1#[cfg(feature = "serde")]
24use crate::crypto::Ss58Codec;
25use crate::crypto::{
26 CryptoBytes, DeriveError, DeriveJunction, Pair as TraitPair, SecretStringError,
27};
28use alloc::vec::Vec;
29#[cfg(feature = "full_crypto")]
30use schnorrkel::signing_context;
31use schnorrkel::{
32 derive::{ChainCode, Derivation, CHAIN_CODE_LENGTH},
33 ExpansionMode, Keypair, MiniSecretKey, PublicKey, SecretKey,
34};
35
36use crate::crypto::{CryptoType, CryptoTypeId, Derive, Public as TraitPublic, SignatureBytes};
37use codec::{Decode, Encode, MaxEncodedLen};
38use scale_info::TypeInfo;
39
40#[cfg(all(not(feature = "std"), feature = "serde"))]
41use alloc::{format, string::String};
42use schnorrkel::keys::{MINI_SECRET_KEY_LENGTH, SECRET_KEY_LENGTH};
43#[cfg(feature = "serde")]
44use serde::{de, Deserialize, Deserializer, Serialize, Serializer};
45#[cfg(feature = "std")]
46use sp_runtime_interface::pass_by::PassByInner;
47
48const SIGNING_CTX: &[u8] = b"substrate";
50
51pub const CRYPTO_ID: CryptoTypeId = CryptoTypeId(*b"sr25");
53
54pub const PUBLIC_KEY_SERIALIZED_SIZE: usize = 32;
56
57pub const SIGNATURE_SERIALIZED_SIZE: usize = 64;
59
60#[doc(hidden)]
61pub struct Sr25519Tag;
62#[doc(hidden)]
63pub struct Sr25519PublicTag;
64
65pub type Public = CryptoBytes<PUBLIC_KEY_SERIALIZED_SIZE, Sr25519PublicTag>;
67
68impl TraitPublic for Public {}
69
70impl Derive for Public {
71 #[cfg(feature = "serde")]
75 fn derive<Iter: Iterator<Item = DeriveJunction>>(&self, path: Iter) -> Option<Public> {
76 let mut acc = PublicKey::from_bytes(self.as_ref()).ok()?;
77 for j in path {
78 match j {
79 DeriveJunction::Soft(cc) => acc = acc.derived_key_simple(ChainCode(cc), &[]).0,
80 DeriveJunction::Hard(_cc) => return None,
81 }
82 }
83 Some(Self::from(acc.to_bytes()))
84 }
85}
86
87#[cfg(feature = "std")]
88impl std::str::FromStr for Public {
89 type Err = crate::crypto::PublicError;
90
91 fn from_str(s: &str) -> Result<Self, Self::Err> {
92 Self::from_ss58check(s)
93 }
94}
95
96#[cfg(feature = "std")]
97impl std::fmt::Display for Public {
98 fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
99 write!(f, "{}", self.to_ss58check())
100 }
101}
102
103impl core::fmt::Debug for Public {
104 #[cfg(feature = "std")]
105 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
106 let s = self.to_ss58check();
107 write!(f, "{} ({}...)", crate::hexdisplay::HexDisplay::from(self.inner()), &s[0..8])
108 }
109
110 #[cfg(not(feature = "std"))]
111 fn fmt(&self, _: &mut core::fmt::Formatter) -> core::fmt::Result {
112 Ok(())
113 }
114}
115
116#[cfg(feature = "serde")]
117impl Serialize for Public {
118 fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
119 where
120 S: Serializer,
121 {
122 serializer.serialize_str(&self.to_ss58check())
123 }
124}
125
126#[cfg(feature = "serde")]
127impl<'de> Deserialize<'de> for Public {
128 fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
129 where
130 D: Deserializer<'de>,
131 {
132 Public::from_ss58check(&String::deserialize(deserializer)?)
133 .map_err(|e| de::Error::custom(format!("{:?}", e)))
134 }
135}
136
137pub type Signature = SignatureBytes<SIGNATURE_SERIALIZED_SIZE, Sr25519Tag>;
139
140#[cfg(feature = "full_crypto")]
141impl From<schnorrkel::Signature> for Signature {
142 fn from(s: schnorrkel::Signature) -> Signature {
143 Signature::from(s.to_bytes())
144 }
145}
146
147pub struct Pair(Keypair);
149
150impl Clone for Pair {
151 fn clone(&self) -> Self {
152 Pair(schnorrkel::Keypair {
153 public: self.0.public,
154 secret: schnorrkel::SecretKey::from_bytes(&self.0.secret.to_bytes()[..])
