1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
// This file is part of Substrate.

// Copyright (C) 2021-2022 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#![cfg_attr(not(feature = "std"), no_std)]
#![warn(missing_docs)]

//! Primitives for BEEFY protocol.
//!
//! The crate contains shared data types used by BEEFY protocol and documentation (in a form of
//! code) for building a BEEFY light client.
//!
//! BEEFY is a gadget that runs alongside another finality gadget (for instance GRANDPA).
//! For simplicity (and the initially intended use case) the documentation says GRANDPA in places
//! where a more abstract "Finality Gadget" term could be used, but there is no reason why BEEFY
//! wouldn't run with some other finality scheme.
//! BEEFY validator set is supposed to be tracking the Finality Gadget validator set, but note that
//! it will use a different set of keys. For Polkadot use case we plan to use `secp256k1` for BEEFY,
//! while GRANDPA uses `ed25519`.

mod commitment;
pub mod mmr;
mod payload;
#[cfg(feature = "std")]
mod test_utils;
pub mod witness;

pub use commitment::{Commitment, SignedCommitment, VersionedFinalityProof};
pub use payload::{known_payloads, BeefyPayloadId, Payload, PayloadProvider};
#[cfg(feature = "std")]
pub use test_utils::*;

use codec::{Codec, Decode, Encode};
use scale_info::TypeInfo;
use sp_application_crypto::RuntimeAppPublic;
use sp_core::H256;
use sp_runtime::traits::{Hash, NumberFor};
use sp_std::prelude::*;

/// Key type for BEEFY module.
pub const KEY_TYPE: sp_application_crypto::KeyTypeId = sp_application_crypto::KeyTypeId(*b"beef");

/// Trait representing BEEFY authority id, including custom signature verification.
///
/// Accepts custom hashing fn for the message and custom convertor fn for the signer.
pub trait BeefyAuthorityId<MsgHash: Hash>: RuntimeAppPublic {
	/// Verify a signature.
	///
	/// Return `true` if signature over `msg` is valid for this id.
	fn verify(&self, signature: &<Self as RuntimeAppPublic>::Signature, msg: &[u8]) -> bool;
}

/// BEEFY cryptographic types
///
/// This module basically introduces three crypto types:
/// - `crypto::Pair`
/// - `crypto::Public`
/// - `crypto::Signature`
///
/// Your code should use the above types as concrete types for all crypto related
/// functionality.
///
/// The current underlying crypto scheme used is ECDSA. This can be changed,
/// without affecting code restricted against the above listed crypto types.
pub mod crypto {
	use super::{BeefyAuthorityId, Hash, RuntimeAppPublic};
	use sp_application_crypto::{app_crypto, ecdsa};
	use sp_core::crypto::Wraps;
	app_crypto!(ecdsa, crate::KEY_TYPE);

	/// Identity of a BEEFY authority using ECDSA as its crypto.
	pub type AuthorityId = Public;

	/// Signature for a BEEFY authority using ECDSA as its crypto.
	pub type AuthoritySignature = Signature;

	impl<MsgHash: Hash> BeefyAuthorityId<MsgHash> for AuthorityId
	where
		<MsgHash as Hash>::Output: Into<[u8; 32]>,
	{
		fn verify(&self, signature: &<Self as RuntimeAppPublic>::Signature, msg: &[u8]) -> bool {
			let msg_hash = <MsgHash as Hash>::hash(msg).into();
			match sp_io::crypto::secp256k1_ecdsa_recover_compressed(
				signature.as_inner_ref().as_ref(),
				&msg_hash,
			) {
				Ok(raw_pubkey) => raw_pubkey.as_ref() == AsRef::<[u8]>::as_ref(self),
				_ => false,
			}
		}
	}
}

/// The `ConsensusEngineId` of BEEFY.
pub const BEEFY_ENGINE_ID: sp_runtime::ConsensusEngineId = *b"BEEF";

/// Authority set id starts with zero at BEEFY pallet genesis.
pub const GENESIS_AUTHORITY_SET_ID: u64 = 0;

/// A typedef for validator set id.
pub type ValidatorSetId = u64;

/// A set of BEEFY authorities, a.k.a. validators.
#[derive(Decode, Encode, Debug, PartialEq, Clone, TypeInfo)]
pub struct ValidatorSet<AuthorityId> {
	/// Public keys of the validator set elements
	validators: Vec<AuthorityId>,
	/// Identifier of the validator set
	id: ValidatorSetId,
}

impl<AuthorityId> ValidatorSet<AuthorityId> {
	/// Return a validator set with the given validators and set id.
	pub fn new<I>(validators: I, id: ValidatorSetId) -> Option<Self>
	where
		I: IntoIterator<Item = AuthorityId>,
	{
		let validators: Vec<AuthorityId> = validators.into_iter().collect();
		if validators.is_empty() {
			// No validators; the set would be empty.
			None
		} else {
			Some(Self { validators, id })
		}
	}

	/// Return a reference to the vec of validators.
	pub fn validators(&self) -> &[AuthorityId] {
		&self.validators
	}

