#[cfg(feature = "std")]
use serde::{Deserialize, Serialize};
use crate::traits::{
BaseArithmetic, Bounded, CheckedAdd, CheckedMul, CheckedSub, One, SaturatedConversion,
Saturating, UniqueSaturatedInto, Unsigned, Zero,
};
use codec::{CompactAs, Encode};
use num_traits::{Pow, SaturatingAdd, SaturatingSub};
use sp_std::{
fmt, ops,
ops::{Add, AddAssign, Div, Rem, Sub},
prelude::*,
};
pub type InnerOf<P> = <P as PerThing>::Inner;
pub type UpperOf<P> = <P as PerThing>::Upper;
pub trait RationalArg:
Clone
+ Ord
+ ops::Div<Self, Output = Self>
+ ops::Rem<Self, Output = Self>
+ ops::Add<Self, Output = Self>
+ ops::AddAssign<Self>
+ Unsigned
+ Zero
+ One
{
}
impl<
T: Clone
+ Ord
+ ops::Div<Self, Output = Self>
+ ops::Rem<Self, Output = Self>
+ ops::Add<Self, Output = Self>
+ ops::AddAssign<Self>
+ Unsigned
+ Zero
+ One,
> RationalArg for T
{
}
pub trait MultiplyArg:
Clone
+ ops::Rem<Self, Output = Self>
+ ops::Div<Self, Output = Self>
+ ops::Mul<Self, Output = Self>
+ ops::Add<Self, Output = Self>
+ Unsigned
{
}
impl<
T: Clone
+ ops::Rem<Self, Output = Self>
+ ops::Div<Self, Output = Self>
+ ops::Mul<Self, Output = Self>
+ ops::Add<Self, Output = Self>
+ Unsigned,
> MultiplyArg for T
{
}
pub trait ReciprocalArg: MultiplyArg + Saturating {}
impl<T: MultiplyArg + Saturating> ReciprocalArg for T {}
pub trait PerThing:
Sized
+ Saturating
+ Copy
+ Default
+ Eq
+ PartialEq
+ Ord
+ PartialOrd
+ Bounded
+ fmt::Debug
+ ops::Div<Output = Self>
+ ops::Mul<Output = Self>
+ Pow<usize, Output = Self>
{
type Inner: BaseArithmetic + Unsigned + Copy + Into<u128> + fmt::Debug;
type Upper: BaseArithmetic
+ Copy
+ From<Self::Inner>
+ TryInto<Self::Inner>
+ UniqueSaturatedInto<Self::Inner>
+ Unsigned
+ fmt::Debug;
const ACCURACY: Self::Inner;
fn zero() -> Self {
Self::from_parts(Self::Inner::zero())
}
fn is_zero(&self) -> bool {
self.deconstruct() == Self::Inner::zero()
}
fn one() -> Self {
Self::from_parts(Self::ACCURACY)
}
fn is_one(&self) -> bool {
self.deconstruct() == Self::ACCURACY
}
fn less_epsilon(self) -> Self {
if self.is_zero() {
return self
}
Self::from_parts(self.deconstruct() - One::one())
}
fn try_less_epsilon(self) -> Result<Self, Self> {
if self.is_zero() {
return Err(self)
}
Ok(Self::from_parts(self.deconstruct() - One::one()))
}
fn plus_epsilon(self) -> Self {
if self.is_one() {
return self
}
Self::from_parts(self.deconstruct() + One::one())
}
fn try_plus_epsilon(self) -> Result<Self, Self> {
if self.is_one() {
return Err(self)
}
Ok(Self::from_parts(self.deconstruct() + One::one()))
}
fn from_percent(x: Self::Inner) -> Self {
let a: Self::Inner = x.min(100.into());
let b: Self::Inner = 100.into();
Self::from_rational::<Self::Inner>(a, b)
}
fn square(self) -> Self {
let p = Self::Upper::from(self.deconstruct());
let q = Self::Upper::from(Self::ACCURACY);
Self::from_rational::<Self::Upper>(p * p, q * q)
}
fn left_from_one(self) -> Self {
Self::one().saturating_sub(self)
}
fn mul_floor<N>(self, b: N) -> N
where
N: MultiplyArg + UniqueSaturatedInto<Self::Inner>,
Self::Inner: Into<N>,
{
overflow_prune_mul::<N, Self>(b, self.deconstruct(), Rounding::Down)
}
fn mul_ceil<N>(self, b: N) -> N
where
N: MultiplyArg + UniqueSaturatedInto<Self::Inner>,
Self::Inner: Into<N>,
{
overflow_prune_mul::<N, Self>(b, self.deconstruct(), Rounding::Up)
}
fn saturating_reciprocal_mul<N>(self, b: N) -> N
where
N: ReciprocalArg + UniqueSaturatedInto<Self::Inner>,
Self::Inner: Into<N>,
{
saturating_reciprocal_mul::<N, Self>(b, self.deconstruct(), Rounding::NearestPrefUp)
}
fn saturating_reciprocal_mul_floor<N>(self, b: N) -> N
where
N: ReciprocalArg + UniqueSaturatedInto<Self::Inner>,
Self::Inner: Into<N>,
{
saturating_reciprocal_mul::<N, Self>(b, self.deconstruct(), Rounding::Down)
}
fn saturating_reciprocal_mul_ceil<N>(self, b: N) -> N
where
N: ReciprocalArg + UniqueSaturatedInto<Self::Inner>,
Self::Inner: Into<N>,
{
saturating_reciprocal_mul::<N, Self>(b, self.deconstruct(), Rounding::Up)
}
fn deconstruct(self) -> Self::Inner;
