sp_arithmetic/
per_things.rs

1// This file is part of Substrate.
2
3// Copyright (C) Parity Technologies (UK) Ltd.
4// SPDX-License-Identifier: Apache-2.0
5
6// Licensed under the Apache License, Version 2.0 (the "License");
7// you may not use this file except in compliance with the License.
8// You may obtain a copy of the License at
9//
10// 	http://www.apache.org/licenses/LICENSE-2.0
11//
12// Unless required by applicable law or agreed to in writing, software
13// distributed under the License is distributed on an "AS IS" BASIS,
14// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15// See the License for the specific language governing permissions and
16// limitations under the License.
17
18//! Types that implement [`PerThing`](PerThing) can be used as a floating-point alternative for
19//! numbers that operate within the realm of `[0, 1]`. The primary types may you encounter in
20//! Substrate would be the following:
21//! - [`Percent`](Percent) - parts of one hundred.
22//! - [`Permill`](Permill) - parts of a million.
23//! - [`Perbill`](Perbill) - parts of a billion.
24//!
25//! In use, you may see them being used as follows:
26//!
27//! > **[`Perbill`](Perbill), parts of a billion**
28#![doc = docify::embed!("./src/lib.rs", perbill_example)]
29//! > **[`Percent`](Percent), parts of a hundred**
30#![doc = docify::embed!("./src/lib.rs", percent_example)]
31//!
32//! Note that `Percent` is represented as a _rounded down_, fixed point
33//! number (see the example above). Unlike primitive types, types that implement
34//! [`PerThing`](PerThing) will also not overflow, and are therefore safe to use.
35//! They adopt the same behavior that a saturated calculation would provide, meaning that if one is
36//! to go over "100%", it wouldn't overflow, but simply stop at the upper or lower bound.
37//!
38//! For use cases which require precision beyond the range of `[0, 1]`, there are fixed-point types
39//! which can be used.
40//!
41//! Each of these can be used to construct and represent ratios within our runtime.
42//! You will find types like [`Perbill`](Perbill) being used often in pallet
43//! development.  `pallet_referenda` is a good example of a pallet which makes good use of fixed
44//! point arithmetic, as it relies on representing various curves and thresholds relating to
45//! governance.
46//!
47//! #### Fixed Point Arithmetic with [`PerThing`](PerThing)
48//!
49//! As stated, one can also perform mathematics using these types directly. For example, finding the
50//! percentage of a particular item:
51
52#![doc = docify::embed!("./src/lib.rs", percent_mult)]
53
54#[cfg(feature = "serde")]
55use serde::{Deserialize, Serialize};
56
57use crate::traits::{
58	BaseArithmetic, Bounded, CheckedAdd, CheckedMul, CheckedSub, One, SaturatedConversion,
59	Saturating, UniqueSaturatedInto, Unsigned, Zero,
60};
61use codec::{CompactAs, DecodeWithMemTracking, Encode};
62use core::{
63	fmt, ops,
64	ops::{Add, Sub},
65};
66use num_traits::{Pow, SaturatingAdd, SaturatingSub};
67
68/// Get the inner type of a `PerThing`.
69pub type InnerOf<P> = <P as PerThing>::Inner;
70
71/// Get the upper type of a `PerThing`.
72pub type UpperOf<P> = <P as PerThing>::Upper;
73
74pub trait RationalArg:
75	Clone
76	+ Ord
77	+ ops::Div<Self, Output = Self>
78	+ ops::Rem<Self, Output = Self>
79	+ ops::Add<Self, Output = Self>
80	+ ops::AddAssign<Self>
81	+ Unsigned
82	+ Zero
83	+ One
84	+ crate::MultiplyRational
85{
86}
87
88impl<
89		T: Clone
90			+ Ord
91			+ ops::Div<Self, Output = Self>
92			+ ops::Rem<Self, Output = Self>
93			+ ops::Add<Self, Output = Self>
94			+ ops::AddAssign<Self>
95			+ Unsigned
96			+ Zero
97			+ One
98			+ crate::MultiplyRational,
99	> RationalArg for T
100{
101}
102
103pub trait MultiplyArg:
104	Clone
105	+ ops::Rem<Self, Output = Self>
106	+ ops::Div<Self, Output = Self>
107	+ ops::Mul<Self, Output = Self>
108	+ ops::Add<Self, Output = Self>
109	+ Unsigned
110{
111}
112
113impl<
114		T: Clone
115			+ ops::Rem<Self, Output = Self>
116			+ ops::Div<Self, Output = Self>
117			+ ops::Mul<Self, Output = Self>
118			+ ops::Add<Self, Output = Self>
119			+ Unsigned,
120	> MultiplyArg for T
121{
122}
123
124pub trait ReciprocalArg: MultiplyArg + Saturating {}
125impl<T: MultiplyArg + Saturating> ReciprocalArg for T {}
126
127/// Something that implements a fixed point ration with an arbitrary granularity `X`, as _parts per
128/// `X`_.
129pub trait PerThing:
130	Sized
131	+ Saturating
132	+ Copy
133	+ Default
134	+ Eq
135	+ PartialEq
136	+ Ord
137	+ PartialOrd
138	+ Bounded
139	+ fmt::Debug
140	+ ops::Div<Output = Self>
141	+ ops::Mul<Output = Self>
142	+ Pow<usize, Output = Self>
143{
144	/// The data type used to build this per-thingy.
145	type Inner: BaseArithmetic + Unsigned + Copy + Into<u128> + fmt::Debug + crate::MultiplyRational;
146
147	/// A data type larger than `Self::Inner`, used to avoid overflow in some computations.
148	/// It must be able to compute `ACCURACY^2`.
149	type Upper: BaseArithmetic
150		+ Copy
151		+ From<Self::Inner>
152		+ TryInto<Self::Inner>
153		+ UniqueSaturatedInto<Self::Inner>
154		+ Unsigned
155		+ fmt::Debug
156		+ crate::MultiplyRational;
157
158	/// The accuracy of this type.
159	const ACCURACY: Self::Inner;
160
161	/// Equivalent to `Self::from_parts(0)`.
162	fn zero() -> Self {
163		Self::from_parts(Self::Inner::zero())
164	}
165
166	/// Return `true` if this is nothing.
167	fn is_zero(&self) -> bool {
168		self.deconstruct() == Self::Inner::zero()
169	}
170
171	/// Equivalent to `Self::from_parts(Self::ACCURACY)`.
172	fn one() -> Self {
173		Self::from_parts(Self::ACCURACY)
174	}
175
176	/// Return `true` if this is one.
177	fn is_one(&self) -> bool {
178		self.deconstruct() == Self::ACCURACY
179	}
180
181	/// Return the next lower value to `self` or `self` if it is already zero.
182	fn less_epsilon(self) -> Self {
183		if self.is_zero() {
184			return self
185		}
186		Self::from_parts(self.deconstruct() - One::one())
187	}
188
189	/// Return the next lower value to `self` or an error with the same value if `self` is already
190	/// zero.
191	fn try_less_epsilon(self) -> Result<Self, Self> {
192		if self.is_zero() {
193			return Err(self)
194		}
195		Ok(Self::from_parts(self.deconstruct() - One::one()))
196	}
197
198	/// Return the next higher value to `self` or `self` if it is already one.
199	fn plus_epsilon(self) -> Self {
200		if self.is_one() {
201			return self
202		}
203		Self::from_parts(self.deconstruct() + One::one())
204	}
205
206	/// Return the next higher value to `self` or an error with the same value if `self` is already
207	/// one.
208	fn try_plus_epsilon(self) -> Result<Self, Self> {
209		if self.is_one() {
210			return Err(self)
211		}
212		Ok(Self::from_parts(self.deconstruct() + One::one()))
213	}
214
215	/// Build this type from a percent. Equivalent to `Self::from_parts(x * Self::ACCURACY / 100)`
216	/// but more accurate and can cope with potential type overflows.
217	fn from_percent(x: Self::Inner) -> Self {
218		let a: Self::Inner = x.min(100.into());
219		let b: Self::Inner = 100.into();
220		Self::from_rational::<Self::Inner>(a, b)
221	}
222
223	/// Return the product of multiplication of this value by itself.
224	fn square(self) -> Self {
225		let p = Self::Upper::from(self.deconstruct());
226		let q = Self::Upper::from(Self::ACCURACY);
227		Self::from_rational::<Self::Upper>(p * p, q * q)
228	}
229
230	/// Return the part left when `self` is saturating-subtracted from `Self::one()`.
231	fn left_from_one(self) -> Self {
232		Self::one().saturating_sub(self)
233	}
234
235	/// Multiplication that always rounds down to a whole number. The standard `Mul` rounds to the
236	/// nearest whole number.