155 .expect("key is always the correct size; qed"),
156 })
157 }
158}
159
160#[cfg(feature = "std")]
161impl From<MiniSecretKey> for Pair {
162 fn from(sec: MiniSecretKey) -> Pair {
163 Pair(sec.expand_to_keypair(ExpansionMode::Ed25519))
164 }
165}
166
167#[cfg(feature = "std")]
168impl From<SecretKey> for Pair {
169 fn from(sec: SecretKey) -> Pair {
170 Pair(Keypair::from(sec))
171 }
172}
173
174#[cfg(feature = "full_crypto")]
175impl From<schnorrkel::Keypair> for Pair {
176 fn from(p: schnorrkel::Keypair) -> Pair {
177 Pair(p)
178 }
179}
180
181#[cfg(feature = "full_crypto")]
182impl From<Pair> for schnorrkel::Keypair {
183 fn from(p: Pair) -> schnorrkel::Keypair {
184 p.0
185 }
186}
187
188#[cfg(feature = "full_crypto")]
189impl AsRef<schnorrkel::Keypair> for Pair {
190 fn as_ref(&self) -> &schnorrkel::Keypair {
191 &self.0
192 }
193}
194
195fn derive_hard_junction(secret: &SecretKey, cc: &[u8; CHAIN_CODE_LENGTH]) -> MiniSecretKey {
197 secret.hard_derive_mini_secret_key(Some(ChainCode(*cc)), b"").0
198}
199
200type Seed = [u8; MINI_SECRET_KEY_LENGTH];
202
203impl TraitPair for Pair {
204 type Public = Public;
205 type Seed = Seed;
206 type Signature = Signature;
207
208 fn public(&self) -> Public {
210 Public::from(self.0.public.to_bytes())
211 }
212
213 fn from_seed_slice(seed: &[u8]) -> Result<Pair, SecretStringError> {
220 match seed.len() {
221 MINI_SECRET_KEY_LENGTH => Ok(Pair(
222 MiniSecretKey::from_bytes(seed)
223 .map_err(|_| SecretStringError::InvalidSeed)?
224 .expand_to_keypair(ExpansionMode::Ed25519),
225 )),
226 SECRET_KEY_LENGTH => Ok(Pair(
227 SecretKey::from_bytes(seed)
228 .map_err(|_| SecretStringError::InvalidSeed)?
229 .to_keypair(),
230 )),
231 _ => Err(SecretStringError::InvalidSeedLength),
232 }
233 }
234
235 fn derive<Iter: Iterator<Item = DeriveJunction>>(
236 &self,
237 path: Iter,
238 seed: Option<Seed>,
239 ) -> Result<(Pair, Option<Seed>), DeriveError> {
240 let seed = seed
241 .and_then(|s| MiniSecretKey::from_bytes(&s).ok())
242 .filter(|msk| msk.expand(ExpansionMode::Ed25519) == self.0.secret);
243
244 let init = self.0.secret.clone();
245 let (result, seed) = path.fold((init, seed), |(acc, acc_seed), j| match (j, acc_seed) {
246 (DeriveJunction::Soft(cc), _) => (acc.derived_key_simple(ChainCode(cc), &[]).0, None),
247 (DeriveJunction::Hard(cc), maybe_seed) => {
248 let seed = derive_hard_junction(&acc, &cc);
249 (seed.expand(ExpansionMode::Ed25519), maybe_seed.map(|_| seed))
250 },
251 });
252 Ok((Self(result.into()), seed.map(|s| MiniSecretKey::to_bytes(&s))))
253 }
254
255 #[cfg(feature = "full_crypto")]
256 fn sign(&self, message: &[u8]) -> Signature {
257 let context = signing_context(SIGNING_CTX);
258 self.0.sign(context.bytes(message)).into()
259 }
260
261 fn verify<M: AsRef<[u8]>>(sig: &Signature, message: M, pubkey: &Public) -> bool {
262 let Ok(signature) = schnorrkel::Signature::from_bytes(sig.as_ref()) else { return false };
263 let Ok(public) = PublicKey::from_bytes(pubkey.as_ref()) else { return false };
264 public.verify_simple(SIGNING_CTX, message.as_ref(), &signature).is_ok()
265 }
266
267 fn to_raw_vec(&self) -> Vec<u8> {
268 self.0.secret.to_bytes().to_vec()
269 }
270}
271
272#[cfg(feature = "std")]
273impl Pair {
274 pub fn verify_deprecated<M: AsRef<[u8]>>(sig: &Signature, message: M, pubkey: &Public) -> bool {
278 match PublicKey::from_bytes(pubkey.as_ref()) {
281 Ok(pk) => pk
282 .verify_simple_preaudit_deprecated(SIGNING_CTX, message.as_ref(), &sig.0[..])
