soroban_sdk/crypto/bls12_381.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
use crate::{
env::internal::{self, BytesObject, U256Val, U64Val},
impl_bytesn_repr,
unwrap::{UnwrapInfallible, UnwrapOptimized},
Bytes, BytesN, ConversionError, Env, IntoVal, TryFromVal, Val, Vec, U256,
};
use core::{
cmp::Ordering,
fmt::Debug,
ops::{Add, Mul, Sub},
};
/// Bls12_381 provides access to curve and field arithmetics on the BLS12-381
/// curve.
pub struct Bls12_381 {
env: Env,
}
/// `G1Affine` is a point in the G1 group (subgroup defined over the base field
/// `Fq`) of the BLS12-381 elliptic curve
///
/// # Serialization:
/// - The 96 bytes represent the **uncompressed encoding** of a point in G1. The
/// Bytes consist of `be_byte(X) || be_byte(Y)` (`||` is concatenation),
/// where 'X' and 'Y' are the two coordinates, each being a base field element
/// `Fp`
/// - The most significant three bits (bits 0-3) of the first byte are reserved
/// for encoding flags:
/// - compression_flag (bit 0): Must always be set (1), as only uncompressed
/// points are supported.
/// - infinity_flag (bit 1): Set if the point is the point at infinity (zero
/// point), in which case all other bits must be zero.
/// - sort_flag (bit 2): Must always be unset (0).
///
/// # Example Usage:
/// ```rust
/// use soroban_sdk::{Env, bytesn, crypto::bls12_381::{Bls12_381, G1Affine}};
/// let env = Env::default();
/// let bls12_381 = env.crypto().bls12_381();
/// let zero = G1Affine::from_bytes(bytesn!(&env, 0x400000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000));
/// let one = G1Affine::from_bytes(bytesn!(&env, 0x17f1d3a73197d7942695638c4fa9ac0fc3688c4f9774b905a14e3a3f171bac586c55e83ff97a1aeffb3af00adb22c6bb08b3f481e3aaa0f1a09e30ed741d8ae4fcf5e095d5d00af600db18cb2c04b3edd03cc744a2888ae40caa232946c5e7e1));
/// let res = bls12_381.g1_add(&zero, &one);
/// assert_eq!(res, one);
/// ```
#[derive(Clone)]
#[repr(transparent)]
pub struct G1Affine(BytesN<96>);
/// `G2Affine` is a point in the G2 group (subgroup defined over the quadratic
/// extension field `Fq2`) of the BLS12-381 elliptic curve
///
/// # Serialization:
/// - The 192 bytes represent the **uncompressed encoding** of a point in G2.
/// The bytes consist of `be_bytes(X_c1) || be_bytes(X_c0) || be_bytes(Y_c1)
/// || be_bytes(Y_c0)` (`||` is concatenation), where 'X' and 'Y' are the two
/// coordinates, each being an extension field element `Fp2` and `c0`, `c1`
/// are components of `Fp2` (each being `Fp`).
/// - The most significant three bits (bits 0-3) of the first byte are reserved
/// for encoding flags:
/// - compression_flag (bit 0): Must always be set (1), as only uncompressed
/// points are supported.
/// - infinity_flag (bit 1): Set if the point is the point at infinity (zero
/// point), in which case all other bits must be zero.
/// - sort_flag (bit 2): Must always be unset (0).
#[derive(Clone)]
#[repr(transparent)]
pub struct G2Affine(BytesN<192>);
/// `Fp` represents an element of the base field `Fq` of the BLS12-381 elliptic
/// curve
///
/// # Serialization:
/// - The 48 bytes represent the **big-endian encoding** of an element in the
/// field `Fp`. The value is serialized as a big-endian integer.
#[derive(Clone)]
#[repr(transparent)]
pub struct Fp(BytesN<48>);
/// `Fp2` represents an element of the quadratic extension field `Fq2` of the
/// BLS12-381 elliptic curve
///
/// # Serialization:
/// - The 96 bytes represent the **big-endian encoding** of an element in the
/// field `Fp2`. The bytes consist of `be_bytes(c1) || be_bytes(c0)` (`||` is
/// concatenation), where `c0` and `c1` are the two `Fp` elements (the real
/// and imaginary components).
#[derive(Clone)]
#[repr(transparent)]
pub struct Fp2(BytesN<96>);
/// `Fr` represents an element in the BLS12-381 scalar field, which is a prime
/// field of order `r` (the order of the G1 and G2 groups). The struct is
/// internally represented with an `U256`, all arithmetic operations follow
/// modulo `r`.
