souper_ir/ast.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
//! Abstract syntax tree type definitions.
pub use id_arena::{Arena, Id};
/// An identifier for a value defined by an assignment.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub struct ValueId(
/// Always points to a `Statement::Assignment`, and references the value
/// defined by the assignment.
pub(crate) Id<Statement>,
);
impl From<ValueId> for Id<Statement> {
#[inline]
fn from(id: ValueId) -> Self {
id.0
}
}
/// An identifier for a defined block.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub struct BlockId(
/// Always points to an assignment where the RHS is `AssignmentRhs::Block`.
pub(crate) ValueId,
);
impl From<BlockId> for ValueId {
#[inline]
fn from(id: BlockId) -> Self {
id.0
}
}
impl From<BlockId> for Id<Statement> {
#[inline]
fn from(id: BlockId) -> Self {
(id.0).0
}
}
/// A complete optimization that replaces a left-hand side with a right-hand
/// side.
#[derive(Clone, Debug)]
pub enum Replacement {
/// A replacement in the form of a left-hand side followed by a right-hand
/// side.
LhsRhs {
/// Statements that make up the expression DAGs for the left- and
/// right-hand sides.
statements: Arena<Statement>,
/// The left-hand side that is matched by the optimization.
lhs: Infer,
/// The right-hand side that replaces the left-hand side after applying
/// the optimization.
rhs: Operand,
},
/// A replacement in the form of an expression DAG followed by a `cand x y`
/// statement that declares that `y` is a candidate for replacing `x`.
Cand {
/// Statements that make up the expression DAG for both the
/// replacement's left- and right-hand sides.
statements: Arena<Statement>,
/// The candidate rewrite connecting the left- and right-hand sides of
/// this replacement within `statements`.
cand: Cand,
},
}
impl Replacement {
/// Get the assignment that defined the given value.
///
/// # Panics
///
/// May panic or produce incorrect results if given a `ValueId` from another
/// `Replacement`, `LeftHandSide`, or `RightHandSide`'s arena.
pub fn assignment(&self, id: ValueId) -> &Assignment {
match self {
Replacement::LhsRhs { statements, .. } | Replacement::Cand { statements, .. } => {
match &statements[id.into()] {
Statement::Assignment(a) => a,
_ => panic!("use of an `id` that is not from this `Replacement`'s arena"),
}
}
}
}
}
/// A builder for a [`Replacement`][crate::ast::Replacement].
#[derive(Clone, Debug, Default)]
pub struct ReplacementBuilder {
statements: Arena<Statement>,
}
impl ReplacementBuilder {
/// Create a new assignment statement.
///
/// Returns the value defined by the assignment.
///
/// # Panics
///
/// Panics if `name` (when given) does not start with '%'.
pub fn assignment(
&mut self,
name: Option<String>,
r#type: Option<Type>,
value: impl Into<AssignmentRhs>,
attributes: Vec<Attribute>,
) -> ValueId {
let name = name.unwrap_or_else(|| format!("%{}", self.statements.len()));
assert!(name.starts_with('%'));
ValueId(
self.statements.alloc(
Assignment {
name,
r#type,
value: value.into(),
attributes,
}
.into(),
),
)
}
/// Create a new [basic block][crate::ast::Block].
///
/// Declare that the block has `predecessors` number of incoming edges in
/// the control-flow graph.
///
/// # Panics
///
/// Panics if `name` (when given) does not start with '%'.
pub fn block(&mut self, name: Option<String>, predecessors: u32) -> BlockId {
BlockId(self.assignment(name, None, Block { predecessors }, vec![]))
}
/// Create a [path condition][crate::ast::Pc].
///
/// Expresses the fact that `x` must equal `y` for the replacement to be
/// valid.
pub fn pc(&mut self, x: impl Into<Operand>, y: impl Into<Operand>) {
let x = x.into();
let y = y.into();
self.statements.alloc(Pc { x, y }.into());
}
/// Create a [block path condition][crate::ast::BlockPc].
///
/// Expresses that `x` is equal to `y` on an incoming edge to `block` in the
/// control-flow graph.