283 .is_ok(),
284 Err(_) => false,
285 }
286 }
287}
288
289impl CryptoType for Public {
290 type Pair = Pair;
291}
292
293impl CryptoType for Signature {
294 type Pair = Pair;
295}
296
297impl CryptoType for Pair {
298 type Pair = Pair;
299}
300
301pub mod vrf {
303 use super::*;
304 #[cfg(feature = "full_crypto")]
305 use crate::crypto::VrfSecret;
306 use crate::crypto::{VrfCrypto, VrfPublic};
307 use schnorrkel::{
308 errors::MultiSignatureStage,
309 vrf::{VRF_PREOUT_LENGTH, VRF_PROOF_LENGTH},
310 SignatureError,
311 };
312
313 const DEFAULT_EXTRA_DATA_LABEL: &[u8] = b"VRF";
314
315 #[derive(Clone)]
317 pub struct VrfTranscript(pub merlin::Transcript);
318
319 impl VrfTranscript {
320 pub fn new(label: &'static [u8], data: &[(&'static [u8], &[u8])]) -> Self {
324 let mut transcript = merlin::Transcript::new(label);
325 data.iter().for_each(|(l, b)| transcript.append_message(l, b));
326 VrfTranscript(transcript)
327 }
328
329 pub fn into_sign_data(self) -> VrfSignData {
331 self.into()
332 }
333 }
334
335 pub type VrfInput = VrfTranscript;
339
340 #[derive(Clone)]
342 pub struct VrfSignData {
343 pub(super) transcript: VrfTranscript,
345 pub(super) extra: Option<VrfTranscript>,
347 }
348
349 impl From<VrfInput> for VrfSignData {
350 fn from(transcript: VrfInput) -> Self {
351 VrfSignData { transcript, extra: None }
352 }
353 }
354
355 impl AsRef<VrfInput> for VrfSignData {
357 fn as_ref(&self) -> &VrfInput {
358 &self.transcript
359 }
360 }
361
362 impl VrfSignData {
363 pub fn new(input: VrfTranscript) -> Self {
367 input.into()
368 }
369
370 pub fn with_extra(mut self, extra: VrfTranscript) -> Self {
374 self.extra = Some(extra);
375 self
376 }
377 }
378
379 #[derive(Clone, Debug, PartialEq, Eq, Encode, Decode, MaxEncodedLen, TypeInfo)]
381 pub struct VrfSignature {
382 pub pre_output: VrfPreOutput,
384 pub proof: VrfProof,
386 }
387
388 #[derive(Clone, Debug, PartialEq, Eq)]
390 pub struct VrfPreOutput(pub schnorrkel::vrf::VRFPreOut);
391
392 impl Encode for VrfPreOutput {
393 fn encode(&self) -> Vec<u8> {
394 self.0.as_bytes().encode()
395 }
396 }
397
398 impl Decode for VrfPreOutput {
399 fn decode<R: codec::Input>(i: &mut R) -> Result<Self, codec::Error> {
400 let decoded = <[u8; VRF_PREOUT_LENGTH]>::decode(i)?;
