1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
// This file is part of Substrate.

// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Hashing Functions.

#![warn(missing_docs)]
#![cfg_attr(not(feature = "std"), no_std)]

use core::hash::Hasher;

use byteorder::{ByteOrder, LittleEndian};
use digest::Digest;

#[inline(always)]
fn blake2<const N: usize>(data: &[u8]) -> [u8; N] {
	blake2b_simd::Params::new()
		.hash_length(N)
		.hash(data)
		.as_bytes()
		.try_into()
		.expect("slice is always the necessary length")
}

/// Do a Blake2 512-bit hash and place result in `dest`.
pub fn blake2_512_into(data: &[u8], dest: &mut [u8; 64]) {
	*dest = blake2(data);
}

/// Do a Blake2 512-bit hash and return result.
pub fn blake2_512(data: &[u8]) -> [u8; 64] {
	blake2(data)
}

/// Do a Blake2 256-bit hash and return result.
pub fn blake2_256(data: &[u8]) -> [u8; 32] {
	blake2(data)
}

/// Do a Blake2 128-bit hash and return result.
pub fn blake2_128(data: &[u8]) -> [u8; 16] {
	blake2(data)
}

/// Do a Blake2 64-bit hash and return result.
pub fn blake2_64(data: &[u8]) -> [u8; 8] {
	blake2(data)
}

/// Do a XX 64-bit hash and place result in `dest`.
pub fn twox_64_into(data: &[u8], dest: &mut [u8; 8]) {
	let r0 = twox_hash::XxHash::with_seed(0).chain_update(data).finish();
	LittleEndian::write_u64(&mut dest[0..8], r0);
}

/// Do a XX 64-bit hash and return result.
pub fn twox_64(data: &[u8]) -> [u8; 8] {
	let mut r: [u8; 8] = [0; 8];
	twox_64_into(data, &mut r);
	r
}

/// Do a XX 128-bit hash and place result in `dest`.
pub fn twox_128_into(data: &[u8], dest: &mut [u8; 16]) {
	let r0 = twox_hash::XxHash::with_seed(0).chain_update(data).finish();
	let r1 = twox_hash::XxHash::with_seed(1).chain_update(data).finish();
	LittleEndian::write_u64(&mut dest[0..8], r0);
	LittleEndian::write_u64(&mut dest[8..16], r1);
}

/// Do a XX 128-bit hash and return result.
pub fn twox_128(data: &[u8]) -> [u8; 16] {
	let mut r: [u8; 16] = [0; 16];
	twox_128_into(data, &mut r);
	r
}

/// Do a XX 256-bit hash and place result in `dest`.
pub fn twox_256_into(data: &[u8], dest: &mut [u8; 32]) {
	let r0 = twox_hash::XxHash::with_seed(0).chain_update(data).finish();
	let r1 = twox_hash::XxHash::with_seed(1).chain_update(data).finish();
	let r2 = twox_hash::XxHash::with_seed(2).chain_update(data).finish();
	let r3 = twox_hash::XxHash::with_seed(3).chain_update(data).finish();
	LittleEndian::write_u64(&mut dest[0..8], r0);
	LittleEndian::write_u64(&mut dest[8..16], r1);
	LittleEndian::write_u64(&mut dest[16..24], r2);
	LittleEndian::write_u64(&mut dest[24..32], r3);
}

/// Do a XX 256-bit hash and return result.
pub fn twox_256(data: &[u8]) -> [u8; 32] {
	let mut r: [u8; 32] = [0; 32];
	twox_256_into(data, &mut r);
	r
}

/// Do a keccak 256-bit hash and return result.
pub fn keccak_256(data: &[u8]) -> [u8; 32] {
	sha3::Keccak256::digest(data).into()
}

/// Do a keccak 512-bit hash and return result.
pub fn keccak_512(data: &[u8]) -> [u8; 64] {
	sha3::Keccak512::digest(data).into()
}

/// Do a sha2 256-bit hash and return result.
pub fn sha2_256(data: &[u8]) -> [u8; 32] {
	sha2::Sha256::digest(data).into()
}

#[cfg(test)]
mod test {
	use super::*;

	#[test]
	fn blake2b() {
		assert_eq!(sp_crypto_hashing_proc_macro::blake2b_64!(b""), blake2_64(b"")[..]);
		assert_eq!(sp_crypto_hashing_proc_macro::blake2b_256!(b"test"), blake2_256(b"test")[..]);
		assert_eq!(sp_crypto_hashing_proc_macro::blake2b_512!(b""), blake2_512(b"")[..]);
	}

	#[test]
	fn keccak() {
		assert_eq!(sp_crypto_hashing_proc_macro::keccak_256!(b"test"), keccak_256(b"test")[..]);
		assert_eq!(sp_crypto_hashing_proc_macro::keccak_512!(b"test"), keccak_512(b"test")[..]);
	}

	#[test]
	fn sha2() {
		assert_eq!(sp_crypto_hashing_proc_macro::sha2_256!(b"test"), sha2_256(b"test")[..]);
	}

	#[test]
	fn twox() {
		assert_eq!(sp_crypto_hashing_proc_macro::twox_128!(b"test"), twox_128(b"test")[..]);
		assert_eq!(sp_crypto_hashing_proc_macro::twox_64!(b""), twox_64(b"")[..]);
	}

	#[test]
	fn twox_concats() {
		assert_eq!(
			sp_crypto_hashing_proc_macro::twox_128!(b"test", b"123", b"45", b"", b"67890"),
			twox_128(&b"test1234567890"[..]),
		);
		assert_eq!(
			sp_crypto_hashing_proc_macro::twox_128!(b"test", test, b"45", b"", b"67890"),
			twox_128(&b"testtest4567890"[..]),
		);
	}
}