1#![doc = docify::embed!("./src/lib.rs", perbill_example)]
29#![doc = docify::embed!("./src/lib.rs", percent_example)]
31#![doc = docify::embed!("./src/lib.rs", percent_mult)]
53
54#[cfg(feature = "serde")]
55use serde::{Deserialize, Serialize};
56
57use crate::traits::{
58 BaseArithmetic, Bounded, CheckedAdd, CheckedMul, CheckedSub, One, SaturatedConversion,
59 Saturating, UniqueSaturatedInto, Unsigned, Zero,
60};
61use codec::{CompactAs, DecodeWithMemTracking, Encode};
62use core::{
63 fmt, ops,
64 ops::{Add, Sub},
65};
66use num_traits::{Pow, SaturatingAdd, SaturatingSub};
67
68pub type InnerOf<P> = <P as PerThing>::Inner;
70
71pub type UpperOf<P> = <P as PerThing>::Upper;
73
74pub trait RationalArg:
75 Clone
76 + Ord
77 + ops::Div<Self, Output = Self>
78 + ops::Rem<Self, Output = Self>
79 + ops::Add<Self, Output = Self>
80 + ops::AddAssign<Self>
81 + Unsigned
82 + Zero
83 + One
84 + crate::MultiplyRational
85{
86}
87
88impl<
89 T: Clone
90 + Ord
91 + ops::Div<Self, Output = Self>
92 + ops::Rem<Self, Output = Self>
93 + ops::Add<Self, Output = Self>
94 + ops::AddAssign<Self>
95 + Unsigned
96 + Zero
97 + One
98 + crate::MultiplyRational,
99 > RationalArg for T
100{
101}
102
103pub trait MultiplyArg:
104 Clone
105 + ops::Rem<Self, Output = Self>
106 + ops::Div<Self, Output = Self>
107 + ops::Mul<Self, Output = Self>
108 + ops::Add<Self, Output = Self>
109 + Unsigned
110{
111}
112
113impl<
114 T: Clone
115 + ops::Rem<Self, Output = Self>
116 + ops::Div<Self, Output = Self>
117 + ops::Mul<Self, Output = Self>
118 + ops::Add<Self, Output = Self>
119 + Unsigned,
120 > MultiplyArg for T
121{
122}
123
124pub trait ReciprocalArg: MultiplyArg + Saturating {}
125impl<T: MultiplyArg + Saturating> ReciprocalArg for T {}
126
127pub trait PerThing:
130 Sized
131 + Saturating
132 + Copy
133 + Default
134 + Eq
135 + PartialEq
136 + Ord
137 + PartialOrd
138 + Bounded
139 + fmt::Debug
140 + ops::Div<Output = Self>
141 + ops::Mul<Output = Self>
142 + Pow<usize, Output = Self>
143{
144 type Inner: BaseArithmetic + Unsigned + Copy + Into<u128> + fmt::Debug + crate::MultiplyRational;
146
147 type Upper: BaseArithmetic
150 + Copy
151 + From<Self::Inner>
152 + TryInto<Self::Inner>
153 + UniqueSaturatedInto<Self::Inner>
154 + Unsigned
155 + fmt::Debug
156 + crate::MultiplyRational;
157
158 const ACCURACY: Self::Inner;
160
161 fn zero() -> Self {
163 Self::from_parts(Self::Inner::zero())
164 }
165
166 fn is_zero(&self) -> bool {
168 self.deconstruct() == Self::Inner::zero()
169 }
170
171 fn one() -> Self {
173 Self::from_parts(Self::ACCURACY)
174 }
175
176 fn is_one(&self) -> bool {
178 self.deconstruct() == Self::ACCURACY
179 }
180
181 fn less_epsilon(self) -> Self {
183 if self.is_zero() {
184 return self
185 }
186 Self::from_parts(self.deconstruct() - One::one())
187 }
188
189 fn try_less_epsilon(self) -> Result<Self, Self> {
192 if self.is_zero() {
193 return Err(self)
194 }
195 Ok(Self::from_parts(self.deconstruct() - One::one()))
196 }
197
198 fn plus_epsilon(self) -> Self {
200 if self.is_one() {
201 return self
202 }
203 Self::from_parts(self.deconstruct() + One::one())
204 }
205
206 fn try_plus_epsilon(self) -> Result<Self, Self> {
209 if self.is_one() {
210 return Err(self)
211 }
212 Ok(Self::from_parts(self.deconstruct() + One::one()))
213 }
214
215 fn from_percent(x: Self::Inner) -> Self {
218 let a: Self::Inner = x.min(100.into());
219 let b: Self::Inner = 100.into();
220 Self::from_rational::<Self::Inner>(a, b)
221 }
222
223 fn square(self) -> Self {
225 let p = Self::Upper::from(self.deconstruct());
226 let q = Self::Upper::from(Self::ACCURACY);
227 Self::from_rational::<Self::Upper>(p * p, q * q)
228 }
229
230 fn left_from_one(self) -> Self {
232 Self::one().saturating_sub(self)
233 }
234
235 fn mul_floor<N>(self, b: N) -> N
251 where
252 N: MultiplyArg + UniqueSaturatedInto<Self::Inner>,
253 Self::Inner: Into<N>,
254 {
255 overflow_prune_mul::<N, Self>(b, self.deconstruct(), Rounding::Down)
256 }
257
258 fn mul_ceil<N>(self, b: N) -> N
274 where
275 N: MultiplyArg + UniqueSaturatedInto<Self::Inner>,
276 Self::Inner: Into<N>,
277 {
278 overflow_prune_mul::<N, Self>(b, self.deconstruct(), Rounding::Up)
279 }
280
281 fn saturating_reciprocal_mul<N>(self, b: N) -> N
291 where
292 N: ReciprocalArg + UniqueSaturatedInto<Self::Inner>,
293 Self::Inner: Into<N>,
294 {
295 saturating_reciprocal_mul::<N, Self>(b, self.deconstruct(), Rounding::NearestPrefUp)
296 }
297
298 fn saturating_reciprocal_mul_floor<N>(self, b: N) -> N