401 Ok(Self(schnorrkel::vrf::VRFPreOut::from_bytes(&decoded).map_err(convert_error)?))
402 }
403 }
404
405 impl MaxEncodedLen for VrfPreOutput {
406 fn max_encoded_len() -> usize {
407 <[u8; VRF_PREOUT_LENGTH]>::max_encoded_len()
408 }
409 }
410
411 impl TypeInfo for VrfPreOutput {
412 type Identity = [u8; VRF_PREOUT_LENGTH];
413
414 fn type_info() -> scale_info::Type {
415 Self::Identity::type_info()
416 }
417 }
418
419 #[derive(Clone, Debug, PartialEq, Eq)]
421 pub struct VrfProof(pub schnorrkel::vrf::VRFProof);
422
423 impl Encode for VrfProof {
424 fn encode(&self) -> Vec<u8> {
425 self.0.to_bytes().encode()
426 }
427 }
428
429 impl Decode for VrfProof {
430 fn decode<R: codec::Input>(i: &mut R) -> Result<Self, codec::Error> {
431 let decoded = <[u8; VRF_PROOF_LENGTH]>::decode(i)?;
432 Ok(Self(schnorrkel::vrf::VRFProof::from_bytes(&decoded).map_err(convert_error)?))
433 }
434 }
435
436 impl MaxEncodedLen for VrfProof {
437 fn max_encoded_len() -> usize {
438 <[u8; VRF_PROOF_LENGTH]>::max_encoded_len()
439 }
440 }
441
442 impl TypeInfo for VrfProof {
443 type Identity = [u8; VRF_PROOF_LENGTH];
444
445 fn type_info() -> scale_info::Type {
446 Self::Identity::type_info()
447 }
448 }
449
450 #[cfg(feature = "full_crypto")]
451 impl VrfCrypto for Pair {
452 type VrfInput = VrfTranscript;
453 type VrfPreOutput = VrfPreOutput;
454 type VrfSignData = VrfSignData;
455 type VrfSignature = VrfSignature;
456 }
457
458 #[cfg(feature = "full_crypto")]
459 impl VrfSecret for Pair {
460 fn vrf_sign(&self, data: &Self::VrfSignData) -> Self::VrfSignature {
461 let inout = self.0.vrf_create_hash(data.transcript.0.clone());
462
463 let extra = data
464 .extra
465 .as_ref()
466 .map(|e| e.0.clone())
467 .unwrap_or_else(|| merlin::Transcript::new(DEFAULT_EXTRA_DATA_LABEL));
468
469 let proof = self.0.dleq_proove(extra, &inout, true).0;
470
471 VrfSignature { pre_output: VrfPreOutput(inout.to_preout()), proof: VrfProof(proof) }
472 }
473
474 fn vrf_pre_output(&self, input: &Self::VrfInput) -> Self::VrfPreOutput {
475 let pre_output = self.0.vrf_create_hash(input.0.clone()).to_preout();
476 VrfPreOutput(pre_output)
477 }
478 }
479
480 impl VrfCrypto for Public {
481 type VrfInput = VrfTranscript;
482 type VrfPreOutput = VrfPreOutput;
483 type VrfSignData = VrfSignData;
484 type VrfSignature = VrfSignature;
485 }
486
487 impl VrfPublic for Public {
488 fn vrf_verify(&self, data: &Self::VrfSignData, signature: &Self::VrfSignature) -> bool {
489 let do_verify = || {
490 let public = schnorrkel::PublicKey::from_bytes(&self.0)?;
491
492 let inout =
493 signature.pre_output.0.attach_input_hash(&public, data.transcript.0.clone())?;
494
495 let extra = data
496 .extra
497 .as_ref()
498 .map(|e| e.0.clone())
499 .unwrap_or_else(|| merlin::Transcript::new(DEFAULT_EXTRA_DATA_LABEL));
500
501 public.dleq_verify(extra, &inout, &signature.proof.0, true)
502 };
503 do_verify().is_ok()
504 }
505 }
506
507 fn convert_error(e: SignatureError) -> codec::Error {
508 use MultiSignatureStage::*;
509 use SignatureError::*;
510 match e {
511 EquationFalse => "Signature error: `EquationFalse`".into(),
512 PointDecompressionError => "Signature error: `PointDecompressionError`".into(),
513 ScalarFormatError => "Signature error: `ScalarFormatError`".into(),
514 NotMarkedSchnorrkel => "Signature error: `NotMarkedSchnorrkel`".into(),
515 BytesLengthError { .. } => "Signature error: `BytesLengthError`".into(),
516 InvalidKey => "Signature error: `InvalidKey`".into(),
517 MuSigAbsent { musig_stage: Commitment } =>