237	///
238	/// ```rust
239	/// # use sp_arithmetic::{Percent, PerThing};
240	/// # fn main () {
241	/// // round to nearest
242	/// assert_eq!(Percent::from_percent(34) * 10u64, 3);
243	/// assert_eq!(Percent::from_percent(36) * 10u64, 4);
244	///
245	/// // round down
246	/// assert_eq!(Percent::from_percent(34).mul_floor(10u64), 3);
247	/// assert_eq!(Percent::from_percent(36).mul_floor(10u64), 3);
248	/// # }
249	/// ```
250	fn mul_floor<N>(self, b: N) -> N
251	where
252		N: MultiplyArg + UniqueSaturatedInto<Self::Inner>,
253		Self::Inner: Into<N>,
254	{
255		overflow_prune_mul::<N, Self>(b, self.deconstruct(), Rounding::Down)
256	}
257
258	/// Multiplication that always rounds the result up to a whole number. The standard `Mul`
259	/// rounds to the nearest whole number.
260	///
261	/// ```rust
262	/// # use sp_arithmetic::{Percent, PerThing};
263	/// # fn main () {
264	/// // round to nearest
265	/// assert_eq!(Percent::from_percent(34) * 10u64, 3);
266	/// assert_eq!(Percent::from_percent(36) * 10u64, 4);
267	///
268	/// // round up
269	/// assert_eq!(Percent::from_percent(34).mul_ceil(10u64), 4);
270	/// assert_eq!(Percent::from_percent(36).mul_ceil(10u64), 4);
271	/// # }
272	/// ```
273	fn mul_ceil<N>(self, b: N) -> N
274	where
275		N: MultiplyArg + UniqueSaturatedInto<Self::Inner>,
276		Self::Inner: Into<N>,
277	{
278		overflow_prune_mul::<N, Self>(b, self.deconstruct(), Rounding::Up)
279	}
280
281	/// Saturating multiplication by the reciprocal of `self`.	The result is rounded to the
282	/// nearest whole number and saturates at the numeric bounds instead of overflowing.
283	///
284	/// ```rust
285	/// # use sp_arithmetic::{Percent, PerThing};
286	/// # fn main () {
287	/// assert_eq!(Percent::from_percent(50).saturating_reciprocal_mul(10u64), 20);
288	/// # }
289	/// ```
290	fn saturating_reciprocal_mul<N>(self, b: N) -> N
291	where
292		N: ReciprocalArg + UniqueSaturatedInto<Self::Inner>,
293		Self::Inner: Into<N>,
294	{
295		saturating_reciprocal_mul::<N, Self>(b, self.deconstruct(), Rounding::NearestPrefUp)
296	}
297
298	/// Saturating multiplication by the reciprocal of `self`.	The result is rounded down to the
299	/// nearest whole number and saturates at the numeric bounds instead of overflowing.
300	///
301	/// ```rust
302	/// # use sp_arithmetic::{Percent, PerThing};
303	/// # fn main () {
304	/// // round to nearest
305	/// assert_eq!(Percent::from_percent(60).saturating_reciprocal_mul(10u64), 17);
306	/// // round down
307	/// assert_eq!(Percent::from_percent(60).saturating_reciprocal_mul_floor(10u64), 16);
308	/// # }
309	/// ```
310	fn saturating_reciprocal_mul_floor<N>(self, b: N) -> N
311	where
312		N: ReciprocalArg + UniqueSaturatedInto<Self::Inner>,
313		Self::Inner: Into<N>,
314	{
315		saturating_reciprocal_mul::<N, Self>(b, self.deconstruct(), Rounding::Down)
316	}
317
318	/// Saturating multiplication by the reciprocal of `self`.	The result is rounded up to the
319	/// nearest whole number and saturates at the numeric bounds instead of overflowing.
320	///
321	/// ```rust
322	/// # use sp_arithmetic::{Percent, PerThing};
323	/// # fn main () {
324	/// // round to nearest
325	/// assert_eq!(Percent::from_percent(61).saturating_reciprocal_mul(10u64), 16);
326	/// // round up
327	/// assert_eq!(Percent::from_percent(61).saturating_reciprocal_mul_ceil(10u64), 17);
328	/// # }
329	/// ```
330	fn saturating_reciprocal_mul_ceil<N>(self, b: N) -> N
331	where
332		N: ReciprocalArg + UniqueSaturatedInto<Self::Inner>,
333		Self::Inner: Into<N>,
334	{
335		saturating_reciprocal_mul::<N, Self>(b, self.deconstruct(), Rounding::Up)
336	}
337
338	/// Consume self and return the number of parts per thing.
339	fn deconstruct(self) -> Self::Inner;
340
341	/// Build this type from a number of parts per thing.
342	fn from_parts(parts: Self::Inner) -> Self;
343
344	/// Converts a fraction into `Self`.
345	#[cfg(feature = "std")]
346	fn from_float(x: f64) -> Self;
347
348	/// Same as `Self::from_float`.
349	#[deprecated = "Use from_float instead"]
350	#[cfg(feature = "std")]
351	fn from_fraction(x: f64) -> Self {
352		Self::from_float(x)
353	}
354
355	/// Approximate the fraction `p/q` into a per-thing fraction. This will never overflow.
356	///
357	/// The computation of this approximation is performed in the generic type `N`. Given
358	/// `M` as the data type that can hold the maximum value of this per-thing (e.g. u32 for
359	/// perbill), this can only work if `N == M` or `N: From<M> + TryInto<M>`.
360	///
361	/// Note that this always rounds _down_, i.e.
362	///
363	/// ```rust
364	/// # use sp_arithmetic::{Percent, PerThing};
365	/// # fn main () {
366	/// // 989/1000 is technically closer to 99%.
367	/// assert_eq!(
368	/// 	Percent::from_rational(989u64, 1000),
369	/// 	Percent::from_parts(98),
370	/// );
371	/// # }
372	/// ```
373	fn from_rational<N>(p: N, q: N) -> Self
374	where
375		N: RationalArg + TryInto<Self::Inner> + TryInto<Self::Upper>,
376		Self::Inner: Into<N>,
377	{
378		Self::from_rational_with_rounding(p, q, Rounding::Down).unwrap_or_else(|_| Self::one())
379	}
380
381	/// Approximate the fraction `p/q` into a per-thing fraction.
382	///
383	/// The computation of this approximation is performed in the generic type `N`. Given
384	/// `M` as the data type that can hold the maximum value of this per-thing (e.g. `u32` for
385	/// `Perbill`), this can only work if `N == M` or `N: From<M> + TryInto<M>`.
386	///
387	/// In the case of an overflow (or divide by zero), an `Err` is returned.
388	///
389	/// Rounding is determined by the parameter `rounding`, i.e.
390	///
391	/// ```rust
392	/// # use sp_arithmetic::{Percent, PerThing, Rounding::*};
393	/// # fn main () {
394	/// // 989/100 is technically closer to 99%.
395	/// assert_eq!(
396	/// 	Percent::from_rational_with_rounding(989u64, 1000, Down).unwrap(),
397	/// 	Percent::from_parts(98),
398	/// );
399	/// assert_eq!(
400	/// 	Percent::from_rational_with_rounding(984u64, 1000, NearestPrefUp).unwrap(),
401	/// 	Percent::from_parts(98),
402	/// );
403	/// assert_eq!(
404	/// 	Percent::from_rational_with_rounding(985u64, 1000, NearestPrefDown).unwrap(),
405	/// 	Percent::from_parts(98),
406	/// );
407	/// assert_eq!(
408	/// 	Percent::from_rational_with_rounding(985u64, 1000, NearestPrefUp).unwrap(),
409	/// 	Percent::from_parts(99),
410	/// );
411	/// assert_eq!(
412	/// 	Percent::from_rational_with_rounding(986u64, 1000, NearestPrefDown).unwrap(),
413	/// 	Percent::from_parts(99),
414	/// );
415	/// assert_eq!(
416	/// 	Percent::from_rational_with_rounding(981u64, 1000, Up).unwrap(),
417	/// 	Percent::from_parts(99),
418	/// );
419	/// assert_eq!(
420	/// 	Percent::from_rational_with_rounding(1001u64, 1000, Up),
421	/// 	Err(()),
422	/// );
423	/// # }
424	/// ```
425	///
426	/// ```rust
427	/// # use sp_arithmetic::{Percent, PerThing, Rounding::*};
428	/// # fn main () {
429	/// assert_eq!(
430	/// 	Percent::from_rational_with_rounding(981u64, 1000, Up).unwrap(),
431	/// 	Percent::from_parts(99),
432	/// );
433	/// # }
434	/// ```
435	fn from_rational_with_rounding<N>(p: N, q: N, rounding: Rounding) -> Result<Self, ()>
436	where
437		N: RationalArg + TryInto<Self::Inner> + TryInto<Self::Upper>,
438		Self::Inner: Into<N>;
439
440	/// Same as `Self::from_rational`.
441	#[deprecated = "Use from_rational instead"]
442	fn from_rational_approximation<N>(p: N, q: N) -> Self
443	where
444		N: RationalArg + TryInto<Self::Inner> + TryInto<Self::Upper>,
445		Self::Inner: Into<N>,
446	{
447		Self::from_rational(p, q)
448	}
449}
450
451/// The rounding method to use for unsigned quantities.
452#[derive(Copy, Clone, core::fmt::Debug)]
453pub enum Rounding {
454	// Towards infinity.
455	Up,
456	// Towards zero.