311 where
312 N: ReciprocalArg + UniqueSaturatedInto<Self::Inner>,
313 Self::Inner: Into<N>,
314 {
315 saturating_reciprocal_mul::<N, Self>(b, self.deconstruct(), Rounding::Down)
316 }
317
318 fn saturating_reciprocal_mul_ceil<N>(self, b: N) -> N
331 where
332 N: ReciprocalArg + UniqueSaturatedInto<Self::Inner>,
333 Self::Inner: Into<N>,
334 {
335 saturating_reciprocal_mul::<N, Self>(b, self.deconstruct(), Rounding::Up)
336 }
337
338 fn deconstruct(self) -> Self::Inner;
340
341 fn from_parts(parts: Self::Inner) -> Self;
343
344 #[cfg(feature = "std")]
346 fn from_float(x: f64) -> Self;
347
348 #[deprecated = "Use from_float instead"]
350 #[cfg(feature = "std")]
351 fn from_fraction(x: f64) -> Self {
352 Self::from_float(x)
353 }
354
355 fn from_rational<N>(p: N, q: N) -> Self
374 where
375 N: RationalArg + TryInto<Self::Inner> + TryInto<Self::Upper>,
376 Self::Inner: Into<N>,
377 {
378 Self::from_rational_with_rounding(p, q, Rounding::Down).unwrap_or_else(|_| Self::one())
379 }
380
381 fn from_rational_with_rounding<N>(p: N, q: N, rounding: Rounding) -> Result<Self, ()>
436 where
437 N: RationalArg + TryInto<Self::Inner> + TryInto<Self::Upper>,
438 Self::Inner: Into<N>;
439
440 #[deprecated = "Use from_rational instead"]
442 fn from_rational_approximation<N>(p: N, q: N) -> Self
443 where
444 N: RationalArg + TryInto<Self::Inner> + TryInto<Self::Upper>,
445 Self::Inner: Into<N>,
446 {
447 Self::from_rational(p, q)
448 }
449}
450
451#[derive(Copy, Clone, core::fmt::Debug)]
453pub enum Rounding {
454 Up,
456 Down,
458 NearestPrefUp,
460 NearestPrefDown,
462}
463
464#[derive(Copy, Clone, core::fmt::Debug)]
466pub enum SignedRounding {
467 High,
469 Low,
471 NearestPrefHigh,
473 NearestPrefLow,
475 Major,
477 Minor,
479 NearestPrefMajor,
481 NearestPrefMinor,
483}
484
485impl Rounding {
486 pub const fn from_signed(rounding: SignedRounding, negative: bool) -> Self {
488 use Rounding::*;
489 use SignedRounding::*;
490 match (rounding, negative) {
491 (Low, true) | (Major, _) | (High, false) => Up,
492 (High, true) | (Minor, _) | (Low, false) => Down,
493 (NearestPrefMajor, _) | (NearestPrefHigh, false) | (NearestPrefLow, true) =>
494 NearestPrefUp,
495 (NearestPrefMinor, _) | (NearestPrefLow, false) | (NearestPrefHigh, true) =>
496 NearestPrefDown,
497 }
498 }
499}
500
501fn saturating_reciprocal_mul<N, P>(x: N, part: P::Inner, rounding: Rounding) -> N
504where
505 N: Clone
506 + UniqueSaturatedInto<P::Inner>
507 + ops::Div<N, Output = N>
508 + ops::Mul<N, Output = N>
509 + ops::Add<N, Output = N>
510 + ops::Rem<N, Output = N>
511 + Saturating
512 + Unsigned,
513 P: PerThing,
514 P::Inner: Into<N>,
515{
516 let maximum: N = P::ACCURACY.into();
517 let c = rational_mul_correction::<N, P>(x.clone(), P::ACCURACY, part, rounding);
518 (x / part.into()).saturating_mul(maximum).saturating_add(c)
519}
520
521fn overflow_prune_mul<N, P>(x: N, part: P::Inner, rounding: Rounding) -> N
523where
524 N: MultiplyArg + UniqueSaturatedInto<P::Inner>,
525 P: PerThing,
526 P::Inner: Into<N>,
527{
528 let maximum: N = P::ACCURACY.into();
529 let part_n: N = part.into();
530 let c = rational_mul_correction::<N, P>(x.clone(), part, P::ACCURACY, rounding);
531 (x / maximum) * part_n + c
532}
533
534fn rational_mul_correction<N, P>(x: N, numer: P::Inner, denom: P::Inner, rounding: Rounding) -> N
539where
540 N: MultiplyArg + UniqueSaturatedInto<P::Inner>,
541 P: PerThing,
542 P::Inner: Into<N>,
543{
544 let numer_upper = P::Upper::from(numer);
545 let denom_n: N = denom.into();
546 let denom_upper = P::Upper::from(denom);
547 let rem = x.rem(denom_n);
548 let rem_inner = rem.saturated_into::<P::Inner>();
550 let rem_mul_upper = P::Upper::from(rem_inner) * numer_upper;
552 let mut rem_mul_div_inner = (rem_mul_upper / denom_upper).saturated_into::<P::Inner>();
555 match rounding {
556 Rounding::Down => {},
558 Rounding::Up => {
560 if rem_mul_upper % denom_upper > 0.into() {
561 rem_mul_div_inner += 1.into();
563 }
564 },
565 Rounding::NearestPrefDown => {
566 if rem_mul_upper % denom_upper > denom_upper / 2.into() {
567 rem_mul_div_inner += 1.into();
569 }
570 },
571 Rounding::NearestPrefUp => {
572 if rem_mul_upper % denom_upper >= denom_upper / 2.into() + denom_upper % 2.into() {
573 rem_mul_div_inner += 1.into();
575 }
576 },
577 }
578 rem_mul_div_inner.into()
579}
580
581macro_rules! implement_per_thing {
582 (
583 $name:ident,
584 $test_mod:ident,
585 [$($test_units:tt),+],
586 $max:tt,
587 $type:ty,
588 $upper_type:ty,
589 $title:expr $(,)?