518 "Signature error: `MuSigAbsent` at stage `Commitment`".into(),
519 MuSigAbsent { musig_stage: Reveal } =>
520 "Signature error: `MuSigAbsent` at stage `Reveal`".into(),
521 MuSigAbsent { musig_stage: Cosignature } =>
522 "Signature error: `MuSigAbsent` at stage `Commitment`".into(),
523 MuSigInconsistent { musig_stage: Commitment, duplicate: true } =>
524 "Signature error: `MuSigInconsistent` at stage `Commitment` on duplicate".into(),
525 MuSigInconsistent { musig_stage: Commitment, duplicate: false } =>
526 "Signature error: `MuSigInconsistent` at stage `Commitment` on not duplicate".into(),
527 MuSigInconsistent { musig_stage: Reveal, duplicate: true } =>
528 "Signature error: `MuSigInconsistent` at stage `Reveal` on duplicate".into(),
529 MuSigInconsistent { musig_stage: Reveal, duplicate: false } =>
530 "Signature error: `MuSigInconsistent` at stage `Reveal` on not duplicate".into(),
531 MuSigInconsistent { musig_stage: Cosignature, duplicate: true } =>
532 "Signature error: `MuSigInconsistent` at stage `Cosignature` on duplicate".into(),
533 MuSigInconsistent { musig_stage: Cosignature, duplicate: false } =>
534 "Signature error: `MuSigInconsistent` at stage `Cosignature` on not duplicate"
535 .into(),
536 }
537 }
538
539 #[cfg(feature = "full_crypto")]
540 impl Pair {
541 pub fn make_bytes<const N: usize>(&self, context: &[u8], input: &VrfInput) -> [u8; N]
543 where
544 [u8; N]: Default,
545 {
546 let inout = self.0.vrf_create_hash(input.0.clone());
547 inout.make_bytes::<[u8; N]>(context)
548 }
549 }
550
551 impl Public {
552 pub fn make_bytes<const N: usize>(
554 &self,
555 context: &[u8],
556 input: &VrfInput,
557 pre_output: &VrfPreOutput,
558 ) -> Result<[u8; N], codec::Error>
559 where
560 [u8; N]: Default,
561 {
562 let pubkey = schnorrkel::PublicKey::from_bytes(&self.0).map_err(convert_error)?;
563 let inout = pre_output
564 .0
565 .attach_input_hash(&pubkey, input.0.clone())
566 .map_err(convert_error)?;
567 Ok(inout.make_bytes::<[u8; N]>(context))
568 }
569 }
570
571 impl VrfPreOutput {
572 pub fn make_bytes<const N: usize>(
574 &self,
575 context: &[u8],
576 input: &VrfInput,
577 public: &Public,
578 ) -> Result<[u8; N], codec::Error>
579 where
580 [u8; N]: Default,
581 {
582 public.make_bytes(context, input, self)
583 }
584 }
585}
586
587#[cfg(test)]
588mod tests {
589 use super::{vrf::*, *};
590 use crate::{
591 crypto::{Ss58Codec, VrfPublic, VrfSecret, DEV_ADDRESS, DEV_PHRASE},
592 ByteArray as _,
593 };
594 use serde_json;
595
596 #[test]
597 fn derive_soft_known_pair_should_work() {
598 let pair = Pair::from_string(&format!("{}/Alice", DEV_PHRASE), None).unwrap();
599 let known = array_bytes::hex2bytes_unchecked(
601 "d6c71059dbbe9ad2b0ed3f289738b800836eb425544ce694825285b958ca755e",
602 );
603 assert_eq!(pair.public().to_raw_vec(), known);
604 }
605
606 #[test]
607 fn derive_hard_known_pair_should_work() {
608 let pair = Pair::from_string(&format!("{}//Alice", DEV_PHRASE), None).unwrap();
609 let known = array_bytes::hex2bytes_unchecked(
611 "d43593c715fdd31c61141abd04a99fd6822c8558854ccde39a5684e7a56da27d",
612 );
613 assert_eq!(pair.public().to_raw_vec(), known);
614 }
615
616 #[test]
617 fn verify_known_old_message_should_work() {
618 let public = Public::from_raw(array_bytes::hex2array_unchecked(
619 "b4bfa1f7a5166695eb75299fd1c4c03ea212871c342f2c5dfea0902b2c246918",
620 ));
621 let signature = Signature::from_raw(array_bytes::hex2array_unchecked(
623 "5a9755f069939f45d96aaf125cf5ce7ba1db998686f87f2fb3cbdea922078741a73891ba265f70c31436e18a9acd14d189d73c12317ab6c313285cd938453202"