///
/// # Panics
///
/// Panics if `predecessor` is greater than or equal to `block`'s number of
/// predecessors.
pub fn block_pc(
&mut self,
block: BlockId,
predecessor: u32,
x: impl Into<Operand>,
y: impl Into<Operand>,
) {
let x = x.into();
let y = y.into();
self.statements.alloc(
BlockPc {
block,
predecessor,
x,
y,
}
.into(),
);
}
/// Finish building this replacement by providing the left- and right-hand
/// sides.
pub fn finish(
self,
lhs: ValueId,
rhs: impl Into<Operand>,
attributes: impl IntoIterator<Item = RootAttribute>,
) -> Replacement {
Replacement::LhsRhs {
statements: self.statements,
lhs: Infer {
value: lhs,
attributes: attributes.into_iter().collect(),
},
rhs: rhs.into(),
}
}
}
/// A candidate rewrite.
#[derive(Clone, Debug)]
pub struct Cand {
/// The left-hand side expression that can be replaced by the right-hand
/// side.
pub lhs: Operand,
/// The right-hand side expression that can replace the left-hand side.
pub rhs: Operand,
/// Attributes for this rewrite.
pub attributes: Vec<RootAttribute>,
}
/// The left-hand side of a replacement.
#[derive(Clone, Debug)]
pub struct LeftHandSide {
/// Statements making up this LHS's expression DAG.
pub statements: Arena<Statement>,
/// The root of this LHS's expression DAG.
pub infer: Infer,
}
/// A builder for a [`LeftHandSide`][crate::ast::LeftHandSide].
#[derive(Clone, Debug, Default)]
pub struct LeftHandSideBuilder {
statements: Arena<Statement>,
}
impl LeftHandSideBuilder {
/// Create a new assignment statement.
///
/// Returns the value defined by the assignment.
///
/// # Panics
///
/// Panics if `name` (when given) does not start with '%'.
pub fn assignment(
&mut self,
name: Option<String>,
r#type: Option<Type>,
value: impl Into<AssignmentRhs>,
attributes: Vec<Attribute>,
) -> ValueId {
let name = name.unwrap_or_else(|| format!("%{}", self.statements.len()));
assert!(name.starts_with('%'));
ValueId(
self.statements.alloc(
Assignment {
name,
r#type,
value: value.into(),
attributes,
}
.into(),
),
)
}
/// Create a new [basic block][crate::ast::Block].
///
/// Declare that the block has `predecessors` number of incoming edges in
/// the control-flow graph.
///
/// # Panics
///
/// Panics if `name` (when given) does not start with '%'.
pub fn block(&mut self, name: Option<String>, predecessors: u32) -> BlockId {
BlockId(self.assignment(name, None, Block { predecessors }, vec![]))
}
/// Create a [path condition][crate::ast::Pc].
///
/// Expresses the fact that `x` must equal `y` for the replacement to be
/// valid.
pub fn pc(&mut self, x: impl Into<Operand>, y: impl Into<Operand>) {
let x = x.into();
let y = y.into();
self.statements.alloc(Pc { x, y }.into());
}
/// Create a [block path condition][crate::ast::BlockPc].
///
/// Expresses that `x` is equal to `y` on an incoming edge to `block` in the
/// control-flow graph.
///
/// # Panics
///
/// Panics if `predecessor` is greater than or equal to `block`'s number of
/// predecessors.
pub fn block_pc(
&mut self,
block: BlockId,
predecessor: u32,
x: impl Into<Operand>,
y: impl Into<Operand>,
) {
let x = x.into();
let y = y.into();
self.statements.alloc(
BlockPc {
block,
predecessor,
x,
y,
}
.into(),
);
}
/// Finish building this `LeftHandSide`.
pub fn finish(
self,
lhs: ValueId,
attributes: impl IntoIterator<Item = RootAttribute>,
) -> LeftHandSide {
LeftHandSide {
statements: self.statements,
infer: Infer {
value: lhs,
attributes: attributes.into_iter().collect(),
},
}
}
/// Get the assignment that created the given value.