#[derive(Clone)]
#[repr(transparent)]
pub struct Fr(U256);
impl_bytesn_repr!(G1Affine, 96);
impl_bytesn_repr!(G2Affine, 192);
impl_bytesn_repr!(Fp, 48);
impl_bytesn_repr!(Fp2, 96);
impl G1Affine {
pub fn env(&self) -> &Env {
self.0.env()
}
pub fn is_in_subgroup(&self) -> bool {
self.env().crypto().bls12_381().g1_is_in_subgroup(self)
}
pub fn checked_add(&self, rhs: &Self) -> Option<Self> {
self.env().crypto().bls12_381().g1_checked_add(self, rhs)
}
}
impl Add for G1Affine {
type Output = G1Affine;
fn add(self, rhs: Self) -> Self::Output {
self.env().crypto().bls12_381().g1_add(&self, &rhs)
}
}
impl Mul<Fr> for G1Affine {
type Output = G1Affine;
fn mul(self, rhs: Fr) -> Self::Output {
self.env().crypto().bls12_381().g1_mul(&self, &rhs)
}
}
impl G2Affine {
pub fn env(&self) -> &Env {
self.0.env()
}
pub fn is_in_subgroup(&self) -> bool {
self.env().crypto().bls12_381().g2_is_in_subgroup(self)
}
pub fn checked_add(&self, rhs: &Self) -> Option<Self> {
self.env().crypto().bls12_381().g2_checked_add(self, rhs)
}
}
impl Add for G2Affine {
type Output = G2Affine;
fn add(self, rhs: Self) -> Self::Output {
self.env().crypto().bls12_381().g2_add(&self, &rhs)
}
}
impl Mul<Fr> for G2Affine {
type Output = G2Affine;
fn mul(self, rhs: Fr) -> Self::Output {
self.env().crypto().bls12_381().g2_mul(&self, &rhs)
}
}
impl Fp {
pub fn env(&self) -> &Env {
self.0.env()
}
pub fn map_to_g1(&self) -> G1Affine {
self.env().crypto().bls12_381().map_fp_to_g1(self)
}
}
impl Fp2 {
pub fn env(&self) -> &Env {
self.0.env()
}
pub fn map_to_g2(&self) -> G2Affine {
self.env().crypto().bls12_381().map_fp2_to_g2(self)
}
}
impl Fr {
pub fn env(&self) -> &Env {
self.0.env()
}
pub fn from_u256(value: U256) -> Self {
value.into()
}
pub fn to_u256(&self) -> U256 {
self.0.clone()
}
pub fn as_u256(&self) -> &U256 {
&self.0
}
pub fn from_bytes(bytes: BytesN<32>) -> Self {
U256::from_be_bytes(bytes.env(), bytes.as_ref()).into()
}
pub fn to_bytes(&self) -> BytesN<32> {
self.as_u256().to_be_bytes().try_into().unwrap_optimized()
}
pub fn as_val(&self) -> &Val {
self.0.as_val()
}
pub fn to_val(&self) -> Val {
self.0.to_val()
}
pub fn pow(&self, rhs: u64) -> Self {
self.env().crypto().bls12_381().fr_pow(self, rhs)
}
pub fn inv(&self) -> Self {
self.env().crypto().bls12_381().fr_inv(self)
}
}
impl From<U256> for Fr {
fn from(value: U256) -> Self {
Self(value)
}
}
impl From<&Fr> for U256Val {
fn from(value: &Fr) -> Self {
value.as_u256().into()
}
}
impl IntoVal<Env, Val> for Fr {
fn into_val(&self, e: &Env) -> Val {
self.0.into_val(e)
}
}
impl TryFromVal<Env, Val> for Fr {
type Error = ConversionError;
fn try_from_val(env: &Env, val: &Val) -> Result<Self, Self::Error> {
let u = U256::try_from_val(env, val)?;
Ok(Fr(u))
}
}
impl Eq for Fr {}
impl PartialEq for Fr {
fn eq(&self, other: &Self) -> bool {
self.as_u256().partial_cmp(other.as_u256()) == Some(Ordering::Equal)
}
}
impl Debug for Fr {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
write!(f, "Fr({:?})", self.as_u256())
}
}
impl Add for Fr {
type Output = Fr;
fn add(self, rhs: Self) -> Self::Output {
self.env().crypto().bls12_381().fr_add(&self, &rhs)
}
}
impl Sub for Fr {
type Output = Fr;
fn sub(self, rhs: Self) -> Self::Output {
self.env().crypto().bls12_381().fr_sub(&self, &rhs)
}
}
impl Mul for Fr {
type Output = Fr;
fn mul(self, rhs: Self) -> Self::Output {
self.env().crypto().bls12_381().fr_mul(&self, &rhs)
}
}
impl Bls12_381 {
pub(crate) fn new(env: &Env) -> Bls12_381 {
Bls12_381 { env: env.clone() }
}
pub fn env(&self) -> &Env {
&self.env
}
// g1
/// Checks if a point `p` in G1 is in the correct subgroup.
