logo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
#![allow(clippy::integer_arithmetic)]
// Copyright 2015 Big Switch Networks, Inc
//      (Algorithms for uBPF syscalls, originally in C)
// Copyright 2016 6WIND S.A. <quentin.monnet@6wind.com>
//      (Translation to Rust, other syscalls)
//
// Licensed under the Apache License, Version 2.0 <http://www.apache.org/licenses/LICENSE-2.0> or
// the MIT license <http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

//! This module implements some built-in syscalls that can be called from within an eBPF program.
//!
//! These syscalls may originate from several places:
//!
//! * Some of them mimic the syscalls available in the Linux kernel.
//! * Some of them were proposed as example syscalls in uBPF and they were adapted here.
//! * Other syscalls may be specific to rbpf.
//!
//! The prototype for syscalls is always the same: five `u64` as arguments, and a `u64` as a return
//! value. Hence some syscalls have unused arguments, or return a 0 value in all cases, in order to
//! respect this convention.

use crate::{
    error::EbpfError,
    memory_region::{AccessType, MemoryMapping},
    question_mark,
    user_error::UserError,
    vm::SyscallObject,
};
use std::{slice::from_raw_parts, str::from_utf8, u64};

/// Test syscall context
pub type BpfSyscallContext = u64;

/// Return type of syscalls
pub type Result = std::result::Result<u64, EbpfError<UserError>>;

// bpf_trace_printk()

/// Index of syscall `bpf_trace_printk()`, equivalent to `bpf_trace_printf`, in Linux kernel, see
/// <https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/include/uapi/linux/bpf.h>.
pub const BPF_TRACE_PRINTK_IDX: u32 = 6;

/// Prints its **last three** arguments to standard output. The **first two** arguments are
/// **unused**. Returns the number of bytes written.
///
/// By ignoring the first two arguments, it creates a syscall that will have a behavior similar to
/// the one of the equivalent syscall `bpf_trace_printk()` from Linux kernel.
///
/// # Examples
///
/// ```
/// use solana_rbpf::syscalls::{BpfTracePrintf, Result};
/// use solana_rbpf::memory_region::{MemoryRegion, MemoryMapping};
/// use solana_rbpf::vm::{Config, SyscallObject};
/// use solana_rbpf::user_error::UserError;
///
/// let mut result: Result = Ok(0);
/// let config = Config::default();
/// let mut memory_mapping = MemoryMapping::new::<UserError>(vec![], &config).unwrap();
/// BpfTracePrintf::call(&mut BpfTracePrintf {}, 0, 0, 1, 15, 32, &mut memory_mapping, &mut result);
/// assert_eq!(result.unwrap() as usize, "BpfTracePrintf: 0x1, 0xf, 0x20\n".len());
/// ```
///
/// This will print `BpfTracePrintf: 0x1, 0xf, 0x20`.
///
/// The eBPF code needed to perform the call in this example would be nearly identical to the code
/// obtained by compiling the following code from C to eBPF with clang:
///
/// ```c
/// #include <linux/bpf.h>
/// #include "path/to/linux/samples/bpf/bpf_syscalls.h"
///
/// int main(struct __sk_buff *skb)
/// {
///     // Only %d %u %x %ld %lu %lx %lld %llu %llx %p %s conversion specifiers allowed.
///     // See <https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/kernel/trace/bpf_trace.c>.
///     char *fmt = "bpf_trace_printk %llx, %llx, %llx\n";
///     return bpf_trace_printk(fmt, sizeof(fmt), 1, 15, 32);
/// }
/// ```
///
/// This would equally print the three numbers in `/sys/kernel/debug/tracing` file each time the
/// program is run.
pub struct BpfTracePrintf {}
impl BpfTracePrintf {
    /// new
    pub fn init<C, E>(_unused: C) -> Box<dyn SyscallObject<UserError>> {
        Box::new(Self {})
    }
}
impl SyscallObject<UserError> for BpfTracePrintf {
    fn call(
        &mut self,
        _arg1: u64,
        _arg2: u64,
        arg3: u64,
        arg4: u64,
        arg5: u64,
        _memory_mapping: &mut MemoryMapping,
        result: &mut Result,
    ) {
        println!("BpfTracePrintf: {:#x}, {:#x}, {:#x}", arg3, arg4, arg5);
        let size_arg = |x| {
            if x == 0 {
                1
            } else {
                (x as f64).log(16.0).floor() as u64 + 1
            }
        };
        *result = Result::Ok(
            "BpfTracePrintf: 0x, 0x, 0x\n".len() as u64
                + size_arg(arg3)
                + size_arg(arg4)
                + size_arg(arg5),
        );
    }
}

// syscalls coming from uBPF <https://github.com/iovisor/ubpf/blob/master/vm/test.c>