///
/// # Panics
///
/// May panic when given a `ValudId` from a different LHS, RHS, or
/// replacement.
pub fn get_value(&self, id: ValueId) -> &Assignment {
match &self.statements[id.into()] {
Statement::Assignment(a) => a,
_ => panic!(),
}
}
}
/// The root of a left-hand side.
#[derive(Clone, Debug)]
pub struct Infer {
/// The value to be replaced by the right-hand side.
pub value: ValueId,
/// Attributes for this left-hand side.
pub attributes: Vec<RootAttribute>,
}
/// The right-hand side of a replacement.
#[derive(Clone, Debug)]
pub struct RightHandSide {
/// Statements making up this RHS's expression DAG.
pub statements: Arena<Statement>,
/// The root of this RHS's expression DAG.
pub result: Operand,
}
/// A statement in a LHS or RHS.
#[derive(Clone, Debug)]
pub enum Statement {
/// An assignment statement.
Assignment(Assignment),
/// A path condition statement.
Pc(Pc),
/// A block path condition statement.
BlockPc(BlockPc),
}
impl From<Assignment> for Statement {
fn from(a: Assignment) -> Self {
Statement::Assignment(a)
}
}
impl From<Pc> for Statement {
fn from(pc: Pc) -> Self {
Statement::Pc(pc)
}
}
impl From<BlockPc> for Statement {
fn from(bpc: BlockPc) -> Self {
Statement::BlockPc(bpc)
}
}
/// An assignment, defining a value.
#[derive(Clone, Debug)]
pub struct Assignment {
/// The name of the value being defined by this assignment.
pub name: String,
/// The ascribed type, if any.
pub r#type: Option<Type>,
/// The value being bound in this assignment.
pub value: AssignmentRhs,
/// Attributes describing data-flow facts known about this value.
pub attributes: Vec<Attribute>,
}
/// Any value that can be assigned to a name.
#[derive(Clone, Debug)]
pub enum AssignmentRhs {
/// An input variable.
Var,
/// A basic block.
Block(Block),
/// A phi node.
Phi(Phi),
/// A hole reserved for an as-of-yet-unknown instruction.
ReservedInst,
/// A hole reserved for an as-of-yet-unknown constant.
ReservedConst,
/// An instruction and its operands.
Instruction(Instruction),
}
impl From<Block> for AssignmentRhs {
fn from(b: Block) -> Self {
AssignmentRhs::Block(b)
}
}
impl From<Phi> for AssignmentRhs {
fn from(p: Phi) -> Self {
AssignmentRhs::Phi(p)
}
}
impl From<Instruction> for AssignmentRhs {
fn from(i: Instruction) -> Self {
AssignmentRhs::Instruction(i)
}
}
/// An input variable.
#[derive(Clone, Debug)]
pub struct Var {
/// Attributes describing dataflow facts known about this input variable.
pub attributes: Vec<Attribute>,
}
/// A basic block.
#[derive(Clone, Debug)]
pub struct Block {
/// The number of incoming predecessors that this basic block has in the
/// control-flow graph.
pub predecessors: u32,
}
/// A phi node.
///
/// If a phi's `block` has `n` predecessors, then the length of `values` must be
/// `n`.
///
/// All phi nodes associated with a particular `block` will have their `i`th
/// value selected when control flow comes from `block`'s `i`th predecessor. For
/// example, given:
///
/// ```text
/// %bb = block 3
/// %a = phi %bb, 1, 2, 3
/// %b = phi %bb, 4, 5, 6
/// %c = phi %bb, 7, 8, 9
/// ```
///
/// If the basic block `%bb` has three control-flow predecessors. If it is
/// entered via its first predecessor, then `%a == 1`, `%b == 4`, and `%c ==
/// 7`. If it is entered via its second predecessor, then `%a == 2`, `%b == 5`,
/// and `%c == 8`. Finally, if it is entered via its third predecessor, then `%a
/// == 3`, `%b == 6`, and `%c == 9`.