590 ) => {
591 #[doc = $title]
594 #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
595 #[derive(Encode, DecodeWithMemTracking, Copy, Clone, PartialEq, Eq, codec::MaxEncodedLen, PartialOrd, Ord, scale_info::TypeInfo)]
596 pub struct $name($type);
597
598 impl CompactAs for $name {
601 type As = $type;
602 fn encode_as(&self) -> &Self::As {
603 &self.0
604 }
605 fn decode_from(x: Self::As) -> Result<Self, codec::Error> {
606 Ok(Self::from_parts(x))
608 }
609 }
610
611 impl From<codec::Compact<$name>> for $name {
612 fn from(x: codec::Compact<$name>) -> $name {
613 x.0
614 }
615 }
616
617 #[cfg(feature = "std")]
618 impl core::fmt::Debug for $name {
619 fn fmt(&self, fmt: &mut core::fmt::Formatter) -> core::fmt::Result {
620 if $max == <$type>::max_value() {
621 let pc = (self.0 as f64) / (self.0 as f64) * 100f64;
623 write!(fmt, "{:.2}% ({}/{})", pc, self.0, $max)
624 } else {
625 let divisor = $max / 100;
627 let units = self.0 / divisor;
628 let rest = self.0 % divisor;
629 write!(fmt, "{}", units)?;
630 if rest > 0 {
631 write!(fmt, ".")?;
632 let mut m = $max / 100;
633 while rest % m > 0 {
634 m /= 10;
635 write!(fmt, "{:01}", rest / m % 10)?;
636 }
637 }
638 write!(fmt, "%")
639 }
640 }
641 }
642
643 #[cfg(not(feature = "std"))]
644 impl core::fmt::Debug for $name {
645 fn fmt(&self, fmt: &mut core::fmt::Formatter) -> core::fmt::Result {
646 if $max == <$type>::max_value() {
647 write!(fmt, "{}/{}", self.0, $max)
649 } else {
650 let units = self.0 / ($max / 100);
652 let rest = self.0 % ($max / 100);
653 write!(fmt, "{}", units)?;
654 if rest > 0 {
655 write!(fmt, ".")?;
656 let mut m = $max / 100;
657 while rest % m > 0 {
658 m /= 10;
659 write!(fmt, "{:01}", rest / m % 10)?;
660 }
661 }
662 write!(fmt, "%")
663 }
664 }
665 }
666
667 impl PerThing for $name {
668 type Inner = $type;
669 type Upper = $upper_type;
670
671 const ACCURACY: Self::Inner = $max;
672
673 fn deconstruct(self) -> Self::Inner { self.0 }
675
676 fn from_parts(parts: Self::Inner) -> Self { Self(parts.min($max)) }
678
679 #[cfg(feature = "std")]
681 fn from_float(x: f64) -> Self {
682 Self::from_parts((x.max(0.).min(1.) * $max as f64) as Self::Inner)
683 }
684
685 fn from_rational_with_rounding<N>(p: N, q: N, r: Rounding) -> Result<Self, ()>
686 where
687 N: Clone
688 + Ord
689 + TryInto<Self::Inner>
690 + TryInto<Self::Upper>
691 + ops::Div<N, Output = N>
692 + ops::Rem<N, Output = N>
693 + ops::Add<N, Output = N>
694 + ops::AddAssign<N>
695 + Unsigned
696 + Zero
697 + One
698 + $crate::MultiplyRational,
699 Self::Inner: Into<N>
700 {
701 if q.is_zero() { return Err(()) }
703 if p > q { return Err(()) }
705
706 let max: N = $max.into();
707 max.multiply_rational(p, q, r).ok_or(())?.try_into().map(|x| $name(x)).map_err(|_| ())
708 }
709 }
710
711 impl $name {
712 #[allow(unused_comparisons)]
718 pub const fn from_parts(parts: $type) -> Self {
719 Self([parts, $max][(parts > $max) as usize])
720 }
721
722 pub const fn from_percent(x: $type) -> Self {
726 Self(([x, 100][(x > 100) as usize] as $upper_type * $max as $upper_type / 100) as $type)
727 }
728
729 pub const fn one() -> Self {
731 Self::from_parts($max)
732 }
733
734 pub fn is_one(&self) -> bool {
736 PerThing::is_one(self)
737 }
738
739 pub const fn zero() -> Self {
741 Self::from_parts(0)
742 }
743
744 pub fn is_zero(&self) -> bool {
746 PerThing::is_zero(self)
747 }
748
749 pub const fn deconstruct(self) -> $type {
751 self.0
752 }
753
754 pub fn square(self) -> Self {
756 PerThing::square(self)
757 }
758
759 #[cfg(feature = "std")]
761 pub fn from_float(x: f64) -> Self {
762 <Self as PerThing>::from_float(x)
763 }
764
765 #[deprecated = "Use `PerThing::from_rational` instead"]
767 pub fn from_rational_approximation<N>(p: N, q: N) -> Self
768 where
769 N: RationalArg+ TryInto<$type> + TryInto<$upper_type>,
770 $type: Into<N>
771 {
772 <Self as PerThing>::from_rational(p, q)
773 }
774
775 pub fn from_rational<N>(p: N, q: N) -> Self
777 where
778 N: RationalArg+ TryInto<$type> + TryInto<$upper_type>,
779 $type: Into<N>
780 {
781 <Self as PerThing>::from_rational(p, q)
782 }
783
784 pub fn int_mul(self, b: $type) -> Self {
786 PerThing::from_parts(self.0.saturating_mul(b))
787 }
788
789 pub fn int_div(self, b: Self) -> $type {
791 self.0 / b.0
792 }
793
794 pub fn mul_floor<N>(self, b: N) -> N
796 where
797 N: MultiplyArg + UniqueSaturatedInto<$type>,
798 $type: Into<N>,
799
800 {
801 PerThing::mul_floor(self, b)
802 }
803
804 pub fn mul_ceil<N>(self, b: N) -> N
806 where
807 N: MultiplyArg + UniqueSaturatedInto<$type>,
808 $type: Into<N>,
809 {
810 PerThing::mul_ceil(self, b)
811 }
812
813 pub fn saturating_reciprocal_mul<N>(self, b: N) -> N
815 where
816 N: ReciprocalArg + UniqueSaturatedInto<$type>,
817 $type: Into<N>,
818 {
819 PerThing::saturating_reciprocal_mul(self, b)
820 }
821
822 pub fn saturating_reciprocal_mul_floor<N>(self, b: N) -> N
824 where
825 N: ReciprocalArg + UniqueSaturatedInto<$type>,
826 $type: Into<N>,
827 {
828 PerThing::saturating_reciprocal_mul_floor(self, b)
829 }
830
831 pub fn saturating_reciprocal_mul_ceil<N>(self, b: N) -> N
833 where
834 N: ReciprocalArg + UniqueSaturatedInto<$type>,
835 $type: Into<N>,
836 {
837 PerThing::saturating_reciprocal_mul_ceil(self, b)
838 }
839
840 pub fn saturating_div(self, rhs: Self, r: Rounding) -> Self {
867 let p = self.0;
868 let q = rhs.0;
869 Self::from_rational_with_rounding(p, q, r).unwrap_or_else(|_| Self::one())
870 }
871 }
872
873 impl Saturating for $name {
874 fn saturating_add(self, rhs: Self) -> Self {
877 Self::from_parts(self.0.saturating_add(rhs.0))
879 }
880