624 ));
625 let message = b"Verifying that I am the owner of 5G9hQLdsKQswNPgB499DeA5PkFBbgkLPJWkkS6FAM6xGQ8xD. Hash: 221455a3\n";
626 assert!(Pair::verify_deprecated(&signature, &message[..], &public));
627 assert!(!Pair::verify(&signature, &message[..], &public));
628 }
629
630 #[test]
631 fn default_phrase_should_be_used() {
632 assert_eq!(
633 Pair::from_string("//Alice///password", None).unwrap().public(),
634 Pair::from_string(&format!("{}//Alice", DEV_PHRASE), Some("password"))
635 .unwrap()
636 .public(),
637 );
638 assert_eq!(
639 Pair::from_string(&format!("{}/Alice", DEV_PHRASE), None)
640 .as_ref()
641 .map(Pair::public),
642 Pair::from_string("/Alice", None).as_ref().map(Pair::public)
643 );
644 }
645
646 #[test]
647 fn default_address_should_be_used() {
648 assert_eq!(
649 Public::from_string(&format!("{}/Alice", DEV_ADDRESS)),
650 Public::from_string("/Alice")
651 );
652 }
653
654 #[test]
655 fn default_phrase_should_correspond_to_default_address() {
656 assert_eq!(
657 Pair::from_string(&format!("{}/Alice", DEV_PHRASE), None).unwrap().public(),
658 Public::from_string(&format!("{}/Alice", DEV_ADDRESS)).unwrap(),
659 );
660 assert_eq!(
661 Pair::from_string("/Alice", None).unwrap().public(),
662 Public::from_string("/Alice").unwrap()
663 );
664 }
665
666 #[test]
667 fn derive_soft_should_work() {
668 let pair = Pair::from_seed(&array_bytes::hex2array_unchecked(
669 "9d61b19deffd5a60ba844af492ec2cc44449c5697b326919703bac031cae7f60",
670 ));
671 let derive_1 = pair.derive(Some(DeriveJunction::soft(1)).into_iter(), None).unwrap().0;
672 let derive_1b = pair.derive(Some(DeriveJunction::soft(1)).into_iter(), None).unwrap().0;
673 let derive_2 = pair.derive(Some(DeriveJunction::soft(2)).into_iter(), None).unwrap().0;
674 assert_eq!(derive_1.public(), derive_1b.public());
675 assert_ne!(derive_1.public(), derive_2.public());
676 }
677
678 #[test]
679 fn derive_hard_should_work() {
680 let pair = Pair::from_seed(&array_bytes::hex2array_unchecked(
681 "9d61b19deffd5a60ba844af492ec2cc44449c5697b326919703bac031cae7f60",
682 ));
683 let derive_1 = pair.derive(Some(DeriveJunction::hard(1)).into_iter(), None).unwrap().0;
684 let derive_1b = pair.derive(Some(DeriveJunction::hard(1)).into_iter(), None).unwrap().0;
685 let derive_2 = pair.derive(Some(DeriveJunction::hard(2)).into_iter(), None).unwrap().0;
686 assert_eq!(derive_1.public(), derive_1b.public());
687 assert_ne!(derive_1.public(), derive_2.public());
688 }
689
690 #[test]
691 fn derive_soft_public_should_work() {
692 let pair = Pair::from_seed(&array_bytes::hex2array_unchecked(
693 "9d61b19deffd5a60ba844af492ec2cc44449c5697b326919703bac031cae7f60",
694 ));
695 let path = Some(DeriveJunction::soft(1));
696 let pair_1 = pair.derive(path.into_iter(), None).unwrap().0;
697 let public_1 = pair.public().derive(path.into_iter()).unwrap();
698 assert_eq!(pair_1.public(), public_1);
699 }
700
701 #[test]
702 fn derive_hard_public_should_fail() {
703 let pair = Pair::from_seed(&array_bytes::hex2array_unchecked(
704 "9d61b19deffd5a60ba844af492ec2cc44449c5697b326919703bac031cae7f60",
705 ));
706 let path = Some(DeriveJunction::hard(1));
707 assert!(pair.public().derive(path.into_iter()).is_none());
708 }
709
710 #[test]
711 fn sr_test_vector_should_work() {
712 let pair = Pair::from_seed(&array_bytes::hex2array_unchecked(
713 "9d61b19deffd5a60ba844af492ec2cc44449c5697b326919703bac031cae7f60",
714 ));
715 let public = pair.public();
716 assert_eq!(
717 public,
718 Public::from_raw(array_bytes::hex2array_unchecked(