457	Down,
458	// Nearest integer, rounding as `Up` when equidistant.
459	NearestPrefUp,
460	// Nearest integer, rounding as `Down` when equidistant.
461	NearestPrefDown,
462}
463
464/// The rounding method to use.
465#[derive(Copy, Clone, core::fmt::Debug)]
466pub enum SignedRounding {
467	// Towards positive infinity.
468	High,
469	// Towards negative infinity.
470	Low,
471	// Nearest integer, rounding as `High` when exactly equidistant.
472	NearestPrefHigh,
473	// Nearest integer, rounding as `Low` when exactly equidistant.
474	NearestPrefLow,
475	// Away from zero (up when positive, down when negative). When positive, equivalent to `High`.
476	Major,
477	// Towards zero (down when positive, up when negative). When positive, equivalent to `Low`.
478	Minor,
479	// Nearest integer, rounding as `Major` when exactly equidistant.
480	NearestPrefMajor,
481	// Nearest integer, rounding as `Minor` when exactly equidistant.
482	NearestPrefMinor,
483}
484
485impl Rounding {
486	/// Returns the value for `Rounding` which would give the same result ignorant of the sign.
487	pub const fn from_signed(rounding: SignedRounding, negative: bool) -> Self {
488		use Rounding::*;
489		use SignedRounding::*;
490		match (rounding, negative) {
491			(Low, true) | (Major, _) | (High, false) => Up,
492			(High, true) | (Minor, _) | (Low, false) => Down,
493			(NearestPrefMajor, _) | (NearestPrefHigh, false) | (NearestPrefLow, true) =>
494				NearestPrefUp,
495			(NearestPrefMinor, _) | (NearestPrefLow, false) | (NearestPrefHigh, true) =>
496				NearestPrefDown,
497		}
498	}
499}
500
501/// Saturating reciprocal multiplication. Compute `x / self`, saturating at the numeric
502/// bounds instead of overflowing.
503fn saturating_reciprocal_mul<N, P>(x: N, part: P::Inner, rounding: Rounding) -> N
504where
505	N: Clone
506		+ UniqueSaturatedInto<P::Inner>
507		+ ops::Div<N, Output = N>
508		+ ops::Mul<N, Output = N>
509		+ ops::Add<N, Output = N>
510		+ ops::Rem<N, Output = N>
511		+ Saturating
512		+ Unsigned,
513	P: PerThing,
514	P::Inner: Into<N>,
515{
516	let maximum: N = P::ACCURACY.into();
517	let c = rational_mul_correction::<N, P>(x.clone(), P::ACCURACY, part, rounding);
518	(x / part.into()).saturating_mul(maximum).saturating_add(c)
519}
520
521/// Overflow-prune multiplication. Accurately multiply a value by `self` without overflowing.
522fn overflow_prune_mul<N, P>(x: N, part: P::Inner, rounding: Rounding) -> N
523where
524	N: MultiplyArg + UniqueSaturatedInto<P::Inner>,
525	P: PerThing,
526	P::Inner: Into<N>,
527{
528	let maximum: N = P::ACCURACY.into();
529	let part_n: N = part.into();
530	let c = rational_mul_correction::<N, P>(x.clone(), part, P::ACCURACY, rounding);
531	(x / maximum) * part_n + c
532}
533
534/// Compute the error due to integer division in the expression `x / denom * numer`.
535///
536/// Take the remainder of `x / denom` and multiply by  `numer / denom`. The result can be added
537/// to `x / denom * numer` for an accurate result.
538fn rational_mul_correction<N, P>(x: N, numer: P::Inner, denom: P::Inner, rounding: Rounding) -> N
539where
540	N: MultiplyArg + UniqueSaturatedInto<P::Inner>,
541	P: PerThing,
542	P::Inner: Into<N>,
543{
544	let numer_upper = P::Upper::from(numer);
545	let denom_n: N = denom.into();
546	let denom_upper = P::Upper::from(denom);
547	let rem = x.rem(denom_n);
548	// `rem` is less than `denom`, which fits in `P::Inner`.
549	let rem_inner = rem.saturated_into::<P::Inner>();
550	// `P::Upper` always fits `P::Inner::max_value().pow(2)`, thus it fits `rem * numer`.
551	let rem_mul_upper = P::Upper::from(rem_inner) * numer_upper;
552	// `rem` is less than `denom`, so `rem * numer / denom` is less than `numer`, which fits in
553	// `P::Inner`.
554	let mut rem_mul_div_inner = (rem_mul_upper / denom_upper).saturated_into::<P::Inner>();
555	match rounding {
556		// Already rounded down
557		Rounding::Down => {},
558		// Round up if the fractional part of the result is non-zero.
559		Rounding::Up => {
560			if rem_mul_upper % denom_upper > 0.into() {
561				// `rem * numer / denom` is less than `numer`, so this will not overflow.
562				rem_mul_div_inner += 1.into();
563			}
564		},
565		Rounding::NearestPrefDown => {
566			if rem_mul_upper % denom_upper > denom_upper / 2.into() {
567				// `rem * numer / denom` is less than `numer`, so this will not overflow.
568				rem_mul_div_inner += 1.into();
569			}
570		},
571		Rounding::NearestPrefUp => {
572			if rem_mul_upper % denom_upper >= denom_upper / 2.into() + denom_upper % 2.into() {
573				// `rem * numer / denom` is less than `numer`, so this will not overflow.
574				rem_mul_div_inner += 1.into();
575			}
576		},
577	}
578	rem_mul_div_inner.into()
579}
580
581macro_rules! implement_per_thing {
582	(
583		$name:ident,
584		$test_mod:ident,
585		[$($test_units:tt),+],
586		$max:tt,
587		$type:ty,
588		$upper_type:ty,
589		$title:expr $(,)?
590	) => {
591		/// A fixed point representation of a number in the range [0, 1].
592		///
593		#[doc = $title]
594		#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
595		#[derive(Encode, DecodeWithMemTracking, Copy, Clone, PartialEq, Eq, codec::MaxEncodedLen, PartialOrd, Ord, scale_info::TypeInfo)]
596		pub struct $name($type);
597
598		/// Implementation makes any compact encoding of `PerThing::Inner` valid,
599		/// when decoding it will saturate up to `PerThing::ACCURACY`.
600		impl CompactAs for $name {
601			type As = $type;
602			fn encode_as(&self) -> &Self::As {
603				&self.0
604			}
605			fn decode_from(x: Self::As) -> Result<Self, codec::Error> {
606				// Saturates if `x` is more than `$max` internally.
607				Ok(Self::from_parts(x))
608			}
609		}
610
611		impl From<codec::Compact<$name>> for $name {
612			fn from(x: codec::Compact<$name>) -> $name {
613				x.0
614			}
615		}
616
617		#[cfg(feature = "std")]
618		impl core::fmt::Debug for $name {
619			fn fmt(&self, fmt: &mut core::fmt::Formatter) -> core::fmt::Result {
620				if $max == <$type>::max_value() {
621					// Not a power of ten: show as N/D and approx %
622					let pc = (self.0 as f64) / (self.0 as f64) * 100f64;
623					write!(fmt, "{:.2}% ({}/{})", pc, self.0, $max)
624				} else {
625					// A power of ten: calculate exact percent
626					let divisor = $max / 100;
627					let units = self.0 / divisor;
628					let rest = self.0 % divisor;
629					write!(fmt, "{}", units)?;
630					if rest > 0 {
631						write!(fmt, ".")?;
632						let mut m = $max / 100;
633						while rest % m > 0 {
634							m /= 10;
635							write!(fmt, "{:01}", rest / m % 10)?;
636						}
637					}
638					write!(fmt, "%")
639				}
640			}
641		}
642
643		#[cfg(not(feature = "std"))]
644		impl core::fmt::Debug for $name {
645			fn fmt(&self, fmt: &mut core::fmt::Formatter) -> core::fmt::Result {
646				if $max == <$type>::max_value() {
647					// Not a power of ten: show as N/D and approx %
648					write!(fmt, "{}/{}", self.0, $max)
649				} else {
650					// A power of ten: calculate exact percent
651					let units = self.0 / ($max / 100);
652					let rest = self.0 % ($max / 100);
653					write!(fmt, "{}", units)?;
654					if rest > 0 {
655						write!(fmt, ".")?;
656						let mut m = $max / 100;
657						while rest % m > 0 {
658							m /= 10;
659							write!(fmt, "{:01}", rest / m % 10)?;
660						}
661					}
662					write!(fmt, "%")
663				}
664			}
665		}
666
667		impl PerThing for $name {
668			type Inner = $type;
669			type Upper = $upper_type;
670
671			const ACCURACY: Self::Inner = $max;
672
673			/// Consume self and return the number of parts per thing.
674			fn deconstruct(self) -> Self::Inner { self.0 }
675
676			/// Build this type from a number of parts per thing.