881 fn saturating_sub(self, rhs: Self) -> Self {
884 Self::from_parts(self.0.saturating_sub(rhs.0))
885 }
886
887 fn saturating_mul(self, rhs: Self) -> Self {
890 self * rhs
891 }
892
893 fn saturating_pow(self, exp: usize) -> Self {
896 self.pow(exp)
897 }
898 }
899
900 impl codec::Decode for $name {
901 fn decode<I: codec::Input>(input: &mut I) -> Result<Self, codec::Error> {
902 let inner = <$type as codec::Decode>::decode(input)?;
903
904 if inner <= <Self as PerThing>::ACCURACY {
905 Ok(Self(inner))
906 } else {
907 Err("Value is greater than allowed maximum!".into())
908 }
909 }
910 }
911
912 impl Bounded for $name {
913 fn min_value() -> Self {
914 <Self as PerThing>::zero()
915 }
916
917 fn max_value() -> Self {
918 <Self as PerThing>::one()
919 }
920 }
921
922 impl ops::Mul for $name {
923 type Output = Self;
924
925 fn mul(self, rhs: Self) -> Self::Output {
926 let a = self.0 as $upper_type;
927 let b = rhs.0 as $upper_type;
928 let m = <$upper_type>::from($max);
929 let parts = a * b / m;
930 Self::from_parts(parts as $type)
932 }
933 }
934
935 impl Pow<usize> for $name {
936 type Output = Self;
937
938 fn pow(mut self, exp: usize) -> Self::Output {
939 if exp == 0 || self.is_one() {
940 return Self::one()
941 }
942
943 let mut result = self;
944 let mut exp = exp - 1;
945 while exp > 0 && !result.is_zero() {
946 if exp % 2 != 0 {
947 result = result * self;
948 exp -= 1;
949 }
950 self = self.square();
951 exp /= 2;
952 }
953 result
954 }
955 }
956
957 impl ops::Div for $name {
958 type Output = Self;
959
960 fn div(self, rhs: Self) -> Self::Output {
961 let p = self.0;
962 let q = rhs.0;
963 Self::from_rational(p, q)
964 }
965 }
966
967 impl Default for $name {
968 fn default() -> Self {
969 <Self as PerThing>::zero()
970 }
971 }
972
973 impl<N> ops::Mul<N> for $name
977 where
978 N: Clone + UniqueSaturatedInto<$type> + ops::Rem<N, Output=N>
979 + ops::Div<N, Output=N> + ops::Mul<N, Output=N> + ops::Add<N, Output=N> + Unsigned,
980 $type: Into<N>,
981 {
982 type Output = N;
983 fn mul(self, b: N) -> Self::Output {
984 overflow_prune_mul::<N, Self>(b, self.deconstruct(), Rounding::NearestPrefDown)
985 }
986 }
987
988 impl<N> ops::Div<N> for $name where $type: TryFrom<N> {
989 type Output = Self;
990 fn div(self, b: N) -> Self::Output {
991 <$type>::try_from(b).map_or(Self::zero(), |d| Self::from_parts(self.0 / d))
992 }
993 }
994
995 impl Add<Self> for $name {
996 type Output = $name;
997
998 #[allow(unused_comparisons)]
1000 #[inline]
1001 fn add(self, rhs: Self) -> Self::Output {
1002 let inner = self.deconstruct().add(rhs.deconstruct());
1003 debug_assert!(inner <= $max);
1004 $name::from_parts(inner)
1005 }
1006 }
1007
1008 impl CheckedAdd for $name {
1009 #[allow(unused_comparisons)]
1011 #[inline]
1012 fn checked_add(&self, rhs: &Self) -> Option<Self> {
1013 self.deconstruct()
1014 .checked_add(rhs.deconstruct())
1015 .map(|inner| if inner > $max { None } else { Some($name::from_parts(inner)) })
1016 .flatten()
1017 }
1018 }
1019
1020 impl Sub<Self> for $name {
1021 type Output = $name;
1022
1023 #[inline]
1024 fn sub(self, rhs: Self) -> Self::Output {
1025 $name::from_parts(self.deconstruct().sub(rhs.deconstruct()))
1026 }
1027 }
1028
1029 impl CheckedSub for $name {
1030 #[inline]
1031 fn checked_sub(&self, v: &Self) -> Option<Self> {
1032 self.deconstruct().checked_sub(v.deconstruct()).map($name::from_parts)
1033 }
1034 }
1035
1036 impl SaturatingAdd for $name {
1037 #[inline]
1038 fn saturating_add(&self, v: &Self) -> Self {
1039 $name::from_parts(self.deconstruct().saturating_add(v.deconstruct()))
1040 }
1041 }
1042
1043 impl SaturatingSub for $name {
1044 #[inline]
1045 fn saturating_sub(&self, v: &Self) -> Self {
1046 $name::from_parts(self.deconstruct().saturating_sub(v.deconstruct()))
1047 }
1048 }
1049
1050 impl CheckedMul for $name {
1053 #[inline]
1054 fn checked_mul(&self, rhs: &Self) -> Option<Self> {
1055 Some(*self * *rhs)
1056 }
1057 }
1058
1059 impl $crate::traits::Zero for $name {
1060 fn zero() -> Self {
1061 Self::zero()
1062 }
1063
1064 fn is_zero(&self) -> bool {
1065 self == &Self::zero()
1066 }
1067 }
1068
1069 impl $crate::traits::One for $name {
1070 fn one() -> Self {
1071 Self::one()
1072 }
1073 }
1074
1075 #[cfg(test)]
1076 mod $test_mod {
1077 use codec::{Encode, Decode};
1078 use super::{$name, Saturating, PerThing};
1079 use crate::traits::Zero;
1080
1081 #[test]
1082 fn macro_expanded_correctly() {
1083 assert!(2 * ($max as $upper_type) < <$upper_type>::max_value());
1092 assert!(<$upper_type>::from($max) < <$upper_type>::max_value());
1093
1094 assert!((<$type>::max_value() as $upper_type) <= <$upper_type>::max_value());
1096 assert!(<$upper_type>::from($max).checked_mul($max.into()).is_some());
1097
1098 assert!(<$upper_type>::from($max) * <$upper_type>::from($max) < <$upper_type>::max_value());
1100 }
1101
1102 #[derive(Encode, Decode, PartialEq, Eq, Debug)]
1103 struct WithCompact<T: codec::HasCompact> {
1104 data: T,
1105 }
1106
1107 #[test]
1108 fn has_compact() {
1109 let data = WithCompact { data: $name(1) };
1110 let encoded = data.encode();
1111 assert_eq!(data, WithCompact::<$name>::decode(&mut &encoded[..]).unwrap());
1112 }
1113
1114 #[test]
1115 fn compact_encoding() {
1116 let tests = [
1117 (0 as $type, 1usize),
1119 (1 as $type, 1usize),
1120 (63, 1),
1121 (64, 2),
1122 (65, 2),
1123 ];
1125 for &(n, l) in &tests {
1126 let compact: codec::Compact<$name> = $name(n).into();
1127 let encoded = compact.encode();
1128 assert_eq!(encoded.len(), l);
1129 let decoded = <codec::Compact<$name>>::decode(&mut & encoded[..])
