
        Self::from_seed(&generate_seed_from_seed_phrase_and_passphrase(
            seed_phrase,
            passphrase,
        ))
    }
}

impl From<[u8; AE_KEY_LEN]> for AeKey {
    fn from(bytes: [u8; AE_KEY_LEN]) -> Self {
        Self(bytes)
    }
}

impl From<AeKey> for [u8; AE_KEY_LEN] {
    fn from(key: AeKey) -> Self {
        key.0
    }
}

impl TryFrom<&[u8]> for AeKey {
    type Error = AuthenticatedEncryptionError;
    fn try_from(bytes: &[u8]) -> Result<Self, Self::Error> {
        if bytes.len() != AE_KEY_LEN {
            return Err(AuthenticatedEncryptionError::Deserialization);
        }
        bytes
            .try_into()
            .map(Self)
            .map_err(|_| AuthenticatedEncryptionError::Deserialization)
    }
}

/// For the purpose of encrypting balances for the spl token accounts, the nonce and ciphertext
/// sizes should always be fixed.
type Nonce = [u8; NONCE_LEN];
type Ciphertext = [u8; CIPHERTEXT_LEN];

/// Authenticated encryption nonce and ciphertext
#[derive(Debug, Default, Clone)]
pub struct AeCiphertext {
    nonce: Nonce,
    ciphertext: Ciphertext,
}
impl AeCiphertext {
    pub fn decrypt(&self, key: &AeKey) -> Option<u64> {
        AuthenticatedEncryption::decrypt(key, self)
    }

    pub fn to_bytes(&self) -> [u8; AE_CIPHERTEXT_LEN] {
        let mut buf = [0_u8; AE_CIPHERTEXT_LEN];
        buf[..NONCE_LEN].copy_from_slice(&self.nonce);
        buf[NONCE_LEN..].copy_from_slice(&self.ciphertext);
        buf
    }

    pub fn from_bytes(bytes: &[u8]) -> Option<AeCiphertext> {
        if bytes.len() != AE_CIPHERTEXT_LEN {
            return None;
        }

        let nonce = bytes[..NONCE_LEN].try_into().ok()?;
        let ciphertext = bytes[NONCE_LEN..].try_into().ok()?;

        Some(AeCiphertext { nonce, ciphertext })
    }
}

impl fmt::Display for AeCiphertext {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", BASE64_STANDARD.encode(self.to_bytes()))
    }
}

#[cfg(test)]
mod tests {
    use {
        super::*,
        solana_sdk::{pubkey::Pubkey, signature::Keypair, signer::null_signer::NullSigner},
    };

    #[test]
    fn test_aes_encrypt_decrypt_correctness() {
        let key = AeKey::new_rand();
        let amount = 55;

        let ciphertext = key.encrypt(amount);
        let decrypted_amount = ciphertext.decrypt(&key).unwrap();

        assert_eq!(amount, decrypted_amount);
    }

    #[test]
    fn test_aes_new() {
        let keypair1 = Keypair::new();
        let keypair2 = Keypair::new();

        assert_ne!(
            AeKey::new_from_signer(&keypair1, Pubkey::default().as_ref())
                .unwrap()
                .0,
            AeKey::new_from_signer(&keypair2, Pubkey::default().as_ref())
                .unwrap()
                .0,
        );

        let null_signer = NullSigner::new(&Pubkey::default());
        assert!(AeKey::new_from_signer(&null_signer, Pubkey::default().as_ref()).is_err());
    }

    #[test]
    fn test_aes_key_from_seed() {
        let good_seed = vec![0; 32];
        assert!(AeKey::from_seed(&good_seed).is_ok());

        let too_short_seed = vec![0; 15];
        assert!(AeKey::from_seed(&too_short_seed).is_err());

        let too_long_seed = vec![0; 65536];
        assert!(AeKey::from_seed(&too_long_seed).is_err());
    }

    #[test]
    fn test_aes_key_from() {
        let key = AeKey::from_seed(&[0; 32]).unwrap();
        let key_bytes: [u8; AE_KEY_LEN] = AeKey::from_seed(&[0; 32]).unwrap().into();

        assert_eq!(key, AeKey::from(key_bytes));
    }

    #[test]
    fn test_aes_key_try_from() {
        let key = AeKey::from_seed(&[0; 32]).unwrap();
        let key_bytes: [u8; AE_KEY_LEN] = AeKey::from_seed(&[0; 32]).unwrap().into();

        assert_eq!(key, AeKey::try_from(key_bytes.as_slice()).unwrap());
    }

    #[test]
    fn test_aes_key_try_from_error() {
        let too_many_bytes = vec![0_u8; 32];
        assert!(AeKey::try_from(too_many_bytes.as_slice()).is_err());
    }
}