677			fn from_parts(parts: Self::Inner) -> Self { Self(parts.min($max)) }
678
679			/// NOTE: saturate to 0 or 1 if x is beyond `[0, 1]`
680			#[cfg(feature = "std")]
681			fn from_float(x: f64) -> Self {
682				Self::from_parts((x.max(0.).min(1.) * $max as f64) as Self::Inner)
683			}
684
685			fn from_rational_with_rounding<N>(p: N, q: N, r: Rounding) -> Result<Self, ()>
686			where
687				N: Clone
688					+ Ord
689					+ TryInto<Self::Inner>
690					+ TryInto<Self::Upper>
691					+ ops::Div<N, Output = N>
692					+ ops::Rem<N, Output = N>
693					+ ops::Add<N, Output = N>
694					+ ops::AddAssign<N>
695					+ Unsigned
696					+ Zero
697					+ One
698					+ $crate::MultiplyRational,
699				Self::Inner: Into<N>
700			{
701				// q cannot be zero.
702				if q.is_zero() { return Err(()) }
703				// p should not be bigger than q.
704				if p > q { return Err(()) }
705
706				let max: N = $max.into();
707				max.multiply_rational(p, q, r).ok_or(())?.try_into().map(|x| $name(x)).map_err(|_| ())
708			}
709		}
710
711		impl $name {
712			/// From an explicitly defined number of parts per maximum of the type.
713			///
714			// needed only for peru16. Since peru16 is the only type in which $max ==
715			// $type::max_value(), rustc is being a smart-a** here by warning that the comparison
716			// is not needed.
717			#[allow(unused_comparisons)]
718			pub const fn from_parts(parts: $type) -> Self {
719				Self([parts, $max][(parts > $max) as usize])
720			}
721
722			/// Converts a percent into `Self`. Equal to `x / 100`.
723			///
724			/// This can be created at compile time.
725			pub const fn from_percent(x: $type) -> Self {
726				Self(([x, 100][(x > 100) as usize] as $upper_type * $max as $upper_type / 100) as $type)
727			}
728
729			/// See [`PerThing::one`]
730			pub const fn one() -> Self {
731				Self::from_parts($max)
732			}
733
734			/// See [`PerThing::is_one`].
735			pub fn is_one(&self) -> bool {
736				PerThing::is_one(self)
737			}
738
739			/// See [`PerThing::zero`].
740			pub const fn zero() -> Self {
741				Self::from_parts(0)
742			}
743
744			/// See [`PerThing::is_zero`].
745			pub fn is_zero(&self) -> bool {
746				PerThing::is_zero(self)
747			}
748
749			/// See [`PerThing::deconstruct`].
750			pub const fn deconstruct(self) -> $type {
751				self.0
752			}
753
754			/// See [`PerThing::square`].
755			pub fn square(self) -> Self {
756				PerThing::square(self)
757			}
758
759			/// See [`PerThing::from_float`].
760			#[cfg(feature = "std")]
761			pub fn from_float(x: f64) -> Self {
762				<Self as PerThing>::from_float(x)
763			}
764
765			/// See [`PerThing::from_rational`].
766			#[deprecated = "Use `PerThing::from_rational` instead"]
767			pub fn from_rational_approximation<N>(p: N, q: N) -> Self
768			where
769				N: RationalArg+ TryInto<$type> + TryInto<$upper_type>,
770				$type: Into<N>
771			{
772				<Self as PerThing>::from_rational(p, q)
773			}
774
775			/// See [`PerThing::from_rational`].
776			pub fn from_rational<N>(p: N, q: N) -> Self
777			where
778				N: RationalArg+ TryInto<$type> + TryInto<$upper_type>,
779				$type: Into<N>
780			{
781				<Self as PerThing>::from_rational(p, q)
782			}
783
784			/// Integer multiplication with another value, saturating at 1.
785			pub fn int_mul(self, b: $type) -> Self {
786				PerThing::from_parts(self.0.saturating_mul(b))
787			}
788
789			/// Integer division with another value, rounding down.
790			pub fn int_div(self, b: Self) -> $type {
791				self.0 / b.0
792			}
793
794			/// See [`PerThing::mul_floor`].
795			pub fn mul_floor<N>(self, b: N) -> N
796				where
797					N: MultiplyArg + UniqueSaturatedInto<$type>,
798					$type: Into<N>,
799
800			{
801				PerThing::mul_floor(self, b)
802			}
803
804			/// See [`PerThing::mul_ceil`].
805			pub fn mul_ceil<N>(self, b: N) -> N
806				where
807					N: MultiplyArg + UniqueSaturatedInto<$type>,
808					$type: Into<N>,
809			{
810				PerThing::mul_ceil(self, b)
811			}
812
813			/// See [`PerThing::saturating_reciprocal_mul`].
814			pub fn saturating_reciprocal_mul<N>(self, b: N) -> N
815				where
816					N: ReciprocalArg + UniqueSaturatedInto<$type>,
817					$type: Into<N>,
818			{
819				PerThing::saturating_reciprocal_mul(self, b)
820			}
821
822			/// See [`PerThing::saturating_reciprocal_mul_floor`].
823			pub fn saturating_reciprocal_mul_floor<N>(self, b: N) -> N
824				where
825					N: ReciprocalArg + UniqueSaturatedInto<$type>,
826					$type: Into<N>,
827			{
828				PerThing::saturating_reciprocal_mul_floor(self, b)
829			}
830
831			/// See [`PerThing::saturating_reciprocal_mul_ceil`].
832			pub fn saturating_reciprocal_mul_ceil<N>(self, b: N) -> N
833				where
834					N: ReciprocalArg + UniqueSaturatedInto<$type>,
835					$type: Into<N>,
836			{
837				PerThing::saturating_reciprocal_mul_ceil(self, b)
838			}
839
840			/// Saturating division. Compute `self / rhs`, saturating at one if `rhs < self`.
841			///
842			/// The `rounding` method must be specified. e.g.:
843			///
844			/// ```rust
845			/// # use sp_arithmetic::{Percent, PerThing, Rounding::*};
846			/// # fn main () {
847			/// let pc = |x| Percent::from_percent(x);
848			/// assert_eq!(
849			/// 	pc(2).saturating_div(pc(3), Down),
850			/// 	pc(66),
851			/// );
852			/// assert_eq!(
853			/// 	pc(1).saturating_div(pc(3), NearestPrefUp),
854			/// 	pc(33),
855			/// );
856			/// assert_eq!(
857			/// 	pc(2).saturating_div(pc(3), NearestPrefDown),
858			/// 	pc(67),
859			/// );
860			/// assert_eq!(
861			/// 	pc(1).saturating_div(pc(3), Up),
862			/// 	pc(34),
863			/// );
864			/// # }
865			/// ```
866			pub fn saturating_div(self, rhs: Self, r: Rounding) -> Self {
867				let p = self.0;
868				let q = rhs.0;
869				Self::from_rational_with_rounding(p, q, r).unwrap_or_else(|_| Self::one())
870			}
871		}
872
873		impl Saturating for $name {
874			/// Saturating addition. Compute `self + rhs`, saturating at the numeric bounds instead of
875			/// overflowing. This operation is lossless if it does not saturate.
876			fn saturating_add(self, rhs: Self) -> Self {
877				// defensive-only: since `$max * 2 < $type::max_value()`, this can never overflow.
878				Self::from_parts(self.0.saturating_add(rhs.0))
879			}
880
881			/// Saturating subtraction. Compute `self - rhs`, saturating at the numeric bounds instead of
882			/// overflowing. This operation is lossless if it does not saturate.
883			fn saturating_sub(self, rhs: Self) -> Self {
884				Self::from_parts(self.0.saturating_sub(rhs.0))
885			}
886
887			/// Saturating multiply. Compute `self * rhs`, saturating at the numeric bounds instead of
888			/// overflowing. This operation is lossy.
889			fn saturating_mul(self, rhs: Self) -> Self {
890				self * rhs
891			}
892
893			/// Saturating exponentiation. Computes `self.pow(exp)`, saturating at the numeric
894			/// bounds instead of overflowing. This operation is lossy.
895			fn saturating_pow(self, exp: usize) -> Self {
896				self.pow(exp)
897			}
898		}
899
900		impl codec::Decode for $name {
901			fn decode<I: codec::Input>(input: &mut I) -> Result<Self, codec::Error> {
902				let inner = <$type as codec::Decode>::decode(input)?;
903
904				if inner <= <Self as PerThing>::ACCURACY {
905					Ok(Self(inner))
906				} else {
907					Err("Value is greater than allowed maximum!".into())
908				}
909			}
910		}
911
912		impl Bounded for $name {
913			fn min_value() -> Self {
914				<Self as PerThing>::zero()
915			}
916
917			fn max_value() -> Self {
918				<Self as PerThing>::one()
919			}
920		}
921
922		impl ops::Mul for $name {
923			type Output = Self;
924
925			fn mul(self, rhs: Self) -> Self::Output {
926				let a = self.0 as $upper_type;
927				let b = rhs.0 as $upper_type;
928				let m = <$upper_type>::from($max);
929				let parts = a * b / m;
930				// This will always fit into $type.
