use num_traits::Zero;
use sp_std::{cmp::Ordering, ops, prelude::*, vec, cell::RefCell, convert::TryFrom};
pub type Single = u32;
pub type Double = u64;
const SHIFT: usize = 32;
const B: Double = Single::max_value() as Double + 1;
pub fn split(a: Double) -> (Single, Single) {
let al = a as Single;
let ah = (a >> SHIFT) as Single;
(ah, al)
}
pub fn mul_single(a: Single, b: Single) -> Double {
let a: Double = a.into();
let b: Double = b.into();
a * b
}
pub fn add_single(a: Single, b: Single) -> (Single, Single) {
let a: Double = a.into();
let b: Double = b.into();
let q = a + b;
let (carry, r) = split(q);
(r, carry)
}
fn div_single(a: Double, b: Single) -> (Double, Single) {
let b: Double = b.into();
let q = a / b;
let r = a % b;
(q, r as Single)
}
#[derive(Clone, Default)]
pub struct BigUint {
pub(crate) digits: Vec<Single>,
}
impl BigUint {
pub fn with_capacity(size: usize) -> Self {
Self { digits: vec![0; size.max(1)] }
}
pub fn from_limbs(limbs: &[Single]) -> Self {
if !limbs.is_empty() {
Self { digits: limbs.to_vec() }
} else {
Zero::zero()
}
}
pub fn len(&self) -> usize { self.digits.len() }
pub fn get(&self, index: usize) -> Single {
self.digits[self.len() - 1 - index]
}
pub fn checked_get(&self, index: usize) -> Option<Single> {
let i = self.len().checked_sub(1)?;
let j = i.checked_sub(index)?;
self.digits.get(j).cloned()
}
pub fn set(&mut self, index: usize, value: Single) {
let len = self.digits.len();
self.digits[len - 1 - index] = value;
}
pub fn lsb(&self) -> Single {
self.digits[self.len() - 1]
}
pub fn msb(&self) -> Single {
self.digits[0]
}
pub fn lstrip(&mut self) {
if self.len().is_zero() { return; }
let index = self.digits.iter().position(|&elem| elem != 0).unwrap_or(self.len() - 1);
if index > 0 {
self.digits = self.digits[index..].to_vec()
}
}
pub fn lpad(&mut self, size: usize) {
let n = self.len();
if n >= size { return; }
let pad = size - n;
let mut new_digits = (0..pad).map(|_| 0).collect::<Vec<Single>>();
new_digits.extend(self.digits.iter());
self.digits = new_digits;
}
pub fn add(self, other: &Self) -> Self {
let n = self.len().max(other.len());
let mut k: Double = 0;
let mut w = Self::with_capacity(n + 1);
for j in 0..n {
let u = Double::from(self.checked_get(j).unwrap_or(0));
let v = Double::from(other.checked_get(j).unwrap_or(0));
let s = u + v + k;
w.set(j, (s % B) as Single);
k = s / B;
}
w.set(n, k as Single);
w
}
pub fn sub(self, other: &Self) -> Result<Self, Self> {
let n = self.len().max(other.len());
let mut k = 0;
let mut w = Self::with_capacity(n);
for j in 0..n {
let s = {
let u = Double::from(self.checked_get(j).unwrap_or(0));
let v = Double::from(other.checked_get(j).unwrap_or(0));
let mut needs_borrow = false;
let mut t = 0;
if let Some(v) = u.checked_sub(v) {
if let Some(v2) = v.checked_sub(k) {
t = v2 % B;
k = 0;
} else {
needs_borrow = true;
}
} else {
needs_borrow = true;
}
if needs_borrow {
t = u + B - v - k;
k = 1;
}
t
};
w.set(j, s as Single);
}
if k.is_zero() {
Ok(w)
} else {
Err(w)
}
}
pub fn mul(self, other: &Self) -> Self {
let n = self.len();
let m = other.len();
let mut w = Self::with_capacity(m + n);
for j in 0..n {
if self.get(j) == 0 {
continue;
}
let mut k = 0;
for i in 0..m {
let t =
mul_single(self.get(j), other.get(i))