fn from_parts(parts: Self::Inner) -> Self;
#[cfg(feature = "std")]
fn from_float(x: f64) -> Self;
#[deprecated = "Use from_float instead"]
#[cfg(feature = "std")]
fn from_fraction(x: f64) -> Self {
Self::from_float(x)
}
fn from_rational<N>(p: N, q: N) -> Self
where
N: RationalArg + TryInto<Self::Inner> + TryInto<Self::Upper>,
Self::Inner: Into<N>,
{
Self::from_rational_with_rounding(p, q, Rounding::Down).unwrap_or_else(|_| Self::one())
}
fn from_rational_with_rounding<N>(p: N, q: N, rounding: Rounding) -> Result<Self, ()>
where
N: RationalArg + TryInto<Self::Inner> + TryInto<Self::Upper>,
Self::Inner: Into<N>;
#[deprecated = "Use from_rational instead"]
fn from_rational_approximation<N>(p: N, q: N) -> Self
where
N: RationalArg + TryInto<Self::Inner> + TryInto<Self::Upper>,
Self::Inner: Into<N>,
{
Self::from_rational(p, q)
}
}
#[derive(Copy, Clone, sp_std::fmt::Debug)]
pub enum Rounding {
Up,
Down,
NearestPrefUp,
NearestPrefDown,
}
#[derive(Copy, Clone, sp_std::fmt::Debug)]
pub enum SignedRounding {
High,
Low,
NearestPrefHigh,
NearestPrefLow,
Major,
Minor,
NearestPrefMajor,
NearestPrefMinor,
}
impl Rounding {
pub const fn from_signed(rounding: SignedRounding, negative: bool) -> Self {
use Rounding::*;
use SignedRounding::*;
match (rounding, negative) {
(Low, true) | (Major, _) | (High, false) => Up,
(High, true) | (Minor, _) | (Low, false) => Down,
(NearestPrefMajor, _) | (NearestPrefHigh, false) | (NearestPrefLow, true) =>
NearestPrefUp,
(NearestPrefMinor, _) | (NearestPrefLow, false) | (NearestPrefHigh, true) =>
NearestPrefDown,
}
}
}
fn saturating_reciprocal_mul<N, P>(x: N, part: P::Inner, rounding: Rounding) -> N
where
N: Clone
+ UniqueSaturatedInto<P::Inner>
+ ops::Div<N, Output = N>
+ ops::Mul<N, Output = N>
+ ops::Add<N, Output = N>
+ ops::Rem<N, Output = N>
+ Saturating
+ Unsigned,
P: PerThing,
P::Inner: Into<N>,
{
let maximum: N = P::ACCURACY.into();
let c = rational_mul_correction::<N, P>(x.clone(), P::ACCURACY, part, rounding);
(x / part.into()).saturating_mul(maximum).saturating_add(c)
}
fn overflow_prune_mul<N, P>(x: N, part: P::Inner, rounding: Rounding) -> N
where
N: MultiplyArg + UniqueSaturatedInto<P::Inner>,
P: PerThing,
P::Inner: Into<N>,
{
let maximum: N = P::ACCURACY.into();
let part_n: N = part.into();
let c = rational_mul_correction::<N, P>(x.clone(), part, P::ACCURACY, rounding);
(x / maximum) * part_n + c
}
fn rational_mul_correction<N, P>(x: N, numer: P::Inner, denom: P::Inner, rounding: Rounding) -> N
where
N: MultiplyArg + UniqueSaturatedInto<P::Inner>,
P: PerThing,
P::Inner: Into<N>,
{
let numer_upper = P::Upper::from(numer);
let denom_n: N = denom.into();
let denom_upper = P::Upper::from(denom);
let rem = x.rem(denom_n);
let rem_inner = rem.saturated_into::<P::Inner>();
let rem_mul_upper = P::Upper::from(rem_inner) * numer_upper;
let mut rem_mul_div_inner = (rem_mul_upper / denom_upper).saturated_into::<P::Inner>();
match rounding {
Rounding::Down => {},
Rounding::Up => {
if rem_mul_upper % denom_upper > 0.into() {
rem_mul_div_inner += 1.into();
}
},
Rounding::NearestPrefDown =>
if rem_mul_upper % denom_upper > denom_upper / 2.into() {
rem_mul_div_inner += 1.into();
},
Rounding::NearestPrefUp =>
if rem_mul_upper % denom_upper >= denom_upper / 2.into() + denom_upper % 2.into() {
rem_mul_div_inner += 1.into();
},
}
rem_mul_div_inner.into()
}
fn div_rounded<N>(n: N, d: N, r: Rounding) -> N
where
N: Clone
+ Eq
+ Ord
+ Zero
+ One
+ AddAssign
+ Add<Output = N>
+ Rem<Output = N>
+ Div<Output = N>,
{
let mut o = n.clone() / d.clone();
use Rounding::*;
let two = || N::one() + N::one();
if match r {
Up => !((n % d).is_zero()),
NearestPrefDown => {
let rem = n % d.clone();
rem > d / two()
},
NearestPrefUp => {
let rem = n % d.clone();
rem >= d.clone() / two() + d % two()
},
Down => false,
} {
o += N::one()
}
o
}
macro_rules! implement_per_thing {
(
$name:ident,
$test_mod:ident,
[$($test_units:tt),+],
$max:tt,
$type:ty,
$upper_type:ty,
$title:expr $(,)?