719 "44a996beb1eef7bdcab976ab6d2ca26104834164ecf28fb375600576fcc6eb0f"
720 ))
721 );
722 let message = b"";
723 let signature = pair.sign(message);
724 assert!(Pair::verify(&signature, &message[..], &public));
725 }
726
727 #[test]
728 fn generate_with_phrase_should_be_recoverable_with_from_string() {
729 let (pair, phrase, seed) = Pair::generate_with_phrase(None);
730 let repair_seed = Pair::from_seed_slice(seed.as_ref()).expect("seed slice is valid");
731 assert_eq!(pair.public(), repair_seed.public());
732 assert_eq!(pair.to_raw_vec(), repair_seed.to_raw_vec());
733 let (repair_phrase, reseed) =
734 Pair::from_phrase(phrase.as_ref(), None).expect("seed slice is valid");
735 assert_eq!(seed, reseed);
736 assert_eq!(pair.public(), repair_phrase.public());
737 assert_eq!(pair.to_raw_vec(), repair_seed.to_raw_vec());
738 let repair_string = Pair::from_string(phrase.as_str(), None).expect("seed slice is valid");
739 assert_eq!(pair.public(), repair_string.public());
740 assert_eq!(pair.to_raw_vec(), repair_seed.to_raw_vec());
741 }
742
743 #[test]
744 fn generated_pair_should_work() {
745 let (pair, _) = Pair::generate();
746 let public = pair.public();
747 let message = b"Something important";
748 let signature = pair.sign(&message[..]);
749 assert!(Pair::verify(&signature, &message[..], &public));
750 }
751
752 #[test]
753 fn messed_signature_should_not_work() {
754 let (pair, _) = Pair::generate();
755 let public = pair.public();
756 let message = b"Signed payload";
757 let mut signature = pair.sign(&message[..]);
758 let bytes = &mut signature.0;
759 bytes[0] = !bytes[0];
760 bytes[2] = !bytes[2];
761 assert!(!Pair::verify(&signature, &message[..], &public));
762 }
763
764 #[test]
765 fn messed_message_should_not_work() {
766 let (pair, _) = Pair::generate();
767 let public = pair.public();
768 let message = b"Something important";
769 let signature = pair.sign(&message[..]);
770 assert!(!Pair::verify(&signature, &b"Something unimportant", &public));
771 }
772
773 #[test]
774 fn seeded_pair_should_work() {
775 let pair = Pair::from_seed(b"12345678901234567890123456789012");
776 let public = pair.public();
777 assert_eq!(
778 public,
779 Public::from_raw(array_bytes::hex2array_unchecked(
780 "741c08a06f41c596608f6774259bd9043304adfa5d3eea62760bd9be97634d63"
781 ))
782 );
783 let message = array_bytes::hex2bytes_unchecked("2f8c6129d816cf51c374bc7f08c3e63ed156cf78aefb4a6550d97b87997977ee00000000000000000200d75a980182b10ab7d54bfed3c964073a0ee172f3daa62325af021a68f707511a4500000000000000");
784 let signature = pair.sign(&message[..]);
785 assert!(Pair::verify(&signature, &message[..], &public));
786 }
787
788 #[test]
789 fn ss58check_roundtrip_works() {
790 let (pair, _) = Pair::generate();
791 let public = pair.public();
792 let s = public.to_ss58check();
793 println!("Correct: {}", s);
794 let cmp = Public::from_ss58check(&s).unwrap();
795 assert_eq!(cmp, public);
796 }
797
798 #[test]
799 fn verify_from_old_wasm_works() {
800 let pk = Pair::from_seed(&array_bytes::hex2array_unchecked(
805 "0000000000000000000000000000000000000000000000000000000000000000",
806 ));
807 let public = pk.public();
808 let js_signature = Signature::from_raw(array_bytes::hex2array_unchecked(
809 "28a854d54903e056f89581c691c1f7d2ff39f8f896c9e9c22475e60902cc2b3547199e0e91fa32902028f2ca2355e8cdd16cfe19ba5e8b658c94aa80f3b81a00"
810 ));
811 assert!(Pair::verify_deprecated(&js_signature, b"SUBSTRATE", &public));
812 assert!(!Pair::verify(&js_signature, b"SUBSTRATE", &public));
813 }
814
815 #[test]
816 fn signature_serialization_works() {