931				Self::from_parts(parts as $type)
932			}
933		}
934
935		impl Pow<usize> for $name {
936			type Output = Self;
937
938			fn pow(mut self, exp: usize) -> Self::Output {
939				if exp == 0 || self.is_one() {
940					return Self::one()
941				}
942
943				let mut result = self;
944				let mut exp = exp - 1;
945				while exp > 0 && !result.is_zero() {
946					if exp % 2 != 0 {
947						result = result * self;
948						exp -= 1;
949					}
950					self = self.square();
951					exp /= 2;
952				}
953				result
954			}
955		}
956
957		impl ops::Div for $name {
958			type Output = Self;
959
960			fn div(self, rhs: Self) -> Self::Output {
961				let p = self.0;
962				let q = rhs.0;
963				Self::from_rational(p, q)
964			}
965		}
966
967		impl Default for $name {
968			fn default() -> Self {
969				<Self as PerThing>::zero()
970			}
971		}
972
973		/// Non-overflow multiplication.
974		///
975		/// This is tailored to be used with a balance type.
976		impl<N> ops::Mul<N> for $name
977		where
978			N: Clone + UniqueSaturatedInto<$type> + ops::Rem<N, Output=N>
979				+ ops::Div<N, Output=N> + ops::Mul<N, Output=N> + ops::Add<N, Output=N> + Unsigned,
980			$type: Into<N>,
981		{
982			type Output = N;
983			fn mul(self, b: N) -> Self::Output {
984				overflow_prune_mul::<N, Self>(b, self.deconstruct(), Rounding::NearestPrefDown)
985			}
986		}
987
988		impl<N> ops::Div<N> for $name where $type: TryFrom<N> {
989			type Output = Self;
990			fn div(self, b: N) -> Self::Output {
991				<$type>::try_from(b).map_or(Self::zero(), |d| Self::from_parts(self.0 / d))
992			}
993		}
994
995		impl Add<Self> for $name {
996			type Output = $name;
997
998			// For PerU16, $max == u16::MAX, so we need this `allow`.
999			#[allow(unused_comparisons)]
1000			#[inline]
1001			fn add(self, rhs: Self) -> Self::Output {
1002				let inner = self.deconstruct().add(rhs.deconstruct());
1003				debug_assert!(inner <= $max);
1004				$name::from_parts(inner)
1005			}
1006		}
1007
1008		impl CheckedAdd for $name {
1009			// For PerU16, $max == u16::MAX, so we need this `allow`.
1010			#[allow(unused_comparisons)]
1011			#[inline]
1012			fn checked_add(&self, rhs: &Self) -> Option<Self> {
1013				self.deconstruct()
1014					.checked_add(rhs.deconstruct())
1015					.map(|inner| if inner > $max { None } else { Some($name::from_parts(inner)) })
1016					.flatten()
1017			}
1018		}
1019
1020		impl Sub<Self> for $name {
1021			type Output = $name;
1022
1023			#[inline]
1024			fn sub(self, rhs: Self) -> Self::Output {
1025				$name::from_parts(self.deconstruct().sub(rhs.deconstruct()))
1026			}
1027		}
1028
1029		impl CheckedSub for $name {
1030			#[inline]
1031			fn checked_sub(&self, v: &Self) -> Option<Self> {
1032				self.deconstruct().checked_sub(v.deconstruct()).map($name::from_parts)
1033			}
1034		}
1035
1036		impl SaturatingAdd for $name {
1037			#[inline]
1038			fn saturating_add(&self, v: &Self) -> Self {
1039				$name::from_parts(self.deconstruct().saturating_add(v.deconstruct()))
1040			}
1041		}
1042
1043		impl SaturatingSub for $name {
1044			#[inline]
1045			fn saturating_sub(&self, v: &Self) -> Self {
1046				$name::from_parts(self.deconstruct().saturating_sub(v.deconstruct()))
1047			}
1048		}
1049
1050		/// # Note
1051		/// CheckedMul will never fail for PerThings.
1052		impl CheckedMul for $name {
1053			#[inline]
1054			fn checked_mul(&self, rhs: &Self) -> Option<Self> {
1055				Some(*self * *rhs)
1056			}
1057		}
1058
1059		impl $crate::traits::Zero for $name {
1060			fn zero() -> Self {
1061				Self::zero()
1062			}
1063
1064			fn is_zero(&self) -> bool {
1065				self == &Self::zero()
1066			}
1067		}
1068
1069		impl $crate::traits::One for $name {
1070			fn one() -> Self {
1071				Self::one()
1072			}
1073		}
1074
1075		#[cfg(test)]
1076		mod $test_mod {
1077			use codec::{Encode, Decode};
1078			use super::{$name, Saturating, PerThing};
1079			use crate::traits::Zero;
1080
1081			#[test]
1082			fn macro_expanded_correctly() {
1083				// needed for the `from_percent` to work. UPDATE: this is no longer needed; yet note
1084				// that tests that use percentage or fractions such as $name::from_float(0.2) to
1085				// create values will most likely be inaccurate when used with per_things that are
1086				// not multiples of 100.
1087				// assert!($max >= 100);
1088				// assert!($max % 100 == 0);
1089
1090				// needed for `from_rational`
1091				assert!(2 * ($max as $upper_type) < <$upper_type>::max_value());
1092				assert!(<$upper_type>::from($max) < <$upper_type>::max_value());
1093
1094				// for something like percent they can be the same.
1095				assert!((<$type>::max_value() as $upper_type) <= <$upper_type>::max_value());
1096				assert!(<$upper_type>::from($max).checked_mul($max.into()).is_some());
1097
1098				// make sure saturating_pow won't overflow the upper type
1099				assert!(<$upper_type>::from($max) * <$upper_type>::from($max) < <$upper_type>::max_value());
1100			}
1101
1102			#[derive(Encode, Decode, PartialEq, Eq, Debug)]
1103			struct WithCompact<T: codec::HasCompact> {
1104				data: T,
1105			}
1106
1107			#[test]
1108			fn has_compact() {
1109				let data = WithCompact { data: $name(1) };
1110				let encoded = data.encode();
1111				assert_eq!(data, WithCompact::<$name>::decode(&mut &encoded[..]).unwrap());
1112			}
1113
1114			#[test]
1115			fn compact_encoding() {
1116				let tests = [
1117					// assume all per_things have the size u8 at least.
1118					(0 as $type, 1usize),
1119					(1 as $type, 1usize),
1120					(63, 1),
1121					(64, 2),
1122					(65, 2),
1123					// (<$type>::max_value(), <$type>::max_value().encode().len() + 1)
1124				];
1125				for &(n, l) in &tests {
1126					let compact: codec::Compact<$name> = $name(n).into();
1127					let encoded = compact.encode();
1128					assert_eq!(encoded.len(), l);
1129					let decoded = <codec::Compact<$name>>::decode(&mut & encoded[..])
