soroban_sdk/crypto.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
//! Crypto contains functions for cryptographic functions.
use crate::{
env::internal::{self, BytesObject},
unwrap::UnwrapInfallible,
Bytes, BytesN, ConversionError, Env, IntoVal, TryFromVal, Val,
};
pub mod bls12_381;
/// A `BytesN<N>` generated by a cryptographic hash function.
///
/// The `Hash<N>` type contains a `BytesN<N>` and can only be constructed in
/// contexts where the value has been generated by a secure cryptographic
/// function. As a result, the type is only found as a return value of calling
/// [`sha256`][Crypto::sha256], [`keccak256`][Crypto::keccak256], or via
/// implementing [`CustomAccountInterface`][crate::auth::CustomAccountInterface]
/// since the `__check_auth` is guaranteed to receive a hash from a secure
/// cryptographic hash function as its first parameter.
///
/// **__Note:_** A Hash should not be used with storage, since no guarantee can
/// be made about the Bytes stored as to whether they were in fact from a secure
/// cryptographic hash function.
#[derive(Clone)]
#[repr(transparent)]
pub struct Hash<const N: usize>(BytesN<N>);
impl<const N: usize> Hash<N> {
/// Constructs a new `Hash` from a fixed-length bytes array.
///
/// This is intended for test-only, since `Hash` type is only meant to be
/// constructed via secure manners.
#[cfg(test)]
pub(crate) fn from_bytes(bytes: BytesN<N>) -> Self {
Self(bytes)
}
/// Returns a [`BytesN`] containing the bytes in this hash.
#[inline(always)]
pub fn to_bytes(&self) -> BytesN<N> {
self.0.clone()
}
/// Returns an array containing the bytes in this hash.
#[inline(always)]
pub fn to_array(&self) -> [u8; N] {
self.0.to_array()
}
pub fn as_val(&self) -> &Val {
self.0.as_val()
}
pub fn to_val(&self) -> Val {
self.0.to_val()
}
pub fn as_object(&self) -> &BytesObject {
self.0.as_object()
}
pub fn to_object(&self) -> BytesObject {
self.0.to_object()
}
}
impl<const N: usize> IntoVal<Env, Val> for Hash<N> {
fn into_val(&self, e: &Env) -> Val {
self.0.into_val(e)
}
}
impl<const N: usize> IntoVal<Env, BytesN<N>> for Hash<N> {
fn into_val(&self, _e: &Env) -> BytesN<N> {
self.0.clone()
}
}
impl<const N: usize> From<Hash<N>> for Bytes {
fn from(v: Hash<N>) -> Self {
v.0.into()
}
}
impl<const N: usize> From<Hash<N>> for BytesN<N> {
fn from(v: Hash<N>) -> Self {
v.0
}
}
impl<const N: usize> Into<[u8; N]> for Hash<N> {
fn into(self) -> [u8; N] {
self.0.into()
}
}
#[allow(deprecated)]
impl<const N: usize> crate::TryFromValForContractFn<Env, Val> for Hash<N> {
type Error = ConversionError;
fn try_from_val_for_contract_fn(env: &Env, v: &Val) -> Result<Self, Self::Error> {
Ok(Hash(BytesN::<N>::try_from_val(env, v)?))
}
}
/// Crypto provides access to cryptographic functions.
pub struct Crypto {
env: Env,
}
impl Crypto {
pub(crate) fn new(env: &Env) -> Crypto {
Crypto { env: env.clone() }
}
pub fn env(&self) -> &Env {
&self.env
}
/// Returns the SHA-256 hash of the data.
pub fn sha256(&self, data: &Bytes) -> Hash<32> {
let env = self.env();
let bin = internal::Env::compute_hash_sha256(env, data.into()).unwrap_infallible();
unsafe { Hash(BytesN::unchecked_new(env.clone(), bin)) }
}
/// Returns the Keccak-256 hash of the data.
pub fn keccak256(&self, data: &Bytes) -> Hash<32> {
let env = self.env();
let bin = internal::Env::compute_hash_keccak256(env, data.into()).unwrap_infallible();
unsafe { Hash(BytesN::unchecked_new(env.clone(), bin)) }
}
/// Verifies an ed25519 signature.