817 let pair = Pair::from_seed(b"12345678901234567890123456789012");
818 let message = b"Something important";
819 let signature = pair.sign(&message[..]);
820 let serialized_signature = serde_json::to_string(&signature).unwrap();
821 assert_eq!(serialized_signature.len(), 130);
823 let signature = serde_json::from_str(&serialized_signature).unwrap();
824 assert!(Pair::verify(&signature, &message[..], &pair.public()));
825 }
826
827 #[test]
828 fn signature_serialization_doesnt_panic() {
829 fn deserialize_signature(text: &str) -> Result<Signature, serde_json::error::Error> {
830 serde_json::from_str(text)
831 }
832 assert!(deserialize_signature("Not valid json.").is_err());
833 assert!(deserialize_signature("\"Not an actual signature.\"").is_err());
834 assert!(deserialize_signature("\"abc123\"").is_err());
836 }
837
838 #[test]
839 fn vrf_sign_verify() {
840 let pair = Pair::from_seed(b"12345678901234567890123456789012");
841 let public = pair.public();
842
843 let data = VrfTranscript::new(b"label", &[(b"domain1", b"data1")]).into();
844
845 let signature = pair.vrf_sign(&data);
846
847 assert!(public.vrf_verify(&data, &signature));
848 }
849
850 #[test]
851 fn vrf_sign_verify_with_extra() {
852 let pair = Pair::from_seed(b"12345678901234567890123456789012");
853 let public = pair.public();
854
855 let extra = VrfTranscript::new(b"extra", &[(b"domain2", b"data2")]);
856 let data = VrfTranscript::new(b"label", &[(b"domain1", b"data1")])
857 .into_sign_data()
858 .with_extra(extra);
859
860 let signature = pair.vrf_sign(&data);
861
862 assert!(public.vrf_verify(&data, &signature));
863 }
864
865 #[test]
866 fn vrf_make_bytes_matches() {
867 let pair = Pair::from_seed(b"12345678901234567890123456789012");
868 let public = pair.public();
869 let ctx = b"vrfbytes";
870
871 let input = VrfTranscript::new(b"label", &[(b"domain1", b"data1")]);
872
873 let pre_output = pair.vrf_pre_output(&input);
874
875 let out1 = pair.make_bytes::<32>(ctx, &input);
876 let out2 = pre_output.make_bytes::<32>(ctx, &input, &public).unwrap();
877 assert_eq!(out1, out2);
878
879 let extra = VrfTranscript::new(b"extra", &[(b"domain2", b"data2")]);
880 let data = input.clone().into_sign_data().with_extra(extra);
881 let signature = pair.vrf_sign(&data);
882 assert!(public.vrf_verify(&data, &signature));
883
884 let out3 = public.make_bytes::<32>(ctx, &input, &signature.pre_output).unwrap();
885 assert_eq!(out2, out3);
886 }
887
888 #[test]
889 fn vrf_backend_compat() {
890 let pair = Pair::from_seed(b"12345678901234567890123456789012");
891 let public = pair.public();
892 let ctx = b"vrfbytes";
893
894 let input = VrfInput::new(b"label", &[(b"domain1", b"data1")]);
895 let extra = VrfTranscript::new(b"extra", &[(b"domain2", b"data2")]);
896
897 let data = input.clone().into_sign_data().with_extra(extra.clone());
898 let signature = pair.vrf_sign(&data);
899 assert!(public.vrf_verify(&data, &signature));
900
901 let out1 = pair.make_bytes::<32>(ctx, &input);
902 let out2 = public.make_bytes::<32>(ctx, &input, &signature.pre_output).unwrap();
903 assert_eq!(out1, out2);
904
905 let (inout, proof, _) = pair
907 .0
908 .vrf_sign_extra_after_check(input.0.clone(), |inout| {
909 let out3 = inout.make_bytes::<[u8; 32]>(ctx);
910 assert_eq!(out2, out3);
911 Some(extra.0.clone())
912 })
913 .unwrap();
914 let signature2 =
915 VrfSignature { pre_output: VrfPreOutput(inout.to_preout()), proof: VrfProof(proof) };
916
917 assert!(public.vrf_verify(&data, &signature2));
918 assert_eq!(signature.pre_output, signature2.pre_output);
919 }
920}