1130 .unwrap();
1131 let per_thingy: $name = decoded.into();
1132 assert_eq!(per_thingy, $name(n));
1133 }
1134 }
1135
1136 #[test]
1137 fn from_parts_cannot_overflow() {
1138 assert_eq!(<$name>::from_parts($max.saturating_add(1)), <$name>::one());
1139 }
1140
1141 #[test]
1142 fn has_max_encoded_len() {
1143 struct AsMaxEncodedLen<T: codec::MaxEncodedLen> {
1144 _data: T,
1145 }
1146
1147 let _ = AsMaxEncodedLen { _data: $name(1) };
1148 }
1149
1150 #[test]
1151 fn fail_on_invalid_encoded_value() {
1152 let value = <$upper_type>::from($max) * 2;
1153 let casted = value as $type;
1154 let encoded = casted.encode();
1155
1156 if <$upper_type>::from(casted) == value {
1158 assert_eq!(
1159 $name::decode(&mut &encoded[..]),
1160 Err("Value is greater than allowed maximum!".into()),
1161 );
1162 }
1163 }
1164
1165 #[test]
1166 fn per_thing_api_works() {
1167 assert_eq!($name::zero(), $name::from_parts(Zero::zero()));
1169 assert_eq!($name::one(), $name::from_parts($max));
1170 assert_eq!($name::ACCURACY, $max);
1171
1172 assert_eq!($name::from_percent(0), $name::from_parts(Zero::zero()));
1173 assert_eq!($name::from_percent(10), $name::from_parts($max / 10));
1174 assert_eq!($name::from_percent(50), $name::from_parts($max / 2));
1175 assert_eq!($name::from_percent(100), $name::from_parts($max));
1176 assert_eq!($name::from_percent(200), $name::from_parts($max));
1177
1178 assert_eq!($name::from_float(0.0), $name::from_parts(Zero::zero()));
1179 assert_eq!($name::from_float(0.1), $name::from_parts($max / 10));
1180 assert_eq!($name::from_float(1.0), $name::from_parts($max));
1181 assert_eq!($name::from_float(2.0), $name::from_parts($max));
1182 assert_eq!($name::from_float(-1.0), $name::from_parts(Zero::zero()));
1183 }
1184
1185 #[test]
1186 fn percent_trait_impl_works() {
1187 assert_eq!(<$name as PerThing>::from_percent(0), $name::from_parts(Zero::zero()));
1188 assert_eq!(<$name as PerThing>::from_percent(10), $name::from_parts($max / 10));
1189 assert_eq!(<$name as PerThing>::from_percent(50), $name::from_parts($max / 2));
1190 assert_eq!(<$name as PerThing>::from_percent(100), $name::from_parts($max));
1191 assert_eq!(<$name as PerThing>::from_percent(200), $name::from_parts($max));
1192 }
1193
1194 macro_rules! u256ify {
1195 ($val:expr) => {
1196 Into::<U256>::into($val)
1197 };
1198 }
1199
1200 macro_rules! per_thing_mul_test {
1201 ($num_type:tt) => {
1202 assert_eq!(
1204 $name::from_float(1.0) * $num_type::max_value(),
1205 $num_type::max_value()
1206 );
1207 if $max % 100 == 0 {
1208 assert_eq_error_rate!(
1209 $name::from_percent(99) * $num_type::max_value(),
1210 ((Into::<U256>::into($num_type::max_value()) * 99u32) / 100u32).as_u128() as $num_type,
1211 1,
1212 );
1213 assert_eq!(
1214 $name::from_float(0.5) * $num_type::max_value(),
1215 $num_type::max_value() / 2,
1216 );
1217 assert_eq_error_rate!(
1218 $name::from_percent(1) * $num_type::max_value(),
1219 $num_type::max_value() / 100,
1220 1,
1221 );
1222 } else {
1223 assert_eq!(
1224 $name::from_float(0.99) * <$num_type>::max_value(),
1225 (
1226 (
1227 u256ify!($name::from_float(0.99).0) *
1228 u256ify!(<$num_type>::max_value()) /
1229 u256ify!($max)
1230 ).as_u128()
1231 ) as $num_type,
1232 );
1233 assert_eq!(
1234 $name::from_float(0.50) * <$num_type>::max_value(),
1235 (
1236 (
1237 u256ify!($name::from_float(0.50).0) *
1238 u256ify!(<$num_type>::max_value()) /
1239 u256ify!($max)
1240 ).as_u128()
1241 ) as $num_type,
1242 );
1243 assert_eq!(
1244 $name::from_float(0.01) * <$num_type>::max_value(),
1245 (
1246 (
1247 u256ify!($name::from_float(0.01).0) *
1248 u256ify!(<$num_type>::max_value()) /
1249 u256ify!($max)
1250 ).as_u128()
1251 ) as $num_type,
1252 );
1253 }
1254
1255 assert_eq!($name::from_float(0.0) * $num_type::max_value(), 0);
1256
1257 assert_eq!($name::one() * $num_type::max_value(), $num_type::max_value());
1259 assert_eq!($name::zero() * $num_type::max_value(), 0);
1260 }
1261 }
1262
1263 #[test]
1264 fn per_thing_mul_works() {
1265 use primitive_types::U256;
1266
1267 assert_eq!(
1269 $name::from_rational(1 as $type, 3) * 30 as $type,
1270 10,
1271 );
1272
1273 $(per_thing_mul_test!($test_units);)*
1274 }
1275
1276 #[test]
1277 fn per_thing_mul_rounds_to_nearest_number() {
1278 assert_eq!($name::from_percent(33) * 10u64, 3);
1279 assert_eq!($name::from_percent(34) * 10u64, 3);
1280 assert_eq!($name::from_percent(35) * 10u64, 3);
1281 assert_eq!($name::from_percent(36) * 10u64, 4);
1282 }
1283
1284 #[test]
1285 fn per_thing_multiplication_with_large_number() {
1286 use primitive_types::U256;
1287 let max_minus_one = $max - 1;
1288 assert_eq_error_rate!(
1289 $name::from_parts(max_minus_one) * std::u128::MAX,
1290 ((Into::<U256>::into(std::u128::MAX) * max_minus_one) / $max).as_u128(),
1291 1,
1292 );
1293 }
1294
1295 macro_rules! per_thing_from_rationale_approx_test {
1296 ($num_type:tt) => {
1297 assert_eq!(
1299 $name::from_rational(1 as $num_type, 0),
1300 $name::one(),
1301 );
1302 assert_eq!(
1303 $name::from_rational(1 as $num_type, 1),
1304 $name::one(),
1305 );
1306 assert_eq_error_rate!(
1307 $name::from_rational(1 as $num_type, 3).0,
1308 $name::from_parts($max / 3).0,
1309 2
1310 );
1311 assert_eq!(
1312 $name::from_rational(1 as $num_type, 10),
1313 $name::from_float(0.10),
1314 );
1315 assert_eq!(
1316 $name::from_rational(1 as $num_type, 4),
1317 $name::from_float(0.25),
1318 );
1319 assert_eq!(
1320 $name::from_rational(1 as $num_type, 4),
1321 $name::from_rational(2 as $num_type, 8),
1322 );
1323 assert_eq_error_rate!(
1325 $name::from_rational(
1326 $num_type::max_value() - 1,
1327 $num_type::max_value()
1328 ).0 as $upper_type,
1329 $name::one().0 as $upper_type,
1330 2,
1331 );
1332 assert_eq_error_rate!(
1333 $name::from_rational(
1334 $num_type::max_value() / 3,
1335 $num_type::max_value()
1336 ).0 as $upper_type,