1130						.unwrap();
1131					let per_thingy: $name = decoded.into();
1132					assert_eq!(per_thingy, $name(n));
1133				}
1134			}
1135
1136			#[test]
1137			fn from_parts_cannot_overflow() {
1138				assert_eq!(<$name>::from_parts($max.saturating_add(1)), <$name>::one());
1139			}
1140
1141			#[test]
1142			fn has_max_encoded_len() {
1143				struct AsMaxEncodedLen<T: codec::MaxEncodedLen> {
1144					_data: T,
1145				}
1146
1147				let _ = AsMaxEncodedLen { _data: $name(1) };
1148			}
1149
1150			#[test]
1151			fn fail_on_invalid_encoded_value() {
1152				let value = <$upper_type>::from($max) * 2;
1153				let casted = value as $type;
1154				let encoded = casted.encode();
1155
1156				// For types where `$max == $type::maximum()` we can not
1157				if <$upper_type>::from(casted) == value {
1158					assert_eq!(
1159						$name::decode(&mut &encoded[..]),
1160						Err("Value is greater than allowed maximum!".into()),
1161					);
1162				}
1163			}
1164
1165			#[test]
1166			fn per_thing_api_works() {
1167				// some really basic stuff
1168				assert_eq!($name::zero(), $name::from_parts(Zero::zero()));
1169				assert_eq!($name::one(), $name::from_parts($max));
1170				assert_eq!($name::ACCURACY, $max);
1171
1172				assert_eq!($name::from_percent(0), $name::from_parts(Zero::zero()));
1173				assert_eq!($name::from_percent(10), $name::from_parts($max / 10));
1174				assert_eq!($name::from_percent(50), $name::from_parts($max / 2));
1175				assert_eq!($name::from_percent(100), $name::from_parts($max));
1176				assert_eq!($name::from_percent(200), $name::from_parts($max));
1177
1178				assert_eq!($name::from_float(0.0), $name::from_parts(Zero::zero()));
1179				assert_eq!($name::from_float(0.1), $name::from_parts($max / 10));
1180				assert_eq!($name::from_float(1.0), $name::from_parts($max));
1181				assert_eq!($name::from_float(2.0), $name::from_parts($max));
1182				assert_eq!($name::from_float(-1.0), $name::from_parts(Zero::zero()));
1183			}
1184
1185			#[test]
1186			fn percent_trait_impl_works() {
1187				assert_eq!(<$name as PerThing>::from_percent(0), $name::from_parts(Zero::zero()));
1188				assert_eq!(<$name as PerThing>::from_percent(10), $name::from_parts($max / 10));
1189				assert_eq!(<$name as PerThing>::from_percent(50), $name::from_parts($max / 2));
1190				assert_eq!(<$name as PerThing>::from_percent(100), $name::from_parts($max));
1191				assert_eq!(<$name as PerThing>::from_percent(200), $name::from_parts($max));
1192			}
1193
1194			macro_rules! u256ify {
1195				($val:expr) => {
1196					Into::<U256>::into($val)
1197				};
1198			}
1199
1200			macro_rules! per_thing_mul_test {
1201				($num_type:tt) => {
1202					// multiplication from all sort of from_percent
1203					assert_eq!(
1204						$name::from_float(1.0) * $num_type::max_value(),
1205						$num_type::max_value()
1206					);
1207					if $max % 100 == 0 {
1208						assert_eq_error_rate!(
1209							$name::from_percent(99) * $num_type::max_value(),
1210							((Into::<U256>::into($num_type::max_value()) * 99u32) / 100u32).as_u128() as $num_type,
1211							1,
1212						);
1213						assert_eq!(
1214							$name::from_float(0.5) * $num_type::max_value(),
1215							$num_type::max_value() / 2,
1216						);
1217						assert_eq_error_rate!(
1218							$name::from_percent(1) * $num_type::max_value(),
1219							$num_type::max_value() / 100,
1220							1,
1221						);
1222					} else {
1223						assert_eq!(
1224							$name::from_float(0.99) * <$num_type>::max_value(),
1225							(
1226								(
1227									u256ify!($name::from_float(0.99).0) *
1228									u256ify!(<$num_type>::max_value()) /
1229									u256ify!($max)
1230								).as_u128()
1231							) as $num_type,
1232						);
1233						assert_eq!(
1234							$name::from_float(0.50) * <$num_type>::max_value(),
1235							(
1236								(
1237									u256ify!($name::from_float(0.50).0) *
1238									u256ify!(<$num_type>::max_value()) /
1239									u256ify!($max)
1240								).as_u128()
1241							) as $num_type,
1242						);
1243						assert_eq!(
1244							$name::from_float(0.01) * <$num_type>::max_value(),
1245							(
1246								(
1247									u256ify!($name::from_float(0.01).0) *
1248									u256ify!(<$num_type>::max_value()) /
1249									u256ify!($max)
1250								).as_u128()
1251							) as $num_type,
1252						);
1253					}
1254
1255					assert_eq!($name::from_float(0.0) * $num_type::max_value(), 0);
1256
1257					// // multiplication with bounds
1258					assert_eq!($name::one() * $num_type::max_value(), $num_type::max_value());
1259					assert_eq!($name::zero() * $num_type::max_value(), 0);
1260				}
1261			}
1262
1263			#[test]
1264			fn per_thing_mul_works() {
1265				use primitive_types::U256;
1266
1267				// accuracy test
1268				assert_eq!(
1269					$name::from_rational(1 as $type, 3) * 30 as $type,
1270					10,
1271				);
1272
1273				$(per_thing_mul_test!($test_units);)*
1274			}
1275
1276			#[test]
1277			fn per_thing_mul_rounds_to_nearest_number() {
1278				assert_eq!($name::from_percent(33) * 10u64, 3);
1279				assert_eq!($name::from_percent(34) * 10u64, 3);
1280				assert_eq!($name::from_percent(35) * 10u64, 3);
1281				assert_eq!($name::from_percent(36) * 10u64, 4);
1282			}
1283
1284			#[test]
1285			fn per_thing_multiplication_with_large_number() {
1286				use primitive_types::U256;
1287				let max_minus_one = $max - 1;
1288				assert_eq_error_rate!(
1289					$name::from_parts(max_minus_one) * std::u128::MAX,
1290					((Into::<U256>::into(std::u128::MAX) * max_minus_one) / $max).as_u128(),
1291					1,
1292				);
1293			}
1294
1295			macro_rules! per_thing_from_rationale_approx_test {
1296				($num_type:tt) => {
1297					// within accuracy boundary
1298					assert_eq!(
1299						$name::from_rational(1 as $num_type, 0),
1300						$name::one(),
1301					);
1302					assert_eq!(
1303						$name::from_rational(1 as $num_type, 1),
1304						$name::one(),
1305					);
1306					assert_eq_error_rate!(
1307						$name::from_rational(1 as $num_type, 3).0,
1308						$name::from_parts($max / 3).0,
1309						2
1310					);
1311					assert_eq!(
1312						$name::from_rational(1 as $num_type, 10),
1313						$name::from_float(0.10),
1314					);
1315					assert_eq!(
1316						$name::from_rational(1 as $num_type, 4),
1317						$name::from_float(0.25),
1318					);
1319					assert_eq!(
1320						$name::from_rational(1 as $num_type, 4),
1321						$name::from_rational(2 as $num_type, 8),
1322					);
1323					// no accurate anymore but won't overflow.
1324					assert_eq_error_rate!(
1325						$name::from_rational(
1326							$num_type::max_value() - 1,
1327							$num_type::max_value()
1328						).0 as $upper_type,
1329						$name::one().0 as $upper_type,
1330						2,
1331					);
1332					assert_eq_error_rate!(
1333						$name::from_rational(
1334							$num_type::max_value() / 3,
1335							$num_type::max_value()
1336						).0 as $upper_type,
1337						$name::from_parts($max / 3).0 as $upper_type,
1338						2,
1339					);
1340					assert_eq!(
1341						$name::from_rational(1, $num_type::max_value()),
1342						$name::zero(),
1343					);
1344				};
1345			}
1346
1347			#[test]
1348			fn per_thing_from_rationale_approx_works() {
1349				// This is just to make sure something like Percent which _might_ get built from a
1350				// u8 does not overflow in the context of this test.
1351				let max_value = <$upper_type>::from($max);
1352
1353				// almost at the edge
1354				assert_eq!(
1355					$name::from_rational(max_value - 1, max_value + 1),
1356					$name::from_parts($max - 2),
1357				);
1358				assert_eq!(
1359					$name::from_rational(1, $max - 1),
1360					$name::from_parts(1),
1361				);
1362				assert_eq!(
1363					$name::from_rational(1, $max),
1364					$name::from_parts(1),
1365				);
1366				assert_eq!(
1367					$name::from_rational(2, 2 * max_value - 1),
1368					$name::from_parts(1),
1369				);
1370				assert_eq!(
1371					$name::from_rational(1, max_value + 1),
1372					$name::zero(),
1373				);
1374				assert_eq!(
1375					$name::from_rational(3 * max_value / 2, 3 * max_value),
1376					$name::from_float(0.5),
1377				);
1378
1379				$(per_thing_from_rationale_approx_test!($test_units);)*
1380			}
1381
1382			#[test]
1383			fn per_things_mul_operates_in_output_type() {
1384				// assert_eq!($name::from_float(0.5) * 100u32, 50u32);
1385				assert_eq!($name::from_float(0.5) * 100u64, 50u64);
1386				assert_eq!($name::from_float(0.5) * 100u128, 50u128);
1387			}
1388
1389			#[test]
1390			fn per_thing_saturating_op_works() {
1391				assert_eq_error_rate!(
1392					$name::from_float(0.5).saturating_add($name::from_float(0.4)).0 as $upper_type,
1393					$name::from_float(0.9).0 as $upper_type,
1394					2,