	/// Return the validator set id.
	pub fn id(&self) -> ValidatorSetId {
		self.id
	}

	/// Return the number of validators in the set.
	pub fn len(&self) -> usize {
		self.validators.len()
	}
}

/// The index of an authority.
pub type AuthorityIndex = u32;

/// The type used to represent an MMR root hash.
pub type MmrRootHash = H256;

/// A consensus log item for BEEFY.
#[derive(Decode, Encode, TypeInfo)]
pub enum ConsensusLog<AuthorityId: Codec> {
	/// The authorities have changed.
	#[codec(index = 1)]
	AuthoritiesChange(ValidatorSet<AuthorityId>),
	/// Disable the authority with given index.
	#[codec(index = 2)]
	OnDisabled(AuthorityIndex),
	/// MMR root hash.
	#[codec(index = 3)]
	MmrRoot(MmrRootHash),
}

/// BEEFY vote message.
///
/// A vote message is a direct vote created by a BEEFY node on every voting round
/// and is gossiped to its peers.
#[derive(Clone, Debug, Decode, Encode, PartialEq, TypeInfo)]
pub struct VoteMessage<Number, Id, Signature> {
	/// Commit to information extracted from a finalized block
	pub commitment: Commitment<Number>,
	/// Node authority id
	pub id: Id,
	/// Node signature
	pub signature: Signature,
}

/// Proof of voter misbehavior on a given set id. Misbehavior/equivocation in
/// BEEFY happens when a voter votes on the same round/block for different payloads.
/// Proving is achieved by collecting the signed commitments of conflicting votes.
#[derive(Clone, Debug, Decode, Encode, PartialEq, TypeInfo)]
pub struct EquivocationProof<Number, Id, Signature> {
	/// The first vote in the equivocation.
	pub first: VoteMessage<Number, Id, Signature>,
	/// The second vote in the equivocation.
	pub second: VoteMessage<Number, Id, Signature>,
}

impl<Number, Id, Signature> EquivocationProof<Number, Id, Signature> {
	/// Returns the authority id of the equivocator.
	pub fn offender_id(&self) -> &Id {
		&self.first.id
	}
	/// Returns the round number at which the equivocation occurred.
	pub fn round_number(&self) -> &Number {
		&self.first.commitment.block_number
	}
	/// Returns the set id at which the equivocation occurred.
	pub fn set_id(&self) -> ValidatorSetId {
		self.first.commitment.validator_set_id
	}
}

/// Check a commitment signature by encoding the commitment and
/// verifying the provided signature using the expected authority id.
pub fn check_commitment_signature<Number, Id, MsgHash>(
	commitment: &Commitment<Number>,
	authority_id: &Id,
	signature: &<Id as RuntimeAppPublic>::Signature,
) -> bool
where
	Id: BeefyAuthorityId<MsgHash>,
	Number: Clone + Encode + PartialEq,
	MsgHash: Hash,
{
	let encoded_commitment = commitment.encode();
	BeefyAuthorityId::<MsgHash>::verify(authority_id, signature, &encoded_commitment)
}

/// Verifies the equivocation proof by making sure that both votes target
/// different blocks and that its signatures are valid.
pub fn check_equivocation_proof<Number, Id, MsgHash>(
	report: &EquivocationProof<Number, Id, <Id as RuntimeAppPublic>::Signature>,
) -> bool
where
	Id: BeefyAuthorityId<MsgHash> + PartialEq,
	Number: Clone + Encode + PartialEq,
	MsgHash: Hash,
{
	let first = &report.first;
	let second = &report.second;

	// if votes
	//   come from different authorities,
	//   are for different rounds,
	//   have different validator set ids,
	//   or both votes have the same commitment,
	//     --> the equivocation is invalid.
	if first.id != second.id ||
		first.commitment.block_number != second.commitment.block_number ||
		first.commitment.validator_set_id != second.commitment.validator_set_id ||
		first.commitment.payload == second.commitment.payload
	{
		return false
	}

	// check signatures on both votes are valid
	let valid_first = check_commitment_signature(&first.commitment, &first.id, &first.signature);
	let valid_second =
		check_commitment_signature(&second.commitment, &second.id, &second.signature);

	return valid_first && valid_second
}

/// New BEEFY validator set notification hook.
pub trait OnNewValidatorSet<AuthorityId> {
	/// Function called by the pallet when BEEFY validator set changes.
	fn on_new_validator_set(
		validator_set: &ValidatorSet<AuthorityId>,
		next_validator_set: &ValidatorSet<AuthorityId>,
	);
}

/// No-op implementation of [OnNewValidatorSet].
impl<AuthorityId> OnNewValidatorSet<AuthorityId> for () {
	fn on_new_validator_set(_: &ValidatorSet<AuthorityId>, _: &ValidatorSet<AuthorityId>) {}
}