1337 $name::from_parts($max / 3).0 as $upper_type,
1338 2,
1339 );
1340 assert_eq!(
1341 $name::from_rational(1, $num_type::max_value()),
1342 $name::zero(),
1343 );
1344 };
1345 }
1346
1347 #[test]
1348 fn per_thing_from_rationale_approx_works() {
1349 let max_value = <$upper_type>::from($max);
1352
1353 assert_eq!(
1355 $name::from_rational(max_value - 1, max_value + 1),
1356 $name::from_parts($max - 2),
1357 );
1358 assert_eq!(
1359 $name::from_rational(1, $max - 1),
1360 $name::from_parts(1),
1361 );
1362 assert_eq!(
1363 $name::from_rational(1, $max),
1364 $name::from_parts(1),
1365 );
1366 assert_eq!(
1367 $name::from_rational(2, 2 * max_value - 1),
1368 $name::from_parts(1),
1369 );
1370 assert_eq!(
1371 $name::from_rational(1, max_value + 1),
1372 $name::zero(),
1373 );
1374 assert_eq!(
1375 $name::from_rational(3 * max_value / 2, 3 * max_value),
1376 $name::from_float(0.5),
1377 );
1378
1379 $(per_thing_from_rationale_approx_test!($test_units);)*
1380 }
1381
1382 #[test]
1383 fn per_things_mul_operates_in_output_type() {
1384 assert_eq!($name::from_float(0.5) * 100u64, 50u64);
1386 assert_eq!($name::from_float(0.5) * 100u128, 50u128);
1387 }
1388
1389 #[test]
1390 fn per_thing_saturating_op_works() {
1391 assert_eq_error_rate!(
1392 $name::from_float(0.5).saturating_add($name::from_float(0.4)).0 as $upper_type,
1393 $name::from_float(0.9).0 as $upper_type,
1394 2,
1395 );
1396 assert_eq_error_rate!(
1397 $name::from_float(0.5).saturating_add($name::from_float(0.5)).0 as $upper_type,
1398 $name::one().0 as $upper_type,
1399 2,
1400 );
1401 assert_eq!(
1402 $name::from_float(0.6).saturating_add($name::from_float(0.5)),
1403 $name::one(),
1404 );
1405
1406 assert_eq_error_rate!(
1407 $name::from_float(0.6).saturating_sub($name::from_float(0.5)).0 as $upper_type,
1408 $name::from_float(0.1).0 as $upper_type,
1409 2,
1410 );
1411 assert_eq!(
1412 $name::from_float(0.6).saturating_sub($name::from_float(0.6)),
1413 $name::from_float(0.0),
1414 );
1415 assert_eq!(
1416 $name::from_float(0.6).saturating_sub($name::from_float(0.7)),
1417 $name::from_float(0.0),
1418 );
1419
1420 assert_eq_error_rate!(
1421 $name::from_float(0.5).saturating_mul($name::from_float(0.5)).0 as $upper_type,
1422 $name::from_float(0.25).0 as $upper_type,
1423 2,
1424 );
1425 assert_eq_error_rate!(
1426 $name::from_float(0.2).saturating_mul($name::from_float(0.2)).0 as $upper_type,
1427 $name::from_float(0.04).0 as $upper_type,
1428 2,
1429 );
1430 assert_eq_error_rate!(
1431 $name::from_float(0.1).saturating_mul($name::from_float(0.1)).0 as $upper_type,
1432 $name::from_float(0.01).0 as $upper_type,
1433 1,
1434 );
1435 }
1436
1437 #[test]
1438 fn per_thing_square_works() {
1439 assert_eq!($name::from_float(1.0).square(), $name::from_float(1.0));
1440 assert_eq!($name::from_float(0.5).square(), $name::from_float(0.25));
1441 assert_eq!($name::from_float(0.1).square(), $name::from_float(0.01));
1442 assert_eq!(
1443 $name::from_float(0.02).square(),
1444 $name::from_parts((4 * <$upper_type>::from($max) / 100 / 100) as $type)
1445 );
1446 }
1447
1448 #[test]
1449 fn per_things_div_works() {
1450 assert_eq_error_rate!(
1452 ($name::from_float(0.1) / $name::from_float(0.20)).0 as $upper_type,
1453 $name::from_float(0.50).0 as $upper_type,
1454 2,
1455 );
1456 assert_eq_error_rate!(
1457 ($name::from_float(0.1) / $name::from_float(0.10)).0 as $upper_type,
1458 $name::from_float(1.0).0 as $upper_type,
1459 2,
1460 );
1461 assert_eq_error_rate!(
1462 ($name::from_float(0.1) / $name::from_float(0.0)).0 as $upper_type,
1463 $name::from_float(1.0).0 as $upper_type,
1464 2,
1465 );
1466
1467 assert_eq_error_rate!(
1469 ($name::from_float(0.10) / $name::from_float(0.05)).0 as $upper_type,
1470 $name::from_float(1.0).0 as $upper_type,
1471 2,
1472 );
1473 assert_eq_error_rate!(
1474 ($name::from_float(1.0) / $name::from_float(0.5)).0 as $upper_type,
1475 $name::from_float(1.0).0 as $upper_type,
1476 2,
1477 );
1478 }
1479
1480 #[test]
1481 fn saturating_pow_works() {
1482 assert_eq!(
1484 $name::from_parts($max / 2).saturating_pow(0),
1485 $name::from_parts($max),
1486 );
1487
1488 assert_eq!(
1490 $name::from_parts($max / 2).saturating_pow(1),
1491 $name::from_parts($max / 2),
1492 );
1493
1494 assert_eq!(
1496 $name::from_parts($max / 2).saturating_pow(2),
1497 $name::from_parts($max / 2).square(),
1498 );
1499
1500 for n in 1..=16 {
1502 assert_eq!(
1503 $name::from_parts($max / 2).saturating_pow(n),
1504 $name::from_parts(($max as u128 / 2u128.pow(n as u32)) as $type),
1505 );
1506 }
1507
1508 assert_eq!(
1510 $name::from_parts(0).saturating_pow(3),
1511 $name::from_parts(0),
1512 );
1513
1514 assert_eq!(
1516 $name::from_parts($max).saturating_pow(3),
1517 $name::from_parts($max),
1518 );
1519
1520 assert_eq!(
1522 $name::from_parts($max / 2).saturating_pow(2usize.pow(31)),
1523 $name::from_parts(0),
1524 );
1525 }
1526
1527 #[test]
1528 fn saturating_reciprocal_mul_works() {
1529 assert_eq!(
1531 $name::from_parts($max).saturating_reciprocal_mul(<$type>::from(10u8)),
1532 10,
1533 );
1534 assert_eq!(
1536 $name::from_parts($max / 2).saturating_reciprocal_mul(<$type>::from(10u8)),
1537 20,
1538 );
1539 assert_eq!(
1541 $name::from_parts(1).saturating_reciprocal_mul($max),
1542 <$type>::max_value(),
1543 );
1544 assert_eq!(
1546 $name::from_percent(60).saturating_reciprocal_mul(<$type>::from(10u8)),
1547 17,
1548 );
1549 assert_eq!(
1551 $name::from_percent(60).saturating_reciprocal_mul_floor(<$type>::from(10u8)),
1552 16,
1553 );
1554 assert_eq!(
1556 $name::from_percent(61).saturating_reciprocal_mul(<$type>::from(10u8)),
1557 16,
1558 );
1559 assert_eq!(
1561 $name::from_percent(61).saturating_reciprocal_mul_ceil(<$type>::from(10u8)),
1562 17,
1563 );
1564 }
1565
1566 #[test]
1567 fn saturating_truncating_mul_works() {
1568 assert_eq!(
1569 $name::from_percent(49).mul_floor(10 as $type),