1395				);
1396				assert_eq_error_rate!(
1397					$name::from_float(0.5).saturating_add($name::from_float(0.5)).0 as $upper_type,
1398					$name::one().0 as $upper_type,
1399					2,
1400				);
1401				assert_eq!(
1402					$name::from_float(0.6).saturating_add($name::from_float(0.5)),
1403					$name::one(),
1404				);
1405
1406				assert_eq_error_rate!(
1407					$name::from_float(0.6).saturating_sub($name::from_float(0.5)).0 as $upper_type,
1408					$name::from_float(0.1).0 as $upper_type,
1409					2,
1410				);
1411				assert_eq!(
1412					$name::from_float(0.6).saturating_sub($name::from_float(0.6)),
1413					$name::from_float(0.0),
1414				);
1415				assert_eq!(
1416					$name::from_float(0.6).saturating_sub($name::from_float(0.7)),
1417					$name::from_float(0.0),
1418				);
1419
1420				assert_eq_error_rate!(
1421					$name::from_float(0.5).saturating_mul($name::from_float(0.5)).0 as $upper_type,
1422					$name::from_float(0.25).0 as $upper_type,
1423					2,
1424				);
1425				assert_eq_error_rate!(
1426					$name::from_float(0.2).saturating_mul($name::from_float(0.2)).0 as $upper_type,
1427					$name::from_float(0.04).0 as $upper_type,
1428					2,
1429				);
1430				assert_eq_error_rate!(
1431					$name::from_float(0.1).saturating_mul($name::from_float(0.1)).0 as $upper_type,
1432					$name::from_float(0.01).0 as $upper_type,
1433					1,
1434				);
1435			}
1436
1437			#[test]
1438			fn per_thing_square_works() {
1439				assert_eq!($name::from_float(1.0).square(), $name::from_float(1.0));
1440				assert_eq!($name::from_float(0.5).square(), $name::from_float(0.25));
1441				assert_eq!($name::from_float(0.1).square(), $name::from_float(0.01));
1442				assert_eq!(
1443					$name::from_float(0.02).square(),
1444					$name::from_parts((4 * <$upper_type>::from($max) / 100 / 100) as $type)
1445				);
1446			}
1447
1448			#[test]
1449			fn per_things_div_works() {
1450				// normal
1451				assert_eq_error_rate!(
1452					($name::from_float(0.1) / $name::from_float(0.20)).0 as $upper_type,
1453					$name::from_float(0.50).0 as $upper_type,
1454					2,
1455				);
1456				assert_eq_error_rate!(
1457					($name::from_float(0.1) / $name::from_float(0.10)).0 as $upper_type,
1458					$name::from_float(1.0).0 as $upper_type,
1459					2,
1460				);
1461				assert_eq_error_rate!(
1462					($name::from_float(0.1) / $name::from_float(0.0)).0 as $upper_type,
1463					$name::from_float(1.0).0 as $upper_type,
1464					2,
1465				);
1466
1467				// will not overflow
1468				assert_eq_error_rate!(
1469					($name::from_float(0.10) / $name::from_float(0.05)).0 as $upper_type,
1470					$name::from_float(1.0).0 as $upper_type,
1471					2,
1472				);
1473				assert_eq_error_rate!(
1474					($name::from_float(1.0) / $name::from_float(0.5)).0 as $upper_type,
1475					$name::from_float(1.0).0 as $upper_type,
1476					2,
1477				);
1478			}
1479
1480			#[test]
1481			fn saturating_pow_works() {
1482				// x^0 == 1
1483				assert_eq!(
1484					$name::from_parts($max / 2).saturating_pow(0),
1485					$name::from_parts($max),
1486				);
1487
1488				// x^1 == x
1489				assert_eq!(
1490					$name::from_parts($max / 2).saturating_pow(1),
1491					$name::from_parts($max / 2),
1492				);
1493
1494				// x^2
1495				assert_eq!(
1496					$name::from_parts($max / 2).saturating_pow(2),
1497					$name::from_parts($max / 2).square(),
1498				);
1499
1500				// x^2 .. x^16
1501				for n in 1..=16 {
1502					assert_eq!(
1503						$name::from_parts($max / 2).saturating_pow(n),
1504						$name::from_parts(($max as u128 / 2u128.pow(n as u32)) as $type),
1505					);
1506				}
1507
1508				// 0^n == 0
1509				assert_eq!(
1510					$name::from_parts(0).saturating_pow(3),
1511					$name::from_parts(0),
1512				);
1513
1514				// 1^n == 1
1515				assert_eq!(
1516					$name::from_parts($max).saturating_pow(3),
1517					$name::from_parts($max),
1518				);
1519
1520				// (x < 1)^inf == 0 (where 2.pow(31) ~ inf)
1521				assert_eq!(
1522					$name::from_parts($max / 2).saturating_pow(2usize.pow(31)),
1523					$name::from_parts(0),
1524				);
1525			}
1526
1527			#[test]
1528			fn saturating_reciprocal_mul_works() {
1529				// divide by 1
1530				assert_eq!(
1531					$name::from_parts($max).saturating_reciprocal_mul(<$type>::from(10u8)),
1532					10,
1533				);
1534				// divide by 1/2
1535				assert_eq!(
1536					$name::from_parts($max / 2).saturating_reciprocal_mul(<$type>::from(10u8)),
1537					20,
1538				);
1539				// saturate
1540				assert_eq!(
1541					$name::from_parts(1).saturating_reciprocal_mul($max),
1542					<$type>::max_value(),
1543				);
1544				// round to nearest
1545				assert_eq!(
1546					$name::from_percent(60).saturating_reciprocal_mul(<$type>::from(10u8)),
1547					17,
1548				);
1549				// round down
1550				assert_eq!(
1551					$name::from_percent(60).saturating_reciprocal_mul_floor(<$type>::from(10u8)),
1552					16,
1553				);
1554				// round to nearest
1555				assert_eq!(
1556					$name::from_percent(61).saturating_reciprocal_mul(<$type>::from(10u8)),
1557					16,
1558				);
1559				// round up
1560				assert_eq!(
1561					$name::from_percent(61).saturating_reciprocal_mul_ceil(<$type>::from(10u8)),
1562					17,
1563				);
1564			}
1565
1566			#[test]
1567			fn saturating_truncating_mul_works() {
1568				assert_eq!(
1569					$name::from_percent(49).mul_floor(10 as $type),
1570					4,
1571				);
1572				let a: $upper_type = $name::from_percent(50).mul_floor(($max as $upper_type).pow(2));
1573				let b: $upper_type = ($max as $upper_type).pow(2) / 2;
1574				if $max % 2 == 0 {
1575					assert_eq!(a, b);
1576				} else {
1577					// difference should be less that 1%, IE less than the error in `from_percent`
1578					assert!(b - a < ($max as $upper_type).pow(2) / 100 as $upper_type);
1579				}
1580			}
1581
1582			#[test]
1583			fn rational_mul_correction_works() {
1584				assert_eq!(
1585					super::rational_mul_correction::<$type, $name>(
1586						<$type>::max_value(),
1587						<$type>::max_value(),
1588						<$type>::max_value(),
1589						super::Rounding::NearestPrefDown,
1590					),
1591					0,
1592				);
1593				assert_eq!(
1594					super::rational_mul_correction::<$type, $name>(
1595						<$type>::max_value() - 1,
1596						<$type>::max_value(),
1597						<$type>::max_value(),
1598						super::Rounding::NearestPrefDown,
1599					),
1600					<$type>::max_value() - 1,
1601				);
1602				assert_eq!(
1603					super::rational_mul_correction::<$upper_type, $name>(
1604						((<$type>::max_value() - 1) as $upper_type).pow(2),
1605						<$type>::max_value(),
1606						<$type>::max_value(),
1607						super::Rounding::NearestPrefDown,
1608					),
1609					1,
1610				);
1611				// ((max^2 - 1) % max) * max / max == max - 1
1612				assert_eq!(
1613					super::rational_mul_correction::<$upper_type, $name>(
1614						(<$type>::max_value() as $upper_type).pow(2) - 1,
1615						<$type>::max_value(),
1616						<$type>::max_value(),
1617						super::Rounding::NearestPrefDown,
1618					),
1619					<$upper_type>::from((<$type>::max_value() - 1)),
1620				);
1621				// (max % 2) * max / 2 == max / 2
1622				assert_eq!(
1623					super::rational_mul_correction::<$upper_type, $name>(
1624						(<$type>::max_value() as $upper_type).pow(2),
1625						<$type>::max_value(),
1626						2 as $type,
1627						super::Rounding::NearestPrefDown,
1628					),
1629					<$type>::max_value() as $upper_type / 2,
1630				);
1631				// ((max^2 - 1) % max) * 2 / max == 2 (rounded up)
1632				assert_eq!(
1633					super::rational_mul_correction::<$upper_type, $name>(
1634						(<$type>::max_value() as $upper_type).pow(2) - 1,
1635						2 as $type,
1636						<$type>::max_value(),
1637						super::Rounding::NearestPrefDown,
1638					),
1639					2,
1640				);
1641				// ((max^2 - 1) % max) * 2 / max == 1 (rounded down)
1642				assert_eq!(
1643					super::rational_mul_correction::<$upper_type, $name>(
1644						(<$type>::max_value() as $upper_type).pow(2) - 1,
1645						2 as $type,
1646						<$type>::max_value(),
1647						super::Rounding::Down,
1648					),
1649					1,
1650				);
1651			}
1652
1653			#[test]
1654			#[allow(unused)]
1655			fn const_fns_work() {
1656				const C1: $name = $name::from_percent(50);
1657				const C2: $name = $name::one();
1658				const C3: $name = $name::zero();
1659				const C4: $name = $name::from_parts(1);
1660
1661				// deconstruct is also const, hence it can be called in const rhs.
1662				const C5: bool = C1.deconstruct() == 0;
1663			}
1664
1665			#[test]
1666			fn compact_decoding_saturate_when_beyond_accuracy() {
1667				use num_traits::Bounded;
1668				use codec::Compact;
1669
1670				let p = Compact::<$name>::decode(&mut &Compact(<$type>::max_value()).encode()[..])