pub fn g1_is_in_subgroup(&self, p: &G1Affine) -> bool {
let env = self.env();
let res = internal::Env::bls12_381_check_g1_is_in_subgroup(env, p.to_object())
.unwrap_infallible();
res.into()
}
/// Adds two points `p0` and `p1` in G1.
pub fn g1_add(&self, p0: &G1Affine, p1: &G1Affine) -> G1Affine {
let env = self.env();
let bin = internal::Env::bls12_381_g1_add(env, p0.to_object(), p1.to_object())
.unwrap_infallible();
unsafe { G1Affine::from_bytes(BytesN::unchecked_new(env.clone(), bin)) }
}
/// Adds two points `p0` and `p1` in G1, ensuring that the result is in the
/// correct subgroup. Note the subgroup check is computationally expensive,
/// so if want to perform a series of additions i.e. `agg = p0 + p1 + .. + pn`,
/// it may make sense to only call g1_checked_add on the final addition,
/// while using `g1_add` (non-checked version) on the intermediate ones.
pub fn g1_checked_add(&self, p0: &G1Affine, p1: &G1Affine) -> Option<G1Affine> {
let env = self.env();
let bin = internal::Env::bls12_381_g1_add(env, p0.to_object(), p1.to_object())
.unwrap_infallible();
let res = unsafe { G1Affine::from_bytes(BytesN::unchecked_new(env.clone(), bin)) };
let is_in_correct_subgroup: bool =
internal::Env::bls12_381_check_g1_is_in_subgroup(env, res.to_object())
.unwrap_optimized()
.into();
match is_in_correct_subgroup {
true => Some(res),
false => None,
}
}
/// Multiplies a point `p0` in G1 by a scalar.
pub fn g1_mul(&self, p0: &G1Affine, scalar: &Fr) -> G1Affine {
let env = self.env();
let bin =
internal::Env::bls12_381_g1_mul(env, p0.to_object(), scalar.into()).unwrap_infallible();
unsafe { G1Affine::from_bytes(BytesN::unchecked_new(env.clone(), bin)) }
}
/// Performs a multi-scalar multiplication (MSM) operation in G1.
pub fn g1_msm(&self, vp: Vec<G1Affine>, vs: Vec<Fr>) -> G1Affine {
let env = self.env();
let bin = internal::Env::bls12_381_g1_msm(env, vp.into(), vs.into()).unwrap_infallible();
unsafe { G1Affine::from_bytes(BytesN::unchecked_new(env.clone(), bin)) }
}
/// Maps an element in the base field `Fp` to a point in G1.
pub fn map_fp_to_g1(&self, fp: &Fp) -> G1Affine {
let env = self.env();
let bin = internal::Env::bls12_381_map_fp_to_g1(env, fp.to_object()).unwrap_infallible();
unsafe { G1Affine::from_bytes(BytesN::unchecked_new(env.clone(), bin)) }
}
/// Hashes a message `msg` to a point in G1, using a domain separation tag `dst`.
pub fn hash_to_g1(&self, msg: &Bytes, dst: &Bytes) -> G1Affine {
let env = self.env();
let bin = internal::Env::bls12_381_hash_to_g1(env, msg.into(), dst.to_object())
.unwrap_infallible();
unsafe { G1Affine::from_bytes(BytesN::unchecked_new(env.clone(), bin)) }
}
// g2
/// Checks if a point `p` in G2 is in the correct subgroup.
pub fn g2_is_in_subgroup(&self, p: &G2Affine) -> bool {
let env = self.env();
let res = internal::Env::bls12_381_check_g2_is_in_subgroup(env, p.to_object())
.unwrap_infallible();
res.into()
}
/// Adds two points `p0` and `p1` in G2.
pub fn g2_add(&self, p0: &G2Affine, p1: &G2Affine) -> G2Affine {
let env = self.env();
let bin = internal::Env::bls12_381_g2_add(env, p0.to_object(), p1.to_object())
.unwrap_infallible();
unsafe { G2Affine::from_bytes(BytesN::unchecked_new(env.clone(), bin)) }
}
/// Adds two points `p0` and `p1` in G2, ensuring that the result is in the
/// correct subgroup. Note the subgroup check is computationally expensive,
/// so if want to perform a series of additions i.e. `agg = p0 + p1 + .. +pn`,
/// it may make sense to only call g2_checked_add on the final addition,
/// while using `g2_add` (non-checked version) on the intermediate ones.