1570 4,
1571 );
1572 let a: $upper_type = $name::from_percent(50).mul_floor(($max as $upper_type).pow(2));
1573 let b: $upper_type = ($max as $upper_type).pow(2) / 2;
1574 if $max % 2 == 0 {
1575 assert_eq!(a, b);
1576 } else {
1577 assert!(b - a < ($max as $upper_type).pow(2) / 100 as $upper_type);
1579 }
1580 }
1581
1582 #[test]
1583 fn rational_mul_correction_works() {
1584 assert_eq!(
1585 super::rational_mul_correction::<$type, $name>(
1586 <$type>::max_value(),
1587 <$type>::max_value(),
1588 <$type>::max_value(),
1589 super::Rounding::NearestPrefDown,
1590 ),
1591 0,
1592 );
1593 assert_eq!(
1594 super::rational_mul_correction::<$type, $name>(
1595 <$type>::max_value() - 1,
1596 <$type>::max_value(),
1597 <$type>::max_value(),
1598 super::Rounding::NearestPrefDown,
1599 ),
1600 <$type>::max_value() - 1,
1601 );
1602 assert_eq!(
1603 super::rational_mul_correction::<$upper_type, $name>(
1604 ((<$type>::max_value() - 1) as $upper_type).pow(2),
1605 <$type>::max_value(),
1606 <$type>::max_value(),
1607 super::Rounding::NearestPrefDown,
1608 ),
1609 1,
1610 );
1611 assert_eq!(
1613 super::rational_mul_correction::<$upper_type, $name>(
1614 (<$type>::max_value() as $upper_type).pow(2) - 1,
1615 <$type>::max_value(),
1616 <$type>::max_value(),
1617 super::Rounding::NearestPrefDown,
1618 ),
1619 <$upper_type>::from((<$type>::max_value() - 1)),
1620 );
1621 assert_eq!(
1623 super::rational_mul_correction::<$upper_type, $name>(
1624 (<$type>::max_value() as $upper_type).pow(2),
1625 <$type>::max_value(),
1626 2 as $type,
1627 super::Rounding::NearestPrefDown,
1628 ),
1629 <$type>::max_value() as $upper_type / 2,
1630 );
1631 assert_eq!(
1633 super::rational_mul_correction::<$upper_type, $name>(
1634 (<$type>::max_value() as $upper_type).pow(2) - 1,
1635 2 as $type,
1636 <$type>::max_value(),
1637 super::Rounding::NearestPrefDown,
1638 ),
1639 2,
1640 );
1641 assert_eq!(
1643 super::rational_mul_correction::<$upper_type, $name>(
1644 (<$type>::max_value() as $upper_type).pow(2) - 1,
1645 2 as $type,
1646 <$type>::max_value(),
1647 super::Rounding::Down,
1648 ),
1649 1,
1650 );
1651 }
1652
1653 #[test]
1654 #[allow(unused)]
1655 fn const_fns_work() {
1656 const C1: $name = $name::from_percent(50);
1657 const C2: $name = $name::one();
1658 const C3: $name = $name::zero();
1659 const C4: $name = $name::from_parts(1);
1660
1661 const C5: bool = C1.deconstruct() == 0;
1663 }
1664
1665 #[test]
1666 fn compact_decoding_saturate_when_beyond_accuracy() {
1667 use num_traits::Bounded;
1668 use codec::Compact;
1669
1670 let p = Compact::<$name>::decode(&mut &Compact(<$type>::max_value()).encode()[..])
1671 .unwrap();
1672 assert_eq!((p.0).0, $max);
1673 assert_eq!($name::from(p), $name::max_value());
1674 }
1675
1676 #[allow(unused_imports)]
1677 use super::*;
1678
1679 #[test]
1680 fn test_add_basic() {
1681 assert_eq!($name::from_parts(1) + $name::from_parts(1), $name::from_parts(2));
1682 assert_eq!($name::from_parts(10) + $name::from_parts(10), $name::from_parts(20));
1683 }
1684
1685 #[test]
1686 fn test_basic_checked_add() {
1687 assert_eq!(
1688 $name::from_parts(1).checked_add(&$name::from_parts(1)),
1689 Some($name::from_parts(2))
1690 );
1691 assert_eq!(
1692 $name::from_parts(10).checked_add(&$name::from_parts(10)),
1693 Some($name::from_parts(20))
1694 );
1695 assert_eq!(
1696 $name::from_parts(<$type>::MAX).checked_add(&$name::from_parts(<$type>::MAX)),
1697 None
1698 );
1699 assert_eq!(
1700 $name::from_parts($max).checked_add(&$name::from_parts(1)),
1701 None
1702 );
1703 }
1704
1705 #[test]
1706 fn test_basic_saturating_add() {
1707 assert_eq!(
1708 $name::from_parts(1).saturating_add($name::from_parts(1)),
1709 $name::from_parts(2)
1710 );
1711 assert_eq!(
1712 $name::from_parts(10).saturating_add($name::from_parts(10)),
1713 $name::from_parts(20)
1714 );
1715 assert_eq!(
1716 $name::from_parts(<$type>::MAX).saturating_add($name::from_parts(<$type>::MAX)),
1717 $name::from_parts(<$type>::MAX)
1718 );
1719 }
1720
1721 #[test]
1722 fn test_basic_sub() {
1723 assert_eq!($name::from_parts(2) - $name::from_parts(1), $name::from_parts(1));
1724 assert_eq!($name::from_parts(20) - $name::from_parts(10), $name::from_parts(10));
1725 }
1726
1727 #[test]
1728 fn test_basic_checked_sub() {
1729 assert_eq!(
1730 $name::from_parts(2).checked_sub(&$name::from_parts(1)),
1731 Some($name::from_parts(1))
1732 );
1733 assert_eq!(
1734 $name::from_parts(20).checked_sub(&$name::from_parts(10)),
1735 Some($name::from_parts(10))
1736 );
1737 assert_eq!($name::from_parts(0).checked_sub(&$name::from_parts(1)), None);
1738 }
1739
1740 #[test]
1741 fn test_basic_saturating_sub() {
1742 assert_eq!(
1743 $name::from_parts(2).saturating_sub($name::from_parts(1)),
1744 $name::from_parts(1)
1745 );
1746 assert_eq!(
1747 $name::from_parts(20).saturating_sub($name::from_parts(10)),
1748 $name::from_parts(10)
1749 );
1750 assert_eq!(
1751 $name::from_parts(0).saturating_sub($name::from_parts(1)),
1752 $name::from_parts(0)
1753 );
1754 }
1755
1756 #[test]
1757 fn test_basic_checked_mul() {
1758 assert_eq!(
1759 $name::from_parts($max).checked_mul(&$name::from_parts($max)),
1760 Some($name::from_percent(100))
1761 );
1762 assert_eq!(
1763 $name::from_percent(100).checked_mul(&$name::from_percent(100)),
1764 Some($name::from_percent(100))
1765 );
1766 assert_eq!(
1767 $name::from_percent(50).checked_mul(&$name::from_percent(26)),
1768 Some($name::from_percent(13))
1769 );
1770 assert_eq!(
1771 $name::from_percent(0).checked_mul(&$name::from_percent(0)),
1772 Some($name::from_percent(0))
1773 );
1774 }
1775 }
1776 };
1777}
1778
1779macro_rules! implement_per_thing_with_perthousand {
1780 (
1781 $name:ident,
1782 $test_mod:ident,
1783 $pt_test_mod:ident,
1784 [$($test_units:tt),+],
1785 $max:tt,
1786 $type:ty,
1787 $upper_type:ty,
1788 $title:expr $(,)?