+ Double::from(w.get(i + j))
+ Double::from(k);
w.set(i + j, (t % B) as Single);
k = (t / B) as Single;
}
w.set(j + m, k);
}
w
}
pub fn div_unit(self, mut other: Single) -> Self {
other = other.max(1);
let n = self.len();
let mut out = Self::with_capacity(n);
let mut r: Single = 0;
let with_r = |x: Double, r: Single| { Double::from(r) * B + x };
for d in (0..n).rev() {
let (q, rr) = div_single(with_r(self.get(d).into(), r), other) ;
out.set(d, q as Single);
r = rr;
}
out
}
pub fn div(self, other: &Self, rem: bool) -> Option<(Self, Self)> {
if other.len() <= 1
|| other.msb() == 0
|| self.msb() == 0
|| self.len() <= other.len()
{
return None
}
let n = other.len();
let m = self.len() - n;
let mut q = Self::with_capacity(m + 1);
let mut r = Self::with_capacity(n);
let normalizer_bits = other.msb().leading_zeros() as Single;
let normalizer = (2 as Single).pow(normalizer_bits as u32) as Single;
let mut self_norm = self.mul(&Self::from(normalizer));
let mut other_norm = other.clone().mul(&Self::from(normalizer));
self_norm.lpad(n + m + 1);
other_norm.lstrip();
for j in (0..=m).rev() {
let (qhat, rhat) = {
let dividend =
Double::from(self_norm.get(j + n))
* B
+ Double::from(self_norm.get(j + n - 1));
let divisor = other_norm.get(n - 1);
div_single(dividend, divisor)
};
let qhat = RefCell::new(qhat);
let rhat = RefCell::new(Double::from(rhat));
let test = || {
let qhat_local = *qhat.borrow();
let rhat_local = *rhat.borrow();
let predicate_1 = qhat_local >= B;
let predicate_2 = {
let lhs = qhat_local * Double::from(other_norm.get(n - 2));
let rhs = B * rhat_local + Double::from(self_norm.get(j + n - 2));
lhs > rhs
};
if predicate_1 || predicate_2 {
*qhat.borrow_mut() -= 1;
*rhat.borrow_mut() += Double::from(other_norm.get(n - 1));
true
} else {
false
}
};
test();
while (*rhat.borrow() as Double) < B {
if !test() { break; }
}
let qhat = qhat.into_inner();
let lhs = Self { digits: (j..=j+n).rev().map(|d| self_norm.get(d)).collect() };
let rhs = other_norm.clone().mul(&Self::from(qhat));
let maybe_sub = lhs.sub(&rhs);
let mut negative = false;
let sub = match maybe_sub {
Ok(t) => t,
Err(t) => { negative = true; t }
};
(j..=j+n).for_each(|d| { self_norm.set(d, sub.get(d - j)); });
q.set(j, qhat as Single);
if negative {
q.set(j, q.get(j) - 1);
let u = Self { digits: (j..=j+n).rev().map(|d| self_norm.get(d)).collect() };
let r = other_norm.clone().add(&u);
(j..=j+n).rev().for_each(|d| { self_norm.set(d, r.get(d - j)); })
}
}
if rem {
if normalizer_bits > 0 {
let s = SHIFT as u32;
let nb = normalizer_bits;
for d in 0..n-1 {
let v = self_norm.get(d) >> nb
| self_norm.get(d + 1).overflowing_shl(s - nb).0;
r.set(d, v);
}
r.set(n - 1, self_norm.get(n - 1) >> normalizer_bits);
} else {
r = self_norm;
}
}
Some((q, r))
}
}
impl sp_std::fmt::Debug for BigUint {
#[cfg(feature = "std")]
fn fmt(&self, f: &mut sp_std::fmt::Formatter<'_>) -> sp_std::fmt::Result {
write!(
f,
"BigUint {{ {:?} ({:?})}}",
self.digits,
u128::try_from(self.clone()).unwrap_or(0),
)
}
#[cfg(not(feature = "std"))]
fn fmt(&self, _: &mut sp_std::fmt::Formatter<'_>) -> sp_std::fmt::Result {
Ok(())
}
}
impl PartialEq for BigUint {
fn eq(&self, other: &Self) -> bool {
self.cmp(other) == Ordering::Equal
}
}
impl Eq for BigUint {}
impl Ord for BigUint {