/// The idea is to assemble five bytes into a single `u64`. For compatibility with the syscalls API,
/// each argument must be a `u64`.
///
/// # Examples
///
/// ```
/// use solana_rbpf::syscalls::{BpfGatherBytes, Result};
/// use solana_rbpf::memory_region::{MemoryRegion, MemoryMapping};
/// use solana_rbpf::vm::{Config, SyscallObject};
/// use solana_rbpf::user_error::UserError;
///
/// let mut result: Result = Ok(0);
/// let config = Config::default();
/// let mut memory_mapping = MemoryMapping::new::<UserError>(vec![], &config).unwrap();
/// BpfGatherBytes::call(&mut BpfGatherBytes {}, 0x11, 0x22, 0x33, 0x44, 0x55, &mut memory_mapping, &mut result);
/// assert_eq!(result.unwrap(), 0x1122334455);
/// ```
pub struct BpfGatherBytes {}
impl BpfGatherBytes {
    /// new
    pub fn init<C, E>(_unused: C) -> Box<dyn SyscallObject<UserError>> {
        Box::new(Self {})
    }
}
impl SyscallObject<UserError> for BpfGatherBytes {
    fn call(
        &mut self,
        arg1: u64,
        arg2: u64,
        arg3: u64,
        arg4: u64,
        arg5: u64,
        _memory_mapping: &mut MemoryMapping,
        result: &mut Result,
    ) {
        *result = Result::Ok(
            arg1.wrapping_shl(32)
                | arg2.wrapping_shl(24)
                | arg3.wrapping_shl(16)
                | arg4.wrapping_shl(8)
                | arg5,
        );
    }
}

/// Same as `void *memfrob(void *s, size_t n);` in `string.h` in C. See the GNU manual page (in
/// section 3) for `memfrob`. The memory is directly modified, and the syscall returns 0 in all
/// cases. Arguments 3 to 5 are unused.
///
/// # Examples
///
/// ```
/// use solana_rbpf::syscalls::{BpfMemFrob, Result};
/// use solana_rbpf::memory_region::{MemoryRegion, MemoryMapping};
/// use solana_rbpf::vm::{Config, SyscallObject};
/// use solana_rbpf::user_error::UserError;
///
/// let mut val = &mut [0x00, 0x00, 0x00, 0x00, 0x00, 0x11, 0x22, 0x33];
/// let val_va = 0x100000000;
///
/// let mut result: Result = Ok(0);
/// let config = Config::default();
/// let mut memory_mapping = MemoryMapping::new::<UserError>(vec![MemoryRegion::default(), MemoryRegion::new_writable(val, val_va)], &config).unwrap();
/// BpfMemFrob::call(&mut BpfMemFrob {}, val_va, 8, 0, 0, 0, &mut memory_mapping, &mut result);
/// assert_eq!(val, &[0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x3b, 0x08, 0x19]);
/// BpfMemFrob::call(&mut BpfMemFrob {}, val_va, 8, 0, 0, 0, &mut memory_mapping, &mut result);
/// assert_eq!(val, &[0x00, 0x00, 0x00, 0x00, 0x00, 0x11, 0x22, 0x33]);
/// ```
pub struct BpfMemFrob {}
impl BpfMemFrob {
    /// new
    pub fn init<C, E>(_unused: C) -> Box<dyn SyscallObject<UserError>> {
        Box::new(Self {})
    }
}
impl SyscallObject<UserError> for BpfMemFrob {
    fn call(
        &mut self,
        vm_addr: u64,
        len: u64,
        _arg3: u64,
        _arg4: u64,
        _arg5: u64,
        memory_mapping: &mut MemoryMapping,
        result: &mut Result,
    ) {
        let host_addr = question_mark!(memory_mapping.map(AccessType::Store, vm_addr, len), result);
        for i in 0..len {
            unsafe {
                let p = (host_addr + i) as *mut u8;
                *p ^= 0b101010;
            }
        }
        *result = Result::Ok(0);
    }
}