1789 ) => {
1790 implement_per_thing! {
1791 $name, $test_mod, [ $( $test_units ),+ ], $max, $type, $upper_type, $title,
1792 }
1793 impl $name {
1794 pub const fn from_perthousand(x: $type) -> Self {
1798 Self(([x, 1000][(x > 1000) as usize] as $upper_type * $max as $upper_type / 1000) as $type)
1799 }
1800 }
1801 #[cfg(test)]
1802 mod $pt_test_mod {
1803 use super::$name;
1804 use crate::traits::Zero;
1805
1806 #[test]
1807 fn from_perthousand_works() {
1808 assert_eq!($name::from_perthousand(00), $name::from_parts(Zero::zero()));
1810 assert_eq!($name::from_perthousand(100), $name::from_parts($max / 10));
1811 assert_eq!($name::from_perthousand(1000), $name::from_parts($max));
1812 assert_eq!($name::from_perthousand(2000), $name::from_parts($max));
1813 }
1814
1815 #[test]
1816 #[allow(unused)]
1817 fn const_fns_work() {
1818 const C1: $name = $name::from_perthousand(500);
1819 }
1820 }
1821 }
1822}
1823
1824#[test]
1825fn from_rational_with_rounding_works_in_extreme_case() {
1826 use Rounding::*;
1827 for &r in [Down, NearestPrefDown, NearestPrefUp, Up].iter() {
1828 Percent::from_rational_with_rounding(1, u64::max_value(), r).unwrap();
1829 Percent::from_rational_with_rounding(1, u32::max_value(), r).unwrap();
1830 Percent::from_rational_with_rounding(1, u16::max_value(), r).unwrap();
1831 Percent::from_rational_with_rounding(u64::max_value() - 1, u64::max_value(), r).unwrap();
1832 Percent::from_rational_with_rounding(u32::max_value() - 1, u32::max_value(), r).unwrap();
1833 Percent::from_rational_with_rounding(u16::max_value() - 1, u16::max_value(), r).unwrap();
1834 PerU16::from_rational_with_rounding(1, u64::max_value(), r).unwrap();
1835 PerU16::from_rational_with_rounding(1, u32::max_value(), r).unwrap();
1836 PerU16::from_rational_with_rounding(1, u16::max_value(), r).unwrap();
1837 PerU16::from_rational_with_rounding(u64::max_value() - 1, u64::max_value(), r).unwrap();
1838 PerU16::from_rational_with_rounding(u32::max_value() - 1, u32::max_value(), r).unwrap();
1839 PerU16::from_rational_with_rounding(u16::max_value() - 1, u16::max_value(), r).unwrap();
1840 Permill::from_rational_with_rounding(1, u64::max_value(), r).unwrap();
1841 Permill::from_rational_with_rounding(1, u32::max_value(), r).unwrap();
1842 Permill::from_rational_with_rounding(u64::max_value() - 1, u64::max_value(), r).unwrap();
1843 Permill::from_rational_with_rounding(u32::max_value() - 1, u32::max_value(), r).unwrap();
1844 Perbill::from_rational_with_rounding(1, u64::max_value(), r).unwrap();
1845 Perbill::from_rational_with_rounding(1, u32::max_value(), r).unwrap();
1846 Perbill::from_rational_with_rounding(u64::max_value() - 1, u64::max_value(), r).unwrap();
1847 Perbill::from_rational_with_rounding(u32::max_value() - 1, u32::max_value(), r).unwrap();
1848 }
1849}
1850
1851#[test]
1852fn from_rational_with_rounding_breakage() {
1853 let n = 372633774963620730670986667244911905u128;
1854 let d = 512593663333074177468745541591173060u128;
1855 let q = Perquintill::from_rational_with_rounding(n, d, Rounding::Down).unwrap();
1856 assert!(q * d <= n);
1857}
1858
1859#[test]
1860fn from_rational_with_rounding_breakage_2() {
1861 let n = 36893488147419103230u128;
1862 let d = 36893488147419103630u128;
1863 let q = Perquintill::from_rational_with_rounding(n, d, Rounding::Up).unwrap();
1864 assert!(q * d >= n);
1865}
1866
1867implement_per_thing!(Percent, test_per_cent, [u32, u64, u128], 100u8, u8, u16, "_Percent_",);
1868implement_per_thing_with_perthousand!(
1869 PerU16,
1870 test_peru16,
1871 test_peru16_extra,
1872 [u32, u64, u128],
1873 65535_u16,
1874 u16,
1875 u32,
1876 "_Parts per 65535_",
1877);
1878implement_per_thing_with_perthousand!(
1879 Permill,
1880 test_permill,
1881 test_permill_extra,
1882 [u32, u64, u128],
1883 1_000_000u32,
1884 u32,
1885 u64,
1886 "_Parts per Million_",
1887);
1888implement_per_thing_with_perthousand!(
1889 Perbill,
1890 test_perbill,
1891 test_perbill_extra,
1892 [u32, u64, u128],
1893 1_000_000_000u32,
1894 u32,
1895 u64,
1896 "_Parts per Billion_",
1897);
1898implement_per_thing_with_perthousand!(
1899 Perquintill,
1900 test_perquintill,
1901 test_perquintill_extra,
1902 [u64, u128],
1903 1_000_000_000_000_000_000u64,
1904 u64,
1905 u128,
1906 "_Parts per Quintillion_",
1907);