#[derive(Clone, Debug)]
pub struct Phi {
/// The basic block that this phi node is contained within.
pub block: BlockId,
/// The potential values for this phi node.
pub values: Vec<Operand>,
}
macro_rules! define_instructions {
(
$(
$( #[$attr:meta] )*
$token:literal => $inst:ident $( ( $($operand:ident),* ) )? ;
)*
) => {
/// A Souper instruction.
#[derive(Copy, Clone, Debug)]
pub enum Instruction {
$(
$( #[$attr] )*
$inst $( { $(
#[allow(missing_docs)]
$operand: Operand
),* } )? ,
)*
}
#[cfg(feature = "parse")]
impl crate::parse::Peek for Instruction {
fn peek<'a>(parser: &mut crate::parse::Parser<'a>) -> crate::parse::Result<bool> {
match parser.lookahead()? {
Some(crate::parse::Token::Ident(ident)) => Ok( false $( || ident == $token )* ),
_ => Ok(false),
}
}
}
#[cfg(feature = "parse")]
impl crate::parse::Parse for Instruction {
fn parse<'a>(parser: &mut crate::parse::Parser<'a>) -> crate::parse::Result<Self> {
let ident = parser.token()?;
match ident {
$(
#[allow(unused_assignments)]
crate::parse::Token::Ident($token) => {
$(
let mut first = true;
$(
if !first {
parser.comma()?;
}
let $operand = Operand::parse(parser)?;
first = false;
)*
)?
Ok(Instruction::$inst $( { $( $operand ),* } )? )
}
)*
_ => parser.error("expected instruction"),
}
}
}
#[cfg(feature = "stringify")]
impl Instruction {
pub(crate) fn value_ids(&self, mut f: impl FnMut(ValueId)) {
match self {
$(
Instruction::$inst $( { $( $operand ),* } )? => {
$(
$(
if let Operand::Value(v) = $operand {
f(*v);
}
)*
)?
}
)*
}
}
pub(crate) fn operands(&self, mut f: impl FnMut(Operand)) {
match self {
$(
Instruction::$inst $( { $( $operand ),* } )? => {
$(
$(
f(*$operand);
)*
)?
}
)*
}
}
pub(crate) fn instruction_name(&self) -> &'static str {
match self {
$(
Instruction::$inst $( { $( $operand: _),* } )? => $token,
)*
}
}
}
};
}
define_instructions! {
/// Wrapping integer addition.
"add" => Add(a, b);
/// Integer addition where signed overflow is undefined behavior.
"addnsw" => AddNsw(a, b);
/// Integer addition where unsigned overflow is undefined behavior.
"addnuw" => AddNuw(a, b);
/// Integer addition where any kind of overflow is undefined behavior.
"addnw" => AddNw(a, b);
/// Wrapping integer subtraction.
"sub" => Sub(a, b);
/// Integer subtraction where signed overflow is undefined behavior.
"subnsw" => SubNsw(a, b);
/// Integer subtraction where unsigned overflow is undefined behavior.
"subnuw" => SubNuw(a, b);
/// Integer subtraction where any kind of overflow is undefined behavior.
"subnw" => SubNw(a, b);
/// Wrapping integer multiplication.
"mul" => Mul(a, b);
/// Integer multiplication where signed overflow is undefined behavior.
"mulnsw" => MulNsw(a, b);
/// Integer multiplication where unsigned overflow is undefined behavior.
"mulnuw" => MulNuw(a, b);
/// Integer multiplication where any kind of overflow is undefined behavior.
"mulnw" => MulNw(a, b);
/// Unsigned integer division.
"udiv" => Udiv(a, b);
/// Signed integer division.
"sdiv" => Sdiv(a, b);
/// Unsigned division where `a` must be exactly divisible by `b`. If `a` is
/// not exactly divisible by `b`, then the result is undefined behavior.
"udivexact" => UdivExact(a, b);
/// Signed division where `a` must be exactly divisible by `b`. If `a` is
/// not exactly divisible by `b`, then the result is undefined behavior.
"sdivexact" => SdivExact(a, b);
/// Unsigned integer remainder.
"urem" => Urem(a, b);
/// Signed integer remainder.