fn cmp(&self, other: &Self) -> Ordering {
let lhs_first = self.digits.iter().position(|&e| e != 0);
let rhs_first = other.digits.iter().position(|&e| e != 0);
match (lhs_first, rhs_first) {
(None, None) => Ordering::Equal,
(Some(_), None) => Ordering::Greater,
(None, Some(_)) => Ordering::Less,
(Some(lhs_idx), Some(rhs_idx)) => {
let lhs = &self.digits[lhs_idx..];
let rhs = &other.digits[rhs_idx..];
let len_cmp = lhs.len().cmp(&rhs.len());
match len_cmp {
Ordering::Equal => lhs.cmp(rhs),
_ => len_cmp,
}
}
}
}
}
impl PartialOrd for BigUint {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl ops::Add for BigUint {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
self.add(&rhs)
}
}
impl ops::Sub for BigUint {
type Output = Self;
fn sub(self, rhs: Self) -> Self::Output {
self.sub(&rhs).unwrap_or_else(|e| e)
}
}
impl ops::Mul for BigUint {
type Output = Self;
fn mul(self, rhs: Self) -> Self::Output {
self.mul(&rhs)
}
}
impl Zero for BigUint {
fn zero() -> Self {
Self { digits: vec![Zero::zero()] }
}
fn is_zero(&self) -> bool {
self.digits.iter().all(|d| d.is_zero())
}
}
macro_rules! impl_try_from_number_for {
($([$type:ty, $len:expr]),+) => {
$(
impl TryFrom<BigUint> for $type {
type Error = &'static str;
fn try_from(mut value: BigUint) -> Result<$type, Self::Error> {
value.lstrip();
let error_message = concat!("cannot fit a number into ", stringify!($type));
if value.len() * SHIFT > $len {
Err(error_message)
} else {
let mut acc: $type = Zero::zero();
for (i, d) in value.digits.iter().rev().cloned().enumerate() {
let d: $type = d.into();
acc += d << (SHIFT * i);
}
Ok(acc)
}
}
}
)*
};
}
impl_try_from_number_for!([u128, 128], [u64, 64]);
macro_rules! impl_from_for_smaller_than_word {
($($type:ty),+) => {
$(impl From<$type> for BigUint {
fn from(a: $type) -> Self {
Self { digits: vec! [a.into()] }
}
})*
}
}
impl_from_for_smaller_than_word!(u8, u16, Single);
impl From<Double> for BigUint {
fn from(a: Double) -> Self {
let (ah, al) = split(a);
Self { digits: vec![ah, al] }
}
}
#[cfg(test)]
pub mod tests {
use super::*;
fn with_limbs(n: usize) -> BigUint {
BigUint { digits: vec![1; n] }
}
#[test]
fn split_works() {
let a = SHIFT / 2;
let b = SHIFT * 3 / 2;
let num: Double = 1 << a | 1 << b;
assert_eq!(split(num), (1 << a, 1 << a));
}
#[test]
fn strip_works() {
let mut a = BigUint::from_limbs(&[0, 1, 0]);
a.lstrip();
assert_eq!(a.digits, vec![1, 0]);
let mut a = BigUint::from_limbs(&[0, 0, 1]);
a.lstrip();
assert_eq!(a.digits, vec![1]);
let mut a = BigUint::from_limbs(&[0, 0]);
a.lstrip();
assert_eq!(a.digits, vec![0]);
let mut a = BigUint::from_limbs(&[0, 0, 0]);
a.lstrip();
assert_eq!(a.digits, vec![0]);
}
#[test]
fn lpad_works() {
let mut a = BigUint::from_limbs(&[0, 1, 0]);
a.lpad(2);
assert_eq!(a.digits, vec![0, 1, 0]);
let mut a = BigUint::from_limbs(&[0, 1, 0]);
a.lpad(3);
assert_eq!(a.digits, vec![0, 1, 0]);
let mut a = BigUint::from_limbs(&[0, 1, 0]);
a.lpad(4);
assert_eq!(a.digits, vec![0, 0, 1, 0]);
}
#[test]
fn equality_works() {
assert_eq!(
BigUint { digits: vec![1, 2, 3] } == BigUint { digits: vec![1, 2, 3] },
true,
);
assert_eq!(
BigUint { digits: vec![3, 2, 3] } == BigUint { digits: vec![1, 2, 3] },
false,
);
assert_eq!(
BigUint { digits: vec![0, 1, 2, 3] } == BigUint { digits: vec![1, 2, 3] },
