1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
// This file is part of Substrate. // Copyright (C) 2019-2021 Parity Technologies (UK) Ltd. // SPDX-License-Identifier: Apache-2.0 // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. //! Some helper functions to work with 128bit numbers. Note that the functionality provided here is //! only sensible to use with 128bit numbers because for smaller sizes, you can always rely on //! assumptions of a bigger type (u128) being available, or simply create a per-thing and use the //! multiplication implementation provided there. use crate::biguint; use num_traits::Zero; use sp_std::{cmp::{min, max}, convert::TryInto, mem}; /// Helper gcd function used in Rational128 implementation. pub fn gcd(a: u128, b: u128) -> u128 { match ((a, b), (a & 1, b & 1)) { ((x, y), _) if x == y => y, ((0, x), _) | ((x, 0), _) => x, ((x, y), (0, 1)) | ((y, x), (1, 0)) => gcd(x >> 1, y), ((x, y), (0, 0)) => gcd(x >> 1, y >> 1) << 1, ((x, y), (1, 1)) => { let (x, y) = (min(x, y), max(x, y)); gcd((y - x) >> 1, x) }, _ => unreachable!(), } } /// split a u128 into two u64 limbs pub fn split(a: u128) -> (u64, u64) { let al = a as u64; let ah = (a >> 64) as u64; (ah, al) } /// Convert a u128 to a u32 based biguint. pub fn to_big_uint(x: u128) -> biguint::BigUint { let (xh, xl) = split(x); let (xhh, xhl) = biguint::split(xh); let (xlh, xll) = biguint::split(xl); let mut n = biguint::BigUint::from_limbs(&[xhh, xhl, xlh, xll]); n.lstrip(); n } /// Safely and accurately compute `a * b / c`. The approach is: /// - Simply try `a * b / c`. /// - Else, convert them both into big numbers and re-try. `Err` is returned if the result /// cannot be safely casted back to u128. /// /// Invariant: c must be greater than or equal to 1. pub fn multiply_by_rational(mut a: u128, mut b: u128, mut c: u128) -> Result<u128, &'static str> { if a.is_zero() || b.is_zero() { return Ok(Zero::zero()); } c = c.max(1); // a and b are interchangeable by definition in this function. It always helps to assume the // bigger of which is being multiplied by a `0 < b/c < 1`. Hence, a should be the bigger and // b the smaller one. if b > a { mem::swap(&mut a, &mut b); } // Attempt to perform the division first if a % c == 0 { a /= c; c = 1; } else if b % c == 0 { b /= c; c = 1; } if let Some(x) = a.checked_mul(b) { // This is the safest way to go. Try it. Ok(x / c) } else { let a_num = to_big_uint(a); let b_num = to_big_uint(b); let c_num = to_big_uint(c); let mut ab = a_num * b_num; ab.lstrip(); let mut q = if c_num.len() == 1 { // PROOF: if `c_num.len() == 1` then `c` fits in one limb. ab.div_unit(c as biguint::Single) } else { // PROOF: both `ab` and `c` cannot have leading zero limbs; if length of `c` is 1, // the previous branch would handle. Also, if ab for sure has a bigger size than // c, because `a.checked_mul(b)` has failed, hence ab must be at least one limb // bigger than c. In this case, returning zero is defensive-only and div should // always return Some. let (mut q, r) = ab.div(&c_num, true).unwrap_or((Zero::zero(), Zero::zero())); let r: u128 = r.try_into() .expect("reminder of div by c is always less than c; qed"); if r > (c / 2) { q = q.add(&to_big_uint(1)); } q }; q.lstrip(); q.try_into().map_err(|_| "result cannot fit in u128") } }