"srem" => Srem(a, b);
/// Bit-wise and.
"and" => And(a, b);
/// Bit-wise or.
"or" => Or(a, b);
/// Bit-wise xor.
"xor" => Xor(a, b);
/// Bit shift left. Undefined behavior if `b` is greater than or equal to `bitwidth(a)`.
"shl" => Shl(a, b);
/// Bit shift left where shifting out any non-sign bits is undefined
/// behavior.
"shlnsw" => ShlNsw(a, b);
/// Bit shift left where shifting out any non-zero bits is undefined
/// behavior.
"shlnuw" => ShlNuw(a, b);
/// Bit shift left where shifting out any non-zero or non-sign bits is
/// undefined behavior.
"shlnw" => ShlNw(a, b);
/// Logical bit shift right (fills left `b` bits with zero). Undefined
/// behavior if `b` is greater than or equal to `bitwidth(a)`.
"lshr" => Lshr(a, b);
/// Logical bit shift right (fills left `b` bits with zero) where it is
/// undefined behavior if any bits shifted out are non-zero.
"lshrexact" => LshrExact(a, b);
/// Arithmetic bit shift right (sign extends the left `b` bits).
"ashr" => Ashr(a, b);
/// Arithmetic bit shift right (fills left `b` bits with zero) where it is
/// undefined behavior if any bits shifted out are non-zero.
"ashrexact" => AshrExact(a, b);
/// If `a` is 1, then evaluates to `b`, otherwise evaluates to `c`.
"select" => Select(a, b, c);
/// Zero extend `a`.
"zext" => Zext(a);
/// Sign extend `a`.
"sext" => Sext(a);
/// Truncate `a`.
"trunc" => Trunc(a);
/// `a == b`.
"eq" => Eq(a, b);
/// `a != b`
"ne" => Ne(a, b);
/// Unsigned less than.
"ult" => Ult(a, b);
/// Signed less than.
"slt" => Slt(a, b);
/// Unsigned less than or equal.
"ule" => Ule(a, b);
/// Signed less than or equal.
"sle" => Sle(a, b);
/// Count the number of 1 bits in `a`.
"ctpop" => Ctpop(a);
/// Swap bytes in `a`, e.g. `0xaabbccdd` becomes `0xddccbbaa`.
"bswap" => Bswap(a);
/// Reverse the bits in `a`.
"bitreverse" => BitReverse(a);
/// Count trailing zero bits in `a`.
"cttz" => Cttz(a);
/// Count leading one bits in `a`.
"ctlz" => Ctlz(a);
/// Left funnel shift.
"fshl" => Fshl(a, b, c);
/// Right funnel shift.
"fshr" => Fshr(a, b, c);
/// Wrapping signed integer addition of `a` and `b` where the result is
/// extended by one bit which indicates whether the addition overflowed.
"sadd.with.overflow" => SaddWithOverflow(a, b);
/// Wrapping unsigned integer addition of `a` and `b` where the result is
/// extended by one bit which indicates whether the addition overflowed.
"uadd.with.overflow" => UaddWithOverflow(a, b);
/// Wrapping signed integer subtraction of `a` and `b` where the result is
/// extended by one bit which indicates whether the subtraction overflowed.
"ssub.with.overflow" => SsubWithOverflow(a, b);
/// Wrapping unsigned integer subtraction of `a` and `b` where the result is
/// extended by one bit which indicates whether the subtraction overflowed.
"usub.with.overflow" => UsubWithOverflow(a, b);
/// Wrapping signed integer multiplication of `a` and `b` where the result
/// is extended by one bit which indicates whether the multiplication
/// overflowed.
"smul.with.overflow" => SmulWithOverflow(a, b);
/// Wrapping unsigned integer multiplication of `a` and `b` where the result
/// is extended by one bit which indicates whether the multiplication
/// overflowed.
"umul.with.overflow" => UmulWithOverflow(a, b);
/// Signed saturating integer addition.
"sadd.sat" => SaddSat(a, b);
/// Unsigned saturating integer addition.
"uadd.sat" => UaddSat(a, b);
/// Signed saturating integer subtraction.
