1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
// This file is part of Substrate.

// Copyright (C) 2019-2022 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Substrate Inherent Extrinsics
//!
//! Inherent extrinsics are extrinsics that are inherently added to each block. However, it is up to
//! the runtime implementation to require an inherent for each block or to make it optional.
//! Inherents are mainly used to pass data from the block producer to the runtime. So, inherents
//! require some part that is running on the client side and some part that is running on the
//! runtime side. Any data that is required by an inherent is passed as [`InherentData`] from the
//! client to the runtime when the inherents are constructed.
//!
//! The process of constructing and applying inherents is the following:
//!
//! 1. The block producer first creates the [`InherentData`] by using the inherent data providers
//! that are created by [`CreateInherentDataProviders`].
//!
//! 2. The [`InherentData`] is passed to the `inherent_extrinsics` function of the `BlockBuilder`
//! runtime api. This will call the runtime which will create all the inherents that should be
//! applied to the block.
//!
//! 3. Apply each inherent to the block like any normal extrinsic.
//!
//! On block import the inherents in the block are checked by calling the `check_inherents` runtime
//! API. This will also pass an instance of [`InherentData`] which the runtime can use to validate
//! all inherents. If some inherent data isn't required for validating an inherent, it can be
//! omitted when providing the inherent data providers for block import.
//!
//! # Providing inherent data
//!
//! To provide inherent data from the client side, [`InherentDataProvider`] should be implemented.
//!
//! ```
//! use codec::Decode;
//! use sp_inherents::{InherentIdentifier, InherentData};
//!
//! // This needs to be unique for the runtime.
//! const INHERENT_IDENTIFIER: InherentIdentifier = *b"testinh0";
//!
//! /// Some custom inherent data provider
//! struct InherentDataProvider;
//!
//! #[async_trait::async_trait]
//! impl sp_inherents::InherentDataProvider for InherentDataProvider {
//! 	async fn provide_inherent_data(
//! 		&self,
//! 		inherent_data: &mut InherentData,
//! 	) -> Result<(), sp_inherents::Error> {
//! 		// We can insert any data that implements [`codec::Encode`].
//! 		inherent_data.put_data(INHERENT_IDENTIFIER, &"hello")
//! 	}
//!
//! 	/// When validating the inherents, the runtime implementation can throw errors. We support
//! 	/// two error modes, fatal and non-fatal errors. A fatal error means that the block is invalid
//! 	/// and this function here should return `Err(_)` to not import the block. Non-fatal errors
//! 	/// are allowed to be handled here in this function and the function should return `Ok(())`
//! 	/// if it could be handled. A non-fatal error is for example that a block is in the future
//! 	/// from the point of view of the local node. In such a case the block import for example
//! 	/// should be delayed until the block is valid.
//! 	///
//! 	/// If this functions returns `None`, it means that it is not responsible for this error or
//! 	/// that the error could not be interpreted.
//! 	async fn try_handle_error(
//! 		&self,
//! 		identifier: &InherentIdentifier,
//! 		mut error: &[u8],
//! 	) -> Option<Result<(), sp_inherents::Error>> {
//! 		// Check if this error belongs to us.
//! 		if *identifier != INHERENT_IDENTIFIER {
//! 			return None;
//! 		}
//!
//! 		// For demonstration purposes we are using a `String` as error type. In real
//! 		// implementations it is advised to not use `String`.
//! 		Some(Err(
//! 			sp_inherents::Error::Application(Box::from(String::decode(&mut error).ok()?))
//! 		))
//! 	}
//! }
//! ```
//!
//! In the service the relevant inherent data providers need to be passed the block production and
//! the block import. As already highlighted above, the providers can be different between import
//! and production.
//!
//! ```
//! # use sp_runtime::testing::ExtrinsicWrapper;
//! # use sp_inherents::{InherentIdentifier, InherentData};
//! # use futures::FutureExt;
//! # type Block = sp_runtime::testing::Block<ExtrinsicWrapper<()>>;
//! # const INHERENT_IDENTIFIER: InherentIdentifier = *b"testinh0";
//! # struct InherentDataProvider;
//! # #[async_trait::async_trait]
//! # impl sp_inherents::InherentDataProvider for InherentDataProvider {
//! # 	async fn provide_inherent_data(&self, inherent_data: &mut InherentData) -> Result<(), sp_inherents::Error> {
//! # 		inherent_data.put_data(INHERENT_IDENTIFIER, &"hello")
//! # 	}
//! # 	async fn try_handle_error(
//! # 		&self,
//! # 		_: &InherentIdentifier,
//! # 		_: &[u8],
//! # 	) -> Option<Result<(), sp_inherents::Error>> {
//! # 		None
//! # 	}
//! # }
//!
//! async fn cool_consensus_block_production(
//! 	// The second parameter to the trait are parameters that depend on what the caller
//! 	// can provide on extra data.
//! 	_: impl sp_inherents::CreateInherentDataProviders<Block, ()>,
//! ) {
//! 	// do cool stuff
//! }
//!
//! async fn cool_consensus_block_import(
//! 	_: impl sp_inherents::CreateInherentDataProviders<Block, ()>,
//! ) {
//! 	// do cool stuff
//! }
//!
//! async fn build_service(is_validator: bool) {
//! 	// For block import we don't pass any inherent data provider, because our runtime
//! 	// does not need any inherent data to validate the inherents.
//! 	let block_import = cool_consensus_block_import(|_parent, ()| async { Ok(()) });
//!
//! 	let block_production = if is_validator {
//! 		// For block production we want to provide our inherent data provider
//! 		cool_consensus_block_production(|_parent, ()| async {
//! 			Ok(InherentDataProvider