1671					.unwrap();
1672				assert_eq!((p.0).0, $max);
1673				assert_eq!($name::from(p), $name::max_value());
1674			}
1675
1676			#[allow(unused_imports)]
1677			use super::*;
1678
1679			#[test]
1680			fn test_add_basic() {
1681				assert_eq!($name::from_parts(1) + $name::from_parts(1), $name::from_parts(2));
1682				assert_eq!($name::from_parts(10) + $name::from_parts(10), $name::from_parts(20));
1683			}
1684
1685			#[test]
1686			fn test_basic_checked_add() {
1687				assert_eq!(
1688					$name::from_parts(1).checked_add(&$name::from_parts(1)),
1689					Some($name::from_parts(2))
1690				);
1691				assert_eq!(
1692					$name::from_parts(10).checked_add(&$name::from_parts(10)),
1693					Some($name::from_parts(20))
1694				);
1695				assert_eq!(
1696					$name::from_parts(<$type>::MAX).checked_add(&$name::from_parts(<$type>::MAX)),
1697					None
1698				);
1699				assert_eq!(
1700					$name::from_parts($max).checked_add(&$name::from_parts(1)),
1701					None
1702				);
1703			}
1704
1705			#[test]
1706			fn test_basic_saturating_add() {
1707				assert_eq!(
1708					$name::from_parts(1).saturating_add($name::from_parts(1)),
1709					$name::from_parts(2)
1710				);
1711				assert_eq!(
1712					$name::from_parts(10).saturating_add($name::from_parts(10)),
1713					$name::from_parts(20)
1714				);
1715				assert_eq!(
1716					$name::from_parts(<$type>::MAX).saturating_add($name::from_parts(<$type>::MAX)),
1717					$name::from_parts(<$type>::MAX)
1718				);
1719			}
1720
1721			#[test]
1722			fn test_basic_sub() {
1723				assert_eq!($name::from_parts(2) - $name::from_parts(1), $name::from_parts(1));
1724				assert_eq!($name::from_parts(20) - $name::from_parts(10), $name::from_parts(10));
1725			}
1726
1727			#[test]
1728			fn test_basic_checked_sub() {
1729				assert_eq!(
1730					$name::from_parts(2).checked_sub(&$name::from_parts(1)),
1731					Some($name::from_parts(1))
1732				);
1733				assert_eq!(
1734					$name::from_parts(20).checked_sub(&$name::from_parts(10)),
1735					Some($name::from_parts(10))
1736				);
1737				assert_eq!($name::from_parts(0).checked_sub(&$name::from_parts(1)), None);
1738			}
1739
1740			#[test]
1741			fn test_basic_saturating_sub() {
1742				assert_eq!(
1743					$name::from_parts(2).saturating_sub($name::from_parts(1)),
1744					$name::from_parts(1)
1745				);
1746				assert_eq!(
1747					$name::from_parts(20).saturating_sub($name::from_parts(10)),
1748					$name::from_parts(10)
1749				);
1750				assert_eq!(
1751					$name::from_parts(0).saturating_sub($name::from_parts(1)),
1752					$name::from_parts(0)
1753				);
1754			}
1755
1756			#[test]
1757			fn test_basic_checked_mul() {
1758				assert_eq!(
1759					$name::from_parts($max).checked_mul(&$name::from_parts($max)),
1760					Some($name::from_percent(100))
1761				);
1762				assert_eq!(
1763					$name::from_percent(100).checked_mul(&$name::from_percent(100)),
1764					Some($name::from_percent(100))
1765				);
1766				assert_eq!(
1767					$name::from_percent(50).checked_mul(&$name::from_percent(26)),
1768					Some($name::from_percent(13))
1769				);
1770				assert_eq!(
1771					$name::from_percent(0).checked_mul(&$name::from_percent(0)),
1772					Some($name::from_percent(0))
1773				);
1774			}
1775		}
1776	};
1777}
1778
1779macro_rules! implement_per_thing_with_perthousand {
1780	(
1781		$name:ident,
1782		$test_mod:ident,
1783		$pt_test_mod:ident,
1784		[$($test_units:tt),+],
1785		$max:tt,
1786		$type:ty,
1787		$upper_type:ty,
1788		$title:expr $(,)?
1789	) => {
1790		implement_per_thing! {
1791			$name, $test_mod, [ $( $test_units ),+ ], $max, $type, $upper_type, $title,
1792		}
1793		impl $name {
1794			/// Converts a percent into `Self`. Equal to `x / 1000`.
1795			///
1796			/// This can be created at compile time.
1797			pub const fn from_perthousand(x: $type) -> Self {
1798				Self(([x, 1000][(x > 1000) as usize] as $upper_type * $max as $upper_type / 1000) as $type)
1799			}
1800		}
1801		#[cfg(test)]
1802		mod $pt_test_mod {
1803			use super::$name;
1804			use crate::traits::Zero;
1805
1806			#[test]
1807			fn from_perthousand_works() {
1808				// some really basic stuff
1809				assert_eq!($name::from_perthousand(00), $name::from_parts(Zero::zero()));
1810				assert_eq!($name::from_perthousand(100), $name::from_parts($max / 10));
1811				assert_eq!($name::from_perthousand(1000), $name::from_parts($max));
1812				assert_eq!($name::from_perthousand(2000), $name::from_parts($max));
1813			}
1814
1815			#[test]
1816			#[allow(unused)]
1817			fn const_fns_work() {
1818				const C1: $name = $name::from_perthousand(500);
1819			}
1820		}
1821	}
1822}
1823
1824#[test]
1825fn from_rational_with_rounding_works_in_extreme_case() {
1826	use Rounding::*;
1827	for &r in [Down, NearestPrefDown, NearestPrefUp, Up].iter() {
1828		Percent::from_rational_with_rounding(1, u64::max_value(), r).unwrap();
1829		Percent::from_rational_with_rounding(1, u32::max_value(), r).unwrap();
1830		Percent::from_rational_with_rounding(1, u16::max_value(), r).unwrap();
1831		Percent::from_rational_with_rounding(u64::max_value() - 1, u64::max_value(), r).unwrap();
1832		Percent::from_rational_with_rounding(u32::max_value() - 1, u32::max_value(), r).unwrap();
1833		Percent::from_rational_with_rounding(u16::max_value() - 1, u16::max_value(), r).unwrap();
1834		PerU16::from_rational_with_rounding(1, u64::max_value(), r).unwrap();
1835		PerU16::from_rational_with_rounding(1, u32::max_value(), r).unwrap();
1836		PerU16::from_rational_with_rounding(1, u16::max_value(), r).unwrap();
1837		PerU16::from_rational_with_rounding(u64::max_value() - 1, u64::max_value(), r).unwrap();
1838		PerU16::from_rational_with_rounding(u32::max_value() - 1, u32::max_value(), r).unwrap();
1839		PerU16::from_rational_with_rounding(u16::max_value() - 1, u16::max_value(), r).unwrap();
1840		Permill::from_rational_with_rounding(1, u64::max_value(), r).unwrap();
1841		Permill::from_rational_with_rounding(1, u32::max_value(), r).unwrap();
1842		Permill::from_rational_with_rounding(u64::max_value() - 1, u64::max_value(), r).unwrap();
1843		Permill::from_rational_with_rounding(u32::max_value() - 1, u32::max_value(), r).unwrap();
1844		Perbill::from_rational_with_rounding(1, u64::max_value(), r).unwrap();
1845		Perbill::from_rational_with_rounding(1, u32::max_value(), r).unwrap();
1846		Perbill::from_rational_with_rounding(u64::max_value() - 1, u64::max_value(), r).unwrap();
1847		Perbill::from_rational_with_rounding(u32::max_value() - 1, u32::max_value(), r).unwrap();
1848	}
1849}
1850
1851#[test]
1852fn from_rational_with_rounding_breakage() {
1853	let n = 372633774963620730670986667244911905u128;
1854	let d = 512593663333074177468745541591173060u128;
1855	let q = Perquintill::from_rational_with_rounding(n, d, Rounding::Down).unwrap();
1856	assert!(q * d <= n);
1857}
1858
1859#[test]
1860fn from_rational_with_rounding_breakage_2() {
1861	let n = 36893488147419103230u128;
1862	let d = 36893488147419103630u128;
1863	let q = Perquintill::from_rational_with_rounding(n, d, Rounding::Up).unwrap();
1864	assert!(q * d >= n);
1865}
1866
1867implement_per_thing!(Percent, test_per_cent, [u32, u64, u128], 100u8, u8, u16, "_Percent_",);
1868implement_per_thing_with_perthousand!(
1869	PerU16,
1870	test_peru16,
1871	test_peru16_extra,
1872	[u32, u64, u128],
1873	65535_u16,
1874	u16,
1875	u32,
1876	"_Parts per 65535_",
1877);
1878implement_per_thing_with_perthousand!(
1879	Permill,
1880	test_permill,
1881	test_permill_extra,
1882	[u32, u64, u128],
1883	1_000_000u32,
1884	u32,
1885	u64,
1886	"_Parts per Million_",
1887);
1888implement_per_thing_with_perthousand!(
1889	Perbill,
1890	test_perbill,
1891	test_perbill_extra,
1892	[u32, u64, u128],
1893	1_000_000_000u32,
1894	u32,
1895	u64,
1896	"_Parts per Billion_",
1897);
1898implement_per_thing_with_perthousand!(
1899	Perquintill,
1900	test_perquintill,
1901	test_perquintill_extra,
1902	[u64, u128],
1903	1_000_000_000_000_000_000u64,
1904	u64,
1905	u128,
1906	"_Parts per Quintillion_",
1907);