) => {
#[doc = $title]
#[cfg_attr(feature = "std", derive(Serialize, Deserialize))]
#[derive(Encode, Copy, Clone, PartialEq, Eq, codec::MaxEncodedLen, PartialOrd, Ord, scale_info::TypeInfo)]
pub struct $name($type);
impl CompactAs for $name {
type As = $type;
fn encode_as(&self) -> &Self::As {
&self.0
}
fn decode_from(x: Self::As) -> Result<Self, codec::Error> {
Ok(Self::from_parts(x))
}
}
impl From<codec::Compact<$name>> for $name {
fn from(x: codec::Compact<$name>) -> $name {
x.0
}
}
#[cfg(feature = "std")]
impl sp_std::fmt::Debug for $name {
fn fmt(&self, fmt: &mut std::fmt::Formatter) -> std::fmt::Result {
if $max == <$type>::max_value() {
let pc = (self.0 as f64) / (self.0 as f64) * 100f64;
write!(fmt, "{:.2}% ({}/{})", pc, self.0, $max)
} else {
let divisor = $max / 100;
let units = self.0 / divisor;
let rest = self.0 % divisor;
write!(fmt, "{}", units)?;
if rest > 0 {
write!(fmt, ".")?;
let mut m = $max / 100;
while rest % m > 0 {
m /= 10;
write!(fmt, "{:01}", rest / m % 10)?;
}
}
write!(fmt, "%")
}
}
}
#[cfg(not(feature = "std"))]
impl sp_std::fmt::Debug for $name {
fn fmt(&self, fmt: &mut sp_std::fmt::Formatter) -> sp_std::fmt::Result {
if $max == <$type>::max_value() {
write!(fmt, "{}/{}", self.0, $max)
} else {
let units = self.0 / ($max / 100);
let rest = self.0 % ($max / 100);
write!(fmt, "{}", units)?;
if rest > 0 {
write!(fmt, ".")?;
let mut m = $max / 100;
while rest % m > 0 {
m /= 10;
write!(fmt, "{:01}", rest / m % 10)?;
}
}
write!(fmt, "%")
}
}
}
impl PerThing for $name {
type Inner = $type;
type Upper = $upper_type;
const ACCURACY: Self::Inner = $max;
fn deconstruct(self) -> Self::Inner { self.0 }
fn from_parts(parts: Self::Inner) -> Self { Self(parts.min($max)) }
#[cfg(feature = "std")]
fn from_float(x: f64) -> Self {
Self::from_parts((x.max(0.).min(1.) * $max as f64) as Self::Inner)
}
fn from_rational_with_rounding<N>(p: N, q: N, r: Rounding) -> Result<Self, ()>
where
N: Clone
+ Ord
+ TryInto<Self::Inner>
+ TryInto<Self::Upper>
+ ops::Div<N, Output = N>
+ ops::Rem<N, Output = N>
+ ops::Add<N, Output = N>
+ ops::AddAssign<N>
+ Unsigned
+ Zero
+ One,
Self::Inner: Into<N>
{
if q.is_zero() { return Err(()) }
if p > q { return Err(()) }
let factor = div_rounded::<N>(q.clone(), $max.into(), Rounding::Up).max(One::one());
let q_reduce: $type = div_rounded(q, factor.clone(), r)
.try_into()
.map_err(|_| "Failed to convert")
.expect(
"`q / ceil(q/$max) < $max`; macro prevents any type being created that \
does not satisfy this; qed"
);
let p_reduce: $type = div_rounded(p, factor, r)
.try_into()
.map_err(|_| "Failed to convert")
.expect(
"`p / ceil(p/$max) < $max`; macro prevents any type being created that \
does not satisfy this; qed"
);
let n = p_reduce as $upper_type * <$upper_type>::from($max);
let d = q_reduce as $upper_type;
let part = div_rounded(n, d, r);
Ok($name(part as Self::Inner))
}
}
impl $name {
#[allow(unused_comparisons)]
pub const fn from_parts(parts: $type) -> Self {
Self([parts, $max][(parts > $max) as usize])
}
pub const fn from_percent(x: $type) -> Self {
Self(([x, 100][(x > 100) as usize] as $upper_type * $max as $upper_type / 100) as $type)
}
pub const fn one() -> Self {
Self::from_parts($max)
}
pub fn is_one(&self) -> bool {
PerThing::is_one(self)
}
pub const fn zero() -> Self {
Self::from_parts(0)
}
pub fn is_zero(&self) -> bool {
PerThing::is_zero(self)
}
pub const fn deconstruct(self) -> $type {
self.0
}
pub fn square(self) -> Self {
PerThing::square(self)
}
#[cfg(feature = "std")]
pub fn from_float(x: f64) -> Self {
<Self as PerThing>::from_float(x)
}
#[deprecated = "Use `PerThing::from_rational` instead"]
pub fn from_rational_approximation<N>(p: N, q: N) -> Self
where
N: RationalArg+ TryInto<$type> + TryInto<$upper_type>,
$type: Into<N>
{
<Self as PerThing>::from_rational(p, q)
}
pub fn from_rational<N>(p: N, q: N) -> Self
where
N: RationalArg+ TryInto<$type> + TryInto<$upper_type>,
$type: Into<N>
{
<Self as PerThing>::from_rational(p, q)
}
pub fn int_mul(self, b: $type) -> Self {
PerThing::from_parts(self.0.saturating_mul(b))
}
pub fn int_div(self, b: Self) -> $type {
self.0 / b.0
}
pub fn mul_floor<N>(self, b: N) -> N
where
N: MultiplyArg + UniqueSaturatedInto<$type>,
$type: Into<N>,
{
PerThing::mul_floor(self, b)
}
pub fn mul_ceil<N>(self, b: N) -> N
where
N: MultiplyArg + UniqueSaturatedInto<$type>,
$type: Into<N>,
{
PerThing::mul_ceil(self, b)
}
pub fn saturating_reciprocal_mul<N>(self, b: N) -> N
where
N: ReciprocalArg + UniqueSaturatedInto<$type>,
$type: Into<N>,
{
PerThing::saturating_reciprocal_mul(self, b)
}
pub fn saturating_reciprocal_mul_floor<N>(self, b: N) -> N
where
N: ReciprocalArg + UniqueSaturatedInto<$type>,
$type: Into<N>,
{
PerThing::saturating_reciprocal_mul_floor(self, b)
}
pub fn saturating_reciprocal_mul_ceil<N>(self, b: N) -> N
where
N: ReciprocalArg + UniqueSaturatedInto<$type>,
$type: Into<N>,
{
PerThing::saturating_reciprocal_mul_ceil(self, b)