true,
);
}
#[test]
fn ordering_works() {
assert!(BigUint { digits: vec![0] } < BigUint { digits: vec![1] });
assert!(BigUint { digits: vec![0] } == BigUint { digits: vec![0] });
assert!(BigUint { digits: vec![] } == BigUint { digits: vec![0] });
assert!(BigUint { digits: vec![] } == BigUint { digits: vec![] });
assert!(BigUint { digits: vec![] } < BigUint { digits: vec![1] });
assert!(BigUint { digits: vec![1, 2, 3] } == BigUint { digits: vec![1, 2, 3] });
assert!(BigUint { digits: vec![0, 1, 2, 3] } == BigUint { digits: vec![1, 2, 3] });
assert!(BigUint { digits: vec![1, 2, 4] } > BigUint { digits: vec![1, 2, 3] });
assert!(BigUint { digits: vec![0, 1, 2, 4] } > BigUint { digits: vec![1, 2, 3] });
assert!(BigUint { digits: vec![1, 2, 1, 0] } > BigUint { digits: vec![1, 2, 3] });
assert!(BigUint { digits: vec![0, 1, 2, 1] } < BigUint { digits: vec![1, 2, 3] });
}
#[test]
fn can_try_build_numbers_from_types() {
use sp_std::convert::TryFrom;
assert_eq!(u64::try_from(with_limbs(1)).unwrap(), 1);
assert_eq!(u64::try_from(with_limbs(2)).unwrap(), u32::max_value() as u64 + 2);
assert_eq!(
u64::try_from(with_limbs(3)).unwrap_err(),
"cannot fit a number into u64",
);
assert_eq!(
u128::try_from(with_limbs(3)).unwrap(),
u32::max_value() as u128 + u64::max_value() as u128 + 3
);
}
#[test]
fn zero_works() {
assert_eq!(BigUint::zero(), BigUint { digits: vec![0] });
assert_eq!(BigUint { digits: vec![0, 1, 0] }.is_zero(), false);
assert_eq!(BigUint { digits: vec![0, 0, 0] }.is_zero(), true);
let a = BigUint::zero();
let b = BigUint::zero();
let c = a * b;
assert_eq!(c.digits, vec![0, 0]);
}
#[test]
fn sub_negative_works() {
assert_eq!(
BigUint::from(10 as Single).sub(&BigUint::from(5 as Single)).unwrap(),
BigUint::from(5 as Single)
);
assert_eq!(
BigUint::from(10 as Single).sub(&BigUint::from(10 as Single)).unwrap(),
BigUint::from(0 as Single)
);
assert_eq!(
BigUint::from(10 as Single).sub(&BigUint::from(13 as Single)).unwrap_err(),
BigUint::from((B - 3) as Single),
);
}
#[test]
fn mul_always_appends_one_digit() {
let a = BigUint::from(10 as Single);
let b = BigUint::from(4 as Single);
assert_eq!(a.len(), 1);
assert_eq!(b.len(), 1);
let n = a.mul(&b);
assert_eq!(n.len(), 2);
assert_eq!(n.digits, vec![0, 40]);
}
#[test]
fn div_conditions_work() {
let a = BigUint { digits: vec![2] };
let b = BigUint { digits: vec![1, 2] };
let c = BigUint { digits: vec![1, 1, 2] };
let d = BigUint { digits: vec![0, 2] };
let e = BigUint { digits: vec![0, 1, 1, 2] };
assert!(a.clone().div(&b, true).is_none());
assert!(c.clone().div(&a, true).is_none());
assert!(c.clone().div(&d, true).is_none());
assert!(e.clone().div(&a, true).is_none());
assert!(c.clone().div(&b, true).is_some());
}
#[test]
fn div_unit_works() {
let a = BigUint { digits: vec![100] };
let b = BigUint { digits: vec![1, 100] };
assert_eq!(a.clone().div_unit(1), a);
assert_eq!(a.clone().div_unit(0), a);
assert_eq!(a.clone().div_unit(2), BigUint::from(50 as Single));
assert_eq!(a.clone().div_unit(7), BigUint::from(14 as Single));
assert_eq!(b.clone().div_unit(1), b);
assert_eq!(b.clone().div_unit(0), b);
assert_eq!(b.clone().div_unit(2), BigUint::from(((B + 100) / 2) as Single));
assert_eq!(b.clone().div_unit(7), BigUint::from(((B + 100) / 7) as Single));
}
}