/// C-like `strcmp`, return 0 if the strings are equal, and a non-null value otherwise.
///
/// # Examples
///
/// ```
/// use solana_rbpf::syscalls::{BpfStrCmp, Result};
/// use solana_rbpf::memory_region::{MemoryRegion, MemoryMapping};
/// use solana_rbpf::vm::{Config, SyscallObject};
///
/// let foo = "This is a string.";
/// let bar = "This is another sting.";
/// let va_foo = 0x100000000;
/// let va_bar = 0x200000000;
/// use solana_rbpf::user_error::UserError;
///
/// let mut result: Result = Ok(0);
/// let config = Config::default();
/// let mut memory_mapping = MemoryMapping::new::<UserError>(vec![MemoryRegion::default(), MemoryRegion::new_readonly(foo.as_bytes(), va_foo)], &config).unwrap();
/// BpfStrCmp::call(&mut BpfStrCmp {}, va_foo, va_foo, 0, 0, 0, &mut memory_mapping, &mut result);
/// assert!(result.unwrap() == 0);
/// let mut result: Result = Ok(0);
/// let mut memory_mapping = MemoryMapping::new::<UserError>(vec![MemoryRegion::default(), MemoryRegion::new_readonly(foo.as_bytes(), va_foo), MemoryRegion::new_readonly(bar.as_bytes(), va_bar)], &config).unwrap();
/// BpfStrCmp::call(&mut BpfStrCmp {}, va_foo, va_bar, 0, 0, 0, &mut memory_mapping, &mut result);
/// assert!(result.unwrap() != 0);
/// ```
pub struct BpfStrCmp {}
impl BpfStrCmp {
    /// new
    pub fn init<C, E>(_unused: C) -> Box<dyn SyscallObject<UserError>> {
        Box::new(Self {})
    }
}
impl SyscallObject<UserError> for BpfStrCmp {
    fn call(
        &mut self,
        arg1: u64,
        arg2: u64,
        _arg3: u64,
        _arg4: u64,
        _arg5: u64,
        memory_mapping: &mut MemoryMapping,
        result: &mut Result,
    ) {
        // C-like strcmp, maybe shorter than converting the bytes to string and comparing?
        if arg1 == 0 || arg2 == 0 {
            *result = Result::Ok(u64::MAX);
            return;
        }
        let mut a = question_mark!(memory_mapping.map(AccessType::Load, arg1, 1), result);
        let mut b = question_mark!(memory_mapping.map(AccessType::Load, arg2, 1), result);
        unsafe {
            let mut a_val = *(a as *const u8);
            let mut b_val = *(b as *const u8);
            while a_val == b_val && a_val != 0 && b_val != 0 {
                a += 1;
                b += 1;
                a_val = *(a as *const u8);
                b_val = *(b as *const u8);
            }
            *result = if a_val >= b_val {
                Result::Ok((a_val - b_val) as u64)
            } else {
                Result::Ok((b_val - a_val) as u64)
            };
        }
    }
}

// Some additional syscalls

/// Prints a NULL-terminated UTF-8 string.
pub struct BpfSyscallString {}
impl BpfSyscallString {
    /// new
    pub fn init<C, E>(_unused: C) -> Box<dyn SyscallObject<UserError>> {
        Box::new(Self {})
    }
}
impl SyscallObject<UserError> for BpfSyscallString {
    fn call(
        &mut self,
        vm_addr: u64,
        len: u64,
        _arg3: u64,
        _arg4: u64,
        _arg5: u64,
        memory_mapping: &mut MemoryMapping,
        result: &mut Result,
    ) {
        let host_addr = question_mark!(memory_mapping.map(AccessType::Load, vm_addr, len), result);
        let c_buf: *const i8 = host_addr as *const i8;
        unsafe {
            for i in 0..len {
                let c = std::ptr::read(c_buf.offset(i as isize));
                if c == 0 {
                    break;
                }
            }
            let message = from_utf8(from_raw_parts(host_addr as *const u8, len as usize))
                .unwrap_or("Invalid UTF-8 String");
            println!("log: {}", message);
        }
        *result = Result::Ok(0);
    }
}

/// Prints the five arguments formated as u64 in decimal.
pub struct BpfSyscallU64 {}
impl BpfSyscallU64 {
    /// new
    pub fn init<C, E>(_unused: C) -> Box<dyn SyscallObject<UserError>> {
        Box::new(Self {})
    }
}
impl SyscallObject<UserError> for BpfSyscallU64 {
    fn call(
        &mut self,
        arg1: u64,
        arg2: u64,
        arg3: u64,
        arg4: u64,
        arg5: u64,
        memory_mapping: &mut MemoryMapping,
        result: &mut Result,
    ) {
        println!(
            "dump_64: {:#x}, {:#x}, {:#x}, {:#x}, {:#x}, {:?}",
            arg1, arg2, arg3, arg4, arg5, memory_mapping as *const _
        );
        *result = Result::Ok(0);
    }
}

/// Example of a syscall with internal state.
pub struct SyscallWithContext {
    /// Mutable state
    pub context: BpfSyscallContext,
}
impl SyscallWithContext {
    /// new
    pub fn init<C, E>(context: BpfSyscallContext) -> Box<dyn SyscallObject<UserError>> {
        Box::new(Self { context })
    }
}
impl SyscallObject<UserError> for SyscallWithContext {
    fn call(
        &mut self,
        arg1: u64,
        arg2: u64,
        arg3: u64,
        arg4: u64,
        arg5: u64,
        memory_mapping: &mut MemoryMapping,
        result: &mut Result,
    ) {
        println!(
            "SyscallWithContext: {:?}, {:#x}, {:#x}, {:#x}, {:#x}, {:#x}, {:?}",
            self as *const _, arg1, arg2, arg3, arg4, arg5, memory_mapping as *const _
        );
        assert_eq!(self.context, 42);
        self.context = 84;
        *result = Result::Ok(0);
    }
}