}
pub fn saturating_div(self, rhs: Self, r: Rounding) -> Self {
let p = self.0;
let q = rhs.0;
Self::from_rational_with_rounding(p, q, r).unwrap_or_else(|_| Self::one())
}
}
impl Saturating for $name {
fn saturating_add(self, rhs: Self) -> Self {
Self::from_parts(self.0.saturating_add(rhs.0))
}
fn saturating_sub(self, rhs: Self) -> Self {
Self::from_parts(self.0.saturating_sub(rhs.0))
}
fn saturating_mul(self, rhs: Self) -> Self {
self * rhs
}
fn saturating_pow(self, exp: usize) -> Self {
self.pow(exp)
}
}
impl codec::Decode for $name {
fn decode<I: codec::Input>(input: &mut I) -> Result<Self, codec::Error> {
let inner = <$type as codec::Decode>::decode(input)?;
if inner <= <Self as PerThing>::ACCURACY {
Ok(Self(inner))
} else {
Err("Value is greater than allowed maximum!".into())
}
}
}
impl Bounded for $name {
fn min_value() -> Self {
<Self as PerThing>::zero()
}
fn max_value() -> Self {
<Self as PerThing>::one()
}
}
impl ops::Mul for $name {
type Output = Self;
fn mul(self, rhs: Self) -> Self::Output {
let a = self.0 as $upper_type;
let b = rhs.0 as $upper_type;
let m = <$upper_type>::from($max);
let parts = a * b / m;
Self::from_parts(parts as $type)
}
}
impl Pow<usize> for $name {
type Output = Self;
fn pow(mut self, exp: usize) -> Self::Output {
if exp == 0 || self.is_one() {
return Self::one()
}
let mut result = self;
let mut exp = exp - 1;
while exp > 0 && !result.is_zero() {
if exp % 2 != 0 {
result = result * self;
exp -= 1;
}
self = self.square();
exp /= 2;
}
result
}
}
impl ops::Div for $name {
type Output = Self;
fn div(self, rhs: Self) -> Self::Output {
let p = self.0;
let q = rhs.0;
Self::from_rational(p, q)
}
}
impl Default for $name {
fn default() -> Self {
<Self as PerThing>::zero()
}
}
impl<N> ops::Mul<N> for $name
where
N: Clone + UniqueSaturatedInto<$type> + ops::Rem<N, Output=N>
+ ops::Div<N, Output=N> + ops::Mul<N, Output=N> + ops::Add<N, Output=N> + Unsigned,
$type: Into<N>,
{
type Output = N;
fn mul(self, b: N) -> Self::Output {
overflow_prune_mul::<N, Self>(b, self.deconstruct(), Rounding::NearestPrefDown)
}
}
impl<N> ops::Div<N> for $name where $type: TryFrom<N> {
type Output = Self;
fn div(self, b: N) -> Self::Output {
<$type>::try_from(b).map_or(Self::zero(), |d| Self::from_parts(self.0 / d))
}
}
impl Add<Self> for $name {
type Output = $name;
#[allow(unused_comparisons)]
#[inline]
fn add(self, rhs: Self) -> Self::Output {
let inner = self.deconstruct().add(rhs.deconstruct());
debug_assert!(inner <= $max);
$name::from_parts(inner)
}
}
impl CheckedAdd for $name {
#[allow(unused_comparisons)]
#[inline]
fn checked_add(&self, rhs: &Self) -> Option<Self> {
self.deconstruct()
.checked_add(rhs.deconstruct())
.map(|inner| if inner > $max { None } else { Some($name::from_parts(inner)) })
.flatten()
}
}
impl Sub<Self> for $name {
type Output = $name;
#[inline]
fn sub(self, rhs: Self) -> Self::Output {
$name::from_parts(self.deconstruct().sub(rhs.deconstruct()))
}
}
impl CheckedSub for $name {
#[inline]
fn checked_sub(&self, v: &Self) -> Option<Self> {
self.deconstruct().checked_sub(v.deconstruct()).map($name::from_parts)
}
}
impl SaturatingAdd for $name {
#[inline]
fn saturating_add(&self, v: &Self) -> Self {
$name::from_parts(self.deconstruct().saturating_add(v.deconstruct()))
}
}
impl SaturatingSub for $name {
#[inline]
fn saturating_sub(&self, v: &Self) -> Self {
$name::from_parts(self.deconstruct().saturating_sub(v.deconstruct()))
}
}
impl CheckedMul for $name {
#[inline]
fn checked_mul(&self, rhs: &Self) -> Option<Self> {
Some(*self * *rhs)
}
}
impl $crate::traits::Zero for $name {
fn zero() -> Self {
Self::zero()
}
fn is_zero(&self) -> bool {
self == &Self::zero()
}
}
impl $crate::traits::One for $name {
fn one() -> Self {
Self::one()
}
}
#[cfg(test)]
mod $test_mod {
use codec::{Encode, Decode};
use super::{$name, Saturating, PerThing};
use crate::traits::Zero;
#[test]
fn macro_expanded_correctly() {
assert!(2 * ($max as $upper_type) < <$upper_type>::max_value());
assert!(<$upper_type>::from($max) < <$upper_type>::max_value());
assert!((<$type>::max_value() as $upper_type) <= <$upper_type>::max_value());
assert!(<$upper_type>::from($max).checked_mul($max.into()).is_some());
assert!(<$upper_type>::from($max) * <$upper_type>::from($max) < <$upper_type>::max_value());
}
#[derive(Encode, Decode, PartialEq, Eq, Debug)]
struct WithCompact<T: codec::HasCompact> {
data: T,
}
#[test]
fn has_compact() {
let data = WithCompact { data: $name(1) };
let encoded = data.encode();
assert_eq!(data, WithCompact::<$name>::decode(&mut &encoded[..]).unwrap());
}
#[test]
fn compact_encoding() {
let tests = [
(0 as $type, 1usize),
(1 as $type, 1usize),
(63, 1),
(64, 2),
(65, 2),
];
for &(n, l) in &tests {
let compact: codec::Compact<$name> = $name(n).into();
let encoded = compact.encode();
assert_eq!(encoded.len(), l);
let decoded = <codec::Compact<$name>>::decode(&mut & encoded[..])