///
/// The signature is verified as a valid signature of the message by the
/// ed25519 public key.
///
/// ### Panics
///
/// If the signature verification fails.
pub fn ed25519_verify(&self, public_key: &BytesN<32>, message: &Bytes, signature: &BytesN<64>) {
let env = self.env();
let _ = internal::Env::verify_sig_ed25519(
env,
public_key.to_object(),
message.to_object(),
signature.to_object(),
);
}
/// Recovers the ECDSA secp256k1 public key.
///
/// The public key returned is the SEC-1-encoded ECDSA secp256k1 public key
/// that produced the 64-byte signature over a given 32-byte message digest,
/// for a given recovery_id byte.
pub fn secp256k1_recover(
&self,
message_digest: &Hash<32>,
signature: &BytesN<64>,
recorvery_id: u32,
) -> BytesN<65> {
let env = self.env();
CryptoHazmat::new(env).secp256k1_recover(&message_digest.0, signature, recorvery_id)
}
/// Verifies the ECDSA secp256r1 signature.
///
/// The SEC-1-encoded public key is provided along with the message,
/// verifies the 64-byte signature.
pub fn secp256r1_verify(
&self,
public_key: &BytesN<65>,
message_digest: &Hash<32>,
signature: &BytesN<64>,
) {
let env = self.env();
CryptoHazmat::new(env).secp256r1_verify(public_key, &message_digest.0, signature)
}
/// Get a [Bls12_381][bls12_381::Bls12_381] for accessing the bls12-381
/// functions.
pub fn bls12_381(&self) -> bls12_381::Bls12_381 {
bls12_381::Bls12_381::new(self.env())
}
}
/// # ⚠️ Hazardous Materials
///
/// Cryptographic functions under [CryptoHazmat] are low-leveled which can be
/// insecure if misused. They are not generally recommended. Using them
/// incorrectly can introduce security vulnerabilities. Please use [Crypto] if
/// possible.
#[cfg(any(test, feature = "hazmat"))]
#[cfg_attr(feature = "docs", doc(cfg(feature = "hazmat")))]
pub struct CryptoHazmat {
env: Env,
}
#[cfg(not(any(test, feature = "hazmat")))]
pub(crate) struct CryptoHazmat {
env: Env,
}
impl CryptoHazmat {
pub(crate) fn new(env: &Env) -> CryptoHazmat {
CryptoHazmat { env: env.clone() }
}
pub fn env(&self) -> &Env {
&self.env
}
/// Recovers the ECDSA secp256k1 public key.
///
/// The public key returned is the SEC-1-encoded ECDSA secp256k1 public key
/// that produced the 64-byte signature over a given 32-byte message digest,
/// for a given recovery_id byte.
///
/// WARNING: The `message_digest` must be produced by a secure cryptographic
/// hash function on the message, otherwise the attacker can potentially
/// forge signatures.
pub fn secp256k1_recover(
&self,
message_digest: &BytesN<32>,
signature: &BytesN<64>,
recorvery_id: u32,
) -> BytesN<65> {
let env = self.env();
let bytes = internal::Env::recover_key_ecdsa_secp256k1(
env,
message_digest.to_object(),
signature.to_object(),
recorvery_id.into(),
)
.unwrap_infallible();
unsafe { BytesN::unchecked_new(env.clone(), bytes) }
}
/// Verifies the ECDSA secp256r1 signature.
///
/// The SEC-1-encoded public key is provided along with a 32-byte message
/// digest, verifies the 64-byte signature.
///
/// WARNING: The `message_digest` must be produced by a secure cryptographic
/// hash function on the message, otherwise the attacker can potentially
/// forge signatures.
pub fn secp256r1_verify(
&self,
public_key: &BytesN<65>,
message_digest: &BytesN<32>,
signature: &BytesN<64>,
) {
let env = self.env();
let _ = internal::Env::verify_sig_ecdsa_secp256r1(
env,
public_key.to_object(),
message_digest.to_object(),
signature.to_object(),
)
.unwrap_infallible();
}
}