"ssub.sat" => SsubSat(a, b);
/// Unsigned saturating integer subtraction.
"usub.sat" => UsubSat(a, b);
/// Extract the `b`th value from `a`.
"extractvalue" => ExtractValue(a, b);
/// A hole reserved for an unknown instruction or value.
"hole" => Hole;
/// If `a` is a poison or undef value, returns an arbitrary but fixed
/// value. Otherwise returns `a`.
"freeze" => Freeze(a);
}
/// An operand for an instruction or some other kind of operation.
#[derive(Copy, Clone, Debug)]
pub enum Operand {
/// The id of a value defined in an earlier statement.
Value(ValueId),
/// A literal constant value.
Constant(Constant),
}
impl From<Constant> for Operand {
fn from(c: Constant) -> Self {
Operand::Constant(c)
}
}
impl From<ValueId> for Operand {
fn from(v: ValueId) -> Self {
Operand::Value(v)
}
}
/// Attributes describing data-flow facts known about the root of a left- or
/// right-hand side.
#[derive(Clone, Debug)]
pub enum RootAttribute {
/// Which bits of the resulting value are actually used.
///
/// The vector must have a boolean for each bit in the result type, e.g. if
/// the result type is `i32`, then the vector's length must be 32.
///
/// If the `n`th entry in the vector is `true`, then the `n`th bit of the
/// result is used. If it is `false`, then that bit is not used.
DemandedBits(Vec<bool>),
/// TODO
HarvestedFromUse,
}
/// Attributes describing data-flow facts known about a particular value or
/// result of an instruction.
#[derive(Clone, Debug)]
pub enum Attribute {
/// Bits that are known to be set or unset.
///
/// The vector must have an entry for each bit in the value, e.g. if the
/// value's type is `i32`, then the vector's length must be 32.
///
/// If the `i`th bit is known to be set, then the `i`th entry should be
/// `Some(true)`. If the `i`th bit is known to be unset, then the `i`th
/// entry should be `Some(false)`. If it is unknown whether the `i`th bit is
/// set or unset, or it can sometimes be either, then the `i`th entry should
/// be `None`.
KnownBits(Vec<Option<bool>>),
/// The value is known to be a power of two.
PowerOfTwo,
/// The value is known to be negative.
Negative,
/// The value is known to be non-negative.
NonNegative,
/// The value is known to be non-zero.
NonZero,
/// The value is used by other expressions, not just this replacement's
/// expression DAG.
HasExternalUses,
/// It is known that there are `n` sign bits in this value.
SignBits(u8),
/// This value is within the range `.0` (inclusive) to `.1` (exclusive).
Range(i128, i128),
}
/// A path condition.
///
/// Expresses the fact that `x` must equal `y` for the replacement to be valid.
#[derive(Clone, Debug)]
pub struct Pc {
/// A value that must be equal to `y` for the replacement to be valid.
pub x: Operand,
/// A value that must be equal to `x` for the replacement to be valid.
pub y: Operand,
}
/// A block path condition.
///
/// Expresses that `x` is equal to `y` on an incoming predecessor to `block` in
/// the control-flow graph.
#[derive(Clone, Debug)]
pub struct BlockPc {
/// The basic block in question.
pub block: BlockId,
/// The `i`th control-flow predecessor of `block`.
///
/// Zero-indexed: must be less than `block`'s total number of predecessors.
pub predecessor: u32,
/// Must be equal to `y` if control-flow entered `block` via `predecessor`.
pub x: Operand,
/// Must be equal to `x` if control-flow entered `block` via `predecessor`.
pub y: Operand,
}
/// A constant value.
///
/// Optionally has an ascribed type.
#[derive(Copy, Clone, Debug)]
pub struct Constant {
/// The constant value.
pub value: i128,
/// The ascribed type, if any.
pub r#type: Option<Type>,
}
/// A type.
///
/// All Souper types are integers, they just have different bit widths.
#[derive(Copy, Clone, Debug)]
pub struct Type {
/// The bit width of this integer type.
pub width: u16,
}