pub fn g2_checked_add(&self, p0: &G2Affine, p1: &G2Affine) -> Option<G2Affine> {
let env = self.env();
let bin = internal::Env::bls12_381_g2_add(env, p0.to_object(), p1.to_object())
.unwrap_infallible();
let res = unsafe { G2Affine::from_bytes(BytesN::unchecked_new(env.clone(), bin)) };
let is_in_correct_subgroup: bool =
internal::Env::bls12_381_check_g2_is_in_subgroup(env, res.to_object())
.unwrap_optimized()
.into();
match is_in_correct_subgroup {
true => Some(res),
false => None,
}
}
/// Multiplies a point `p0` in G2 by a scalar.
pub fn g2_mul(&self, p0: &G2Affine, scalar: &Fr) -> G2Affine {
let env = self.env();
let bin =
internal::Env::bls12_381_g2_mul(env, p0.to_object(), scalar.into()).unwrap_infallible();
unsafe { G2Affine::from_bytes(BytesN::unchecked_new(env.clone(), bin)) }
}
/// Performs a multi-scalar multiplication (MSM) operation in G2.
pub fn g2_msm(&self, vp: Vec<G2Affine>, vs: Vec<Fr>) -> G2Affine {
let env = self.env();
let bin = internal::Env::bls12_381_g2_msm(env, vp.into(), vs.into()).unwrap_infallible();
unsafe { G2Affine::from_bytes(BytesN::unchecked_new(env.clone(), bin)) }
}
/// Maps an element in the base field `Fp2` to a point in G2.
pub fn map_fp2_to_g2(&self, fp2: &Fp2) -> G2Affine {
let env = self.env();
let bin = internal::Env::bls12_381_map_fp2_to_g2(env, fp2.to_object()).unwrap_infallible();
unsafe { G2Affine::from_bytes(BytesN::unchecked_new(env.clone(), bin)) }
}
/// Hashes a message `msg` to a point in G2, using a domain separation tag `dst`.
pub fn hash_to_g2(&self, msg: &Bytes, dst: &Bytes) -> G2Affine {
let env = self.env();
let bin = internal::Env::bls12_381_hash_to_g2(env, msg.into(), dst.to_object())
.unwrap_infallible();
unsafe { G2Affine::from_bytes(BytesN::unchecked_new(env.clone(), bin)) }
}
// pairing
/// Performs a pairing check between vectors of points in G1 and G2.
///
/// This function computes the pairing for each pair of points in the
/// provided vectors `vp1` (G1 points) and `vp2` (G2 points) and verifies if
/// the overall pairing result is equal to the identity in the target group.
///
/// # Returns:
/// - `true` if the pairing check holds (i.e., the pairing result is valid
/// and equal to the identity element), otherwise `false`.
///
/// # Panics:
/// - If the lengths of `vp1` and `vp2` are not equal or if they are empty.
pub fn pairing_check(&self, vp1: Vec<G1Affine>, vp2: Vec<G2Affine>) -> bool {
let env = self.env();
internal::Env::bls12_381_multi_pairing_check(env, vp1.into(), vp2.into())
.unwrap_infallible()
.into()
}
// scalar arithmetic
/// Adds two scalars in the BLS12-381 scalar field `Fr`.
pub fn fr_add(&self, lhs: &Fr, rhs: &Fr) -> Fr {
let env = self.env();
let v = internal::Env::bls12_381_fr_add(env, lhs.into(), rhs.into()).unwrap_infallible();
U256::try_from_val(env, &v).unwrap_infallible().into()
}
/// Subtracts one scalar from another in the BLS12-381 scalar field `Fr`.
pub fn fr_sub(&self, lhs: &Fr, rhs: &Fr) -> Fr {
let env = self.env();
let v = internal::Env::bls12_381_fr_sub(env, lhs.into(), rhs.into()).unwrap_infallible();
U256::try_from_val(env, &v).unwrap_infallible().into()
}
/// Multiplies two scalars in the BLS12-381 scalar field `Fr`.
pub fn fr_mul(&self, lhs: &Fr, rhs: &Fr) -> Fr {
let env = self.env();
let v = internal::Env::bls12_381_fr_mul(env, lhs.into(), rhs.into()).unwrap_infallible();
U256::try_from_val(env, &v).unwrap_infallible().into()
}
/// Raises a scalar to the power of a given exponent in the BLS12-381 scalar field `Fr`.
pub fn fr_pow(&self, lhs: &Fr, rhs: u64) -> Fr {
let env = self.env();
let rhs = U64Val::try_from_val(env, &rhs).unwrap_optimized();
let v = internal::Env::bls12_381_fr_pow(env, lhs.into(), rhs).unwrap_infallible();
U256::try_from_val(env, &v).unwrap_infallible().into()
}
/// Computes the multiplicative inverse of a scalar in the BLS12-381 scalar field `Fr`.
pub fn fr_inv(&self, lhs: &Fr) -> Fr {
let env = self.env();
let v = internal::Env::bls12_381_fr_inv(env, lhs.into()).unwrap_infallible();
U256::try_from_val(env, &v).unwrap_infallible().into()
}
}