.unwrap();
let per_thingy: $name = decoded.into();
assert_eq!(per_thingy, $name(n));
}
}
#[test]
fn from_parts_cannot_overflow() {
assert_eq!(<$name>::from_parts($max.saturating_add(1)), <$name>::one());
}
#[test]
fn has_max_encoded_len() {
struct AsMaxEncodedLen<T: codec::MaxEncodedLen> {
_data: T,
}
let _ = AsMaxEncodedLen { _data: $name(1) };
}
#[test]
fn fail_on_invalid_encoded_value() {
let value = <$upper_type>::from($max) * 2;
let casted = value as $type;
let encoded = casted.encode();
if <$upper_type>::from(casted) == value {
assert_eq!(
$name::decode(&mut &encoded[..]),
Err("Value is greater than allowed maximum!".into()),
);
}
}
#[test]
fn per_thing_api_works() {
assert_eq!($name::zero(), $name::from_parts(Zero::zero()));
assert_eq!($name::one(), $name::from_parts($max));
assert_eq!($name::ACCURACY, $max);
assert_eq!($name::from_percent(0), $name::from_parts(Zero::zero()));
assert_eq!($name::from_percent(10), $name::from_parts($max / 10));
assert_eq!($name::from_percent(50), $name::from_parts($max / 2));
assert_eq!($name::from_percent(100), $name::from_parts($max));
assert_eq!($name::from_percent(200), $name::from_parts($max));
assert_eq!($name::from_float(0.0), $name::from_parts(Zero::zero()));
assert_eq!($name::from_float(0.1), $name::from_parts($max / 10));
assert_eq!($name::from_float(1.0), $name::from_parts($max));
assert_eq!($name::from_float(2.0), $name::from_parts($max));
assert_eq!($name::from_float(-1.0), $name::from_parts(Zero::zero()));
}
#[test]
fn percent_trait_impl_works() {
assert_eq!(<$name as PerThing>::from_percent(0), $name::from_parts(Zero::zero()));
assert_eq!(<$name as PerThing>::from_percent(10), $name::from_parts($max / 10));
assert_eq!(<$name as PerThing>::from_percent(50), $name::from_parts($max / 2));
assert_eq!(<$name as PerThing>::from_percent(100), $name::from_parts($max));
assert_eq!(<$name as PerThing>::from_percent(200), $name::from_parts($max));
}
macro_rules! u256ify {
($val:expr) => {
Into::<U256>::into($val)
};
}
macro_rules! per_thing_mul_test {
($num_type:tt) => {
assert_eq!(
$name::from_float(1.0) * $num_type::max_value(),
$num_type::max_value()
);
if $max % 100 == 0 {
assert_eq_error_rate!(
$name::from_percent(99) * $num_type::max_value(),
((Into::<U256>::into($num_type::max_value()) * 99u32) / 100u32).as_u128() as $num_type,
1,
);
assert_eq!(
$name::from_float(0.5) * $num_type::max_value(),
$num_type::max_value() / 2,
);
assert_eq_error_rate!(
$name::from_percent(1) * $num_type::max_value(),
$num_type::max_value() / 100,
1,
);
} else {
assert_eq!(
$name::from_float(0.99) * <$num_type>::max_value(),
(
(
u256ify!($name::from_float(0.99).0) *
u256ify!(<$num_type>::max_value()) /
u256ify!($max)
).as_u128()
) as $num_type,
);
assert_eq!(
$name::from_float(0.50) * <$num_type>::max_value(),
(
(
u256ify!($name::from_float(0.50).0) *
u256ify!(<$num_type>::max_value()) /
u256ify!($max)
).as_u128()
) as $num_type,
);
assert_eq!(
$name::from_float(0.01) * <$num_type>::max_value(),
(
(
u256ify!($name::from_float(0.01).0) *
u256ify!(<$num_type>::max_value()) /
u256ify!($max)
).as_u128()
) as $num_type,
);
}
assert_eq!($name::from_float(0.0) * $num_type::max_value(), 0);
assert_eq!($name::one() * $num_type::max_value(), $num_type::max_value());
assert_eq!($name::zero() * $num_type::max_value(), 0);
}
}
#[test]
fn per_thing_mul_works() {
use primitive_types::U256;
assert_eq!(
$name::from_rational(1 as $type, 3) * 30 as $type,
10,
);
$(per_thing_mul_test!($test_units);)*
}
#[test]
fn per_thing_mul_rounds_to_nearest_number() {
assert_eq!($name::from_percent(33) * 10u64, 3);
assert_eq!($name::from_percent(34) * 10u64, 3);
assert_eq!($name::from_percent(35) * 10u64, 3);
assert_eq!($name::from_percent(36) * 10u64, 4);
}
#[test]
fn per_thing_multiplication_with_large_number() {
use primitive_types::U256;
let max_minus_one = $max - 1;
assert_eq_error_rate!(
$name::from_parts(max_minus_one) * std::u128::MAX,
((Into::<U256>::into(std::u128::MAX) * max_minus_one) / $max).as_u128(),
1,
);
}
macro_rules! per_thing_from_rationale_approx_test {
($num_type:tt) => {
assert_eq!(
$name::from_rational(1 as $num_type, 0),
$name::one(),
);
assert_eq!(
$name::from_rational(1 as $num_type, 1),
$name::one(),
);
assert_eq_error_rate!(
$name::from_rational(1 as $num_type, 3).0,
$name::from_parts($max / 3).0,
2
);
assert_eq!(
$name::from_rational(1 as $num_type, 10),
$name::from_float(0.10),
);
assert_eq!(
$name::from_rational(1 as $num_type, 4),
$name::from_float(0.25),
);
assert_eq!(
$name::from_rational(1 as $num_type, 4),
$name::from_rational(2 as $num_type, 8),
);
assert_eq_error_rate!(
$name::from_rational(
$num_type::max_value() - 1,
$num_type::max_value()
).0 as $upper_type,
$name::one().0 as $upper_type,
2,
);
assert_eq_error_rate!(
$name::from_rational(
$num_type::max_value() / 3,
$num_type::max_value()
).0 as $upper_type,
$name::from_parts($max / 3).0 as $upper_type,
2,
);
assert_eq!(
$name::from_rational(1, $num_type::max_value()),
$name::zero(),
);
};
}
#[test]
fn per_thing_from_rationale_approx_works() {
let max_value = <$upper_type>::from($max);
assert_eq!(
$name::from_rational(max_value - 1, max_value + 1),
$name::from_parts($max - 2),
);
assert_eq!(
$name::from_rational(1, $max - 1),
$name::from_parts(1),
);
assert_eq!(
$name::from_rational(1, $max),
$name::from_parts(1),
);
assert_eq!(
$name::from_rational(2, 2 * max_value - 1),
$name::from_parts(1),
);
assert_eq!(
$name::from_rational(1, max_value + 1),
$name::zero(),
);
assert_eq!(
$name::from_rational(3 * max_value / 2, 3 * max_value),
$name::from_float(0.5),
);
$(per_thing_from_rationale_approx_test!($test_units);)*
}
#[test]
fn per_things_mul_operates_in_output_type() {
assert_eq!($name::from_float(0.5) * 100u64, 50u64);
assert_eq!($name::from_float(0.5) * 100u128, 50u128);
}
#[test]
fn per_thing_saturating_op_works() {
assert_eq_error_rate!(
$name::from_float(0.5).saturating_add($name::from_float(0.4)).0 as $upper_type,
$name::from_float(0.9).0 as $upper_type,
2,
);
assert_eq_error_rate!(
$name::from_float(0.5).saturating_add($name::from_float(0.5)).0 as $upper_type,
$name::one().0 as $upper_type,
2,
);
assert_eq!(
$name::from_float(0.6).saturating_add($name::from_float(0.5)),
$name::one(),
);
assert_eq_error_rate!(
$name::from_float(0.6).saturating_sub($name::from_float(0.5)).0 as $upper_type,
$name::from_float(0.1).0 as $upper_type,
2,
);
assert_eq!(
$name::from_float(0.6).saturating_sub($name::from_float(0.6)),
$name::from_float(0.0),
);
assert_eq!(
$name::from_float(0.6).saturating_sub($name::from_float(0.7)),
$name::from_float(0.0),
);
assert_eq_error_rate!(
$name::from_float(0.5).saturating_mul($name::from_float(0.5)).0 as $upper_type,
$name::from_float(0.25).0 as $upper_type,
2,
);
assert_eq_error_rate!(
$name::from_float(0.2).saturating_mul($name::from_float(0.2)).0 as $upper_type,
$name::from_float(0.04).0 as $upper_type,
2,
);
assert_eq_error_rate!(
$name::from_float(0.1).saturating_mul($name::from_float(0.1)).0 as $upper_type,
$name::from_float(0.01).0 as $upper_type,
1,
);
}
#[test]
fn per_thing_square_works() {
assert_eq!($name::from_float(1.0).square(), $name::from_float(1.0));
assert_eq!($name::from_float(0.5).square(), $name::from_float(0.25));
assert_eq!($name::from_float(0.1).square(), $name::from_float(0.01));
assert_eq!(
$name::from_float(0.02).square(),
$name::from_parts((4 * <$upper_type>::from($max) / 100 / 100) as $type)
);
}
#[test]
fn per_things_div_works() {
assert_eq_error_rate!(
($name::from_float(0.1) / $name::from_float(0.20)).0 as $upper_type,
$name::from_float(0.50).0 as $upper_type,
2,
);
assert_eq_error_rate!(
($name::from_float(0.1) / $name::from_float(0.10)).0 as $upper_type,
$name::from_float(1.0).0 as $upper_type,
2,
);
assert_eq_error_rate!(
($name::from_float(0.1) / $name::from_float(0.0)).0 as $upper_type,
$name::from_float(1.0).0 as $upper_type,
2,
);
assert_eq_error_rate!(
($name::from_float(0.10) / $name::from_float(0.05)).0 as $upper_type,
$name::from_float(1.0).0 as $upper_type,
2,
);
assert_eq_error_rate!(
($name::from_float(1.0) / $name::from_float(0.5)).0 as $upper_type,
$name::from_float(1.0).0 as $upper_type,
2,
);
}
#[test]
fn saturating_pow_works() {
assert_eq!(
$name::from_parts($max / 2).saturating_pow(0),
$name::from_parts($max),
);
assert_eq!(
$name::from_parts($max / 2).saturating_pow(1),
$name::from_parts($max / 2),
);
assert_eq!(
$name::from_parts($max / 2).saturating_pow(2),
$name::from_parts($max / 2).square(),
);
for n in 1..=16 {
assert_eq!(
$name::from_parts($max / 2).saturating_pow(n),
$name::from_parts(($max as u128 / 2u128.pow(n as u32)) as $type),
);
}
assert_eq!(
$name::from_parts(0).saturating_pow(3),
$name::from_parts(0),
);
assert_eq!(
$name::from_parts($max).saturating_pow(3),
$name::from_parts($max),
);
assert_eq!(
$name::from_parts($max / 2).saturating_pow(2usize.pow(31)),
$name::from_parts(0),
);
}
#[test]
fn saturating_reciprocal_mul_works() {
assert_eq!(
$name::from_parts($max).saturating_reciprocal_mul(<$type>::from(10u8)),
10,
);
assert_eq!(
$name::from_parts($max / 2).saturating_reciprocal_mul(<$type>::from(10u8)),
20,
);
assert_eq!(
$name::from_parts(1).saturating_reciprocal_mul($max),
<$type>::max_value(),
);
assert_eq!(
$name::from_percent(60).saturating_reciprocal_mul(<$type>::from(10u8)),
17,
);
assert_eq!(
$name::from_percent(60).saturating_reciprocal_mul_floor(<$type>::from(10u8)),
16,
);
assert_eq!(
$name::from_percent(61).saturating_reciprocal_mul(<$type>::from(10u8)),
16,
);
assert_eq!(
$name::from_percent(61).saturating_reciprocal_mul_ceil(<$type>::from(10u8)),
17,
);
}
#[test]
fn saturating_truncating_mul_works() {
assert_eq!(
$name::from_percent(49).mul_floor(10 as $type),
4,
);
let a: $upper_type = $name::from_percent(50).mul_floor(($max as $upper_type).pow(2));
let b: $upper_type = ($max as $upper_type).pow(2) / 2;
if $max % 2 == 0 {
assert_eq!(a, b);
} else {
assert!(b - a < ($max as $upper_type).pow(2) / 100 as $upper_type);
}
}
#[test]
fn rational_mul_correction_works() {
assert_eq!(
super::rational_mul_correction::<$type, $name>(
<$type>::max_value(),
<$type>::max_value(),
<$type>::max_value(),
super::Rounding::NearestPrefDown,
),
0,
);
assert_eq!(
super::rational_mul_correction::<$type, $name>(
<$type>::max_value() - 1,
<$type>::max_value(),
<$type>::max_value(),
super::Rounding::NearestPrefDown,
),
<$type>::max_value() - 1,
);
assert_eq!(
super::rational_mul_correction::<$upper_type, $name>(
((<$type>::max_value() - 1) as $upper_type).pow(2),
<$type>::max_value(),
<$type>::max_value(),
super::Rounding::NearestPrefDown,
),
1,
);
assert_eq!(
super::rational_mul_correction::<$upper_type, $name>(
(<$type>::max_value() as $upper_type).pow(2) - 1,
<$type>::max_value(),
<$type>::max_value(),
super::Rounding::NearestPrefDown,
),
<$upper_type>::from((<$type>::max_value() - 1)),
);
assert_eq!(
super::rational_mul_correction::<$upper_type, $name>(
(<$type>::max_value() as $upper_type).pow(2),
<$type>::max_value(),
2 as $type,
super::Rounding::NearestPrefDown,
),
<$type>::max_value() as $upper_type / 2,
);
assert_eq!(
super::rational_mul_correction::<$upper_type, $name>(
(<$type>::max_value() as $upper_type).pow(2) - 1,
2 as $type,
<$type>::max_value(),
super::Rounding::NearestPrefDown,
),
2,
);
assert_eq!(
super::rational_mul_correction::<$upper_type, $name>(
(<$type>::max_value() as $upper_type).pow(2) - 1,
2 as $type,
<$type>::max_value(),
super::Rounding::Down,
),
1,
);
}
#[test]
#[allow(unused)]
fn const_fns_work() {
const C1: $name = $name::from_percent(50);
const C2: $name = $name::one();
const C3: $name = $name::zero();
const C4: $name = $name::from_parts(1);
const C5: bool = C1.deconstruct() == 0;
}
#[test]
fn compact_decoding_saturate_when_beyond_accuracy() {
use num_traits::Bounded;
use codec::Compact;
let p = Compact::<$name>::decode(&mut &Compact(<$type>::max_value()).encode()[..])
.unwrap();
assert_eq!((p.0).0, $max);
assert_eq!($name::from(p), $name::max_value());
}
#[allow(unused_imports)]
use super::*;
#[test]
fn test_add_basic() {
assert_eq!($name::from_parts(1) + $name::from_parts(1), $name::from_parts(2));
assert_eq!($name::from_parts(10) + $name::from_parts(10), $name::from_parts(20));
}
#[test]
fn test_basic_checked_add() {
assert_eq!(
$name::from_parts(1).checked_add(&$name::from_parts(1)),
Some($name::from_parts(2))
);
assert_eq!(
$name::from_parts(10).checked_add(&$name::from_parts(10)),
Some($name::from_parts(20))
);
assert_eq!(
$name::from_parts(<$type>::MAX).checked_add(&$name::from_parts(<$type>::MAX)),
None
);
assert_eq!(
$name::from_parts($max).checked_add(&$name::from_parts(1)),
None
);
}
#[test]
fn test_basic_saturating_add() {
assert_eq!(
$name::from_parts(1).saturating_add($name::from_parts(1)),
$name::from_parts(2)
);
assert_eq!(
$name::from_parts(10).saturating_add($name::from_parts(10)),
$name::from_parts(20)
);
assert_eq!(
$name::from_parts(<$type>::MAX).saturating_add($name::from_parts(<$type>::MAX)),
$name::from_parts(<$type>::MAX)
);
}
#[test]
fn test_basic_sub() {
assert_eq!($name::from_parts(2) - $name::from_parts(1), $name::from_parts(1));
assert_eq!($name::from_parts(20) - $name::from_parts(10), $name::from_parts(10));
}
#[test]
fn test_basic_checked_sub() {
assert_eq!(
$name::from_parts(2).checked_sub(&$name::from_parts(1)),
Some($name::from_parts(1))
);
assert_eq!(
$name::from_parts(20).checked_sub(&$name::from_parts(10)),
Some($name::from_parts(10))
);
assert_eq!($name::from_parts(0).checked_sub(&$name::from_parts(1)), None);
}
#[test]
fn test_basic_saturating_sub() {
assert_eq!(
$name::from_parts(2).saturating_sub($name::from_parts(1)),
$name::from_parts(1)
);
assert_eq!(
$name::from_parts(20).saturating_sub($name::from_parts(10)),
$name::from_parts(10)
);
assert_eq!(
$name::from_parts(0).saturating_sub($name::from_parts(1)),
$name::from_parts(0)
);
}
#[test]
fn test_basic_checked_mul() {
assert_eq!(
$name::from_parts($max).checked_mul(&$name::from_parts($max)),
Some($name::from_percent(100))
);
assert_eq!(
$name::from_percent(100).checked_mul(&$name::from_percent(100)),
Some($name::from_percent(100))
);
assert_eq!(
$name::from_percent(50).checked_mul(&$name::from_percent(26)),
Some($name::from_percent(13))
);
assert_eq!(
$name::from_percent(0).checked_mul(&$name::from_percent(0)),
Some($name::from_percent(0))
);
}
}
};
}
macro_rules! implement_per_thing_with_perthousand {
(
$name:ident,
$test_mod:ident,
$pt_test_mod:ident,
[$($test_units:tt),+],
$max:tt,
$type:ty,
$upper_type:ty,
$title:expr $(,)?
) => {
implement_per_thing! {
$name, $test_mod, [ $( $test_units ),+ ], $max, $type, $upper_type, $title,
}
impl $name {
pub const fn from_perthousand(x: $type) -> Self {
Self(([x, 1000][(x > 1000) as usize] as $upper_type * $max as $upper_type / 1000) as $type)
}
}
#[cfg(test)]
mod $pt_test_mod {
use super::$name;
use crate::traits::Zero;
#[test]
fn from_perthousand_works() {
assert_eq!($name::from_perthousand(00), $name::from_parts(Zero::zero()));
assert_eq!($name::from_perthousand(100), $name::from_parts($max / 10));
assert_eq!($name::from_perthousand(1000), $name::from_parts($max));
assert_eq!($name::from_perthousand(2000), $name::from_parts($max));
}
#[test]
#[allow(unused)]
fn const_fns_work() {
const C1: $name = $name::from_perthousand(500);
}
}
}
}
#[test]
fn from_rational_with_rounding_works_in_extreme_case() {
use Rounding::*;
for &r in [Down, NearestPrefDown, NearestPrefUp, Up].iter() {
Percent::from_rational_with_rounding(1, u64::max_value(), r).unwrap();
Percent::from_rational_with_rounding(1, u32::max_value(), r).unwrap();
Percent::from_rational_with_rounding(1, u16::max_value(), r).unwrap();
Percent::from_rational_with_rounding(u64::max_value() - 1, u64::max_value(), r).unwrap();
Percent::from_rational_with_rounding(u32::max_value() - 1, u32::max_value(), r).unwrap();
Percent::from_rational_with_rounding(u16::max_value() - 1, u16::max_value(), r).unwrap();
PerU16::from_rational_with_rounding(1, u64::max_value(), r).unwrap();
PerU16::from_rational_with_rounding(1, u32::max_value(), r).unwrap();
PerU16::from_rational_with_rounding(1, u16::max_value(), r).unwrap();
PerU16::from_rational_with_rounding(u64::max_value() - 1, u64::max_value(), r).unwrap();
PerU16::from_rational_with_rounding(u32::max_value() - 1, u32::max_value(), r).unwrap();
PerU16::from_rational_with_rounding(u16::max_value() - 1, u16::max_value(), r).unwrap();
Permill::from_rational_with_rounding(1, u64::max_value(), r).unwrap();
Permill::from_rational_with_rounding(1, u32::max_value(), r).unwrap();
Permill::from_rational_with_rounding(u64::max_value() - 1, u64::max_value(), r).unwrap();
Permill::from_rational_with_rounding(u32::max_value() - 1, u32::max_value(), r).unwrap();
Perbill::from_rational_with_rounding(1, u64::max_value(), r).unwrap();
Perbill::from_rational_with_rounding(1, u32::max_value(), r).unwrap();
Perbill::from_rational_with_rounding(u64::max_value() - 1, u64::max_value(), r).unwrap();
Perbill::from_rational_with_rounding(u32::max_value() - 1, u32::max_value(), r).unwrap();
}
}
implement_per_thing!(Percent, test_per_cent, [u32, u64, u128], 100u8, u8, u16, "_Percent_",);
implement_per_thing_with_perthousand!(
PerU16,
test_peru16,
test_peru16_extra,
[u32, u64, u128],
65535_u16,
u16,
u32,
"_Parts per 65535_",
);
implement_per_thing_with_perthousand!(
Permill,
test_permill,
test_permill_extra,
[u32, u64, u128],
1_000_000u32,
u32,
u64,
"_Parts per Million_",
);
implement_per_thing_with_perthousand!(
Perbill,
test_perbill,
test_perbill_extra,
[u32, u64, u128],
1_000_000_000u32,
u32,
u64,
"_Parts per Billion_",
);
implement_per_thing_with_perthousand!(
Perquintill,
test_perquintill,
test_perquintill_extra,
[u64, u128],
1_000_000_000_000_000_000u64,
u64,
u128,
"_Parts per Quintillion_",
);