/// An opaque type used to represent the key ownership proof at the runtime API
/// boundary. The inner value is an encoded representation of the actual key
/// ownership proof which will be parameterized when defining the runtime. At
/// the runtime API boundary this type is unknown and as such we keep this
/// opaque representation, implementors of the runtime API will have to make
/// sure that all usages of `OpaqueKeyOwnershipProof` refer to the same type.
#[derive(Decode, Encode, PartialEq)]
pub struct OpaqueKeyOwnershipProof(Vec<u8>);
impl OpaqueKeyOwnershipProof {
	/// Create a new `OpaqueKeyOwnershipProof` using the given encoded
	/// representation.
	pub fn new(inner: Vec<u8>) -> OpaqueKeyOwnershipProof {
		OpaqueKeyOwnershipProof(inner)
	}

	/// Try to decode this `OpaqueKeyOwnershipProof` into the given concrete key
	/// ownership proof type.
	pub fn decode<T: Decode>(self) -> Option<T> {
		codec::Decode::decode(&mut &self.0[..]).ok()
	}
}

sp_api::decl_runtime_apis! {
	/// API necessary for BEEFY voters.
	pub trait BeefyApi
	{
		/// Return the block number where BEEFY consensus is enabled/started
		fn beefy_genesis() -> Option<NumberFor<Block>>;

		/// Return the current active BEEFY validator set
		fn validator_set() -> Option<ValidatorSet<crypto::AuthorityId>>;

		/// Submits an unsigned extrinsic to report an equivocation. The caller
		/// must provide the equivocation proof and a key ownership proof
		/// (should be obtained using `generate_key_ownership_proof`). The
		/// extrinsic will be unsigned and should only be accepted for local
		/// authorship (not to be broadcast to the network). This method returns
		/// `None` when creation of the extrinsic fails, e.g. if equivocation
		/// reporting is disabled for the given runtime (i.e. this method is
		/// hardcoded to return `None`). Only useful in an offchain context.
		fn submit_report_equivocation_unsigned_extrinsic(
			equivocation_proof:
				EquivocationProof<NumberFor<Block>, crypto::AuthorityId, crypto::Signature>,
			key_owner_proof: OpaqueKeyOwnershipProof,
		) -> Option<()>;

		/// Generates a proof of key ownership for the given authority in the
		/// given set. An example usage of this module is coupled with the
		/// session historical module to prove that a given authority key is
		/// tied to a given staking identity during a specific session. Proofs
		/// of key ownership are necessary for submitting equivocation reports.
		/// NOTE: even though the API takes a `set_id` as parameter the current
		/// implementations ignores this parameter and instead relies on this
		/// method being called at the correct block height, i.e. any point at
		/// which the given set id is live on-chain. Future implementations will
		/// instead use indexed data through an offchain worker, not requiring
		/// older states to be available.
		fn generate_key_ownership_proof(
			set_id: ValidatorSetId,
			authority_id: crypto::AuthorityId,
		) -> Option<OpaqueKeyOwnershipProof>;
	}
}

#[cfg(test)]
mod tests {
	use super::*;
	use sp_application_crypto::ecdsa::{self, Public};
	use sp_core::{blake2_256, crypto::Wraps, keccak_256, Pair};
	use sp_runtime::traits::{BlakeTwo256, Keccak256};

	#[test]
	fn validator_set() {
		// Empty set not allowed.
		assert_eq!(ValidatorSet::<Public>::new(vec![], 0), None);

		let alice = ecdsa::Pair::from_string("//Alice", None).unwrap();
		let set_id = 0;
		let validators = ValidatorSet::<Public>::new(vec![alice.public()], set_id).unwrap();

		assert_eq!(validators.id(), set_id);
		assert_eq!(validators.validators(), &vec![alice.public()]);
	}

	#[test]
	fn beefy_verify_works() {
		let msg = &b"test-message"[..];
		let (pair, _) = crypto::Pair::generate();

		let keccak_256_signature: crypto::Signature =
			pair.as_inner_ref().sign_prehashed(&keccak_256(msg)).into();

		let blake2_256_signature: crypto::Signature =
			pair.as_inner_ref().sign_prehashed(&blake2_256(msg)).into();

		// Verification works if same hashing function is used when signing and verifying.
		assert!(BeefyAuthorityId::<Keccak256>::verify(&pair.public(), &keccak_256_signature, msg));
		assert!(BeefyAuthorityId::<BlakeTwo256>::verify(
			&pair.public(),
			&blake2_256_signature,
			msg
		));
		// Verification fails if distinct hashing functions are used when signing and verifying.
		assert!(!BeefyAuthorityId::<Keccak256>::verify(&pair.public(), &blake2_256_signature, msg));
		assert!(!BeefyAuthorityId::<BlakeTwo256>::verify(
			&pair.public(),
			&keccak_256_signature,
			msg
		));

		// Other public key doesn't work
		let (other_pair, _) = crypto::Pair::generate();
		assert!(!BeefyAuthorityId::<Keccak256>::verify(
			&other_pair.public(),
			&keccak_256_signature,
			msg,
		));
		assert!(!BeefyAuthorityId::<BlakeTwo256>::verify(
			&other_pair.public(),
			&blake2_256_signature,
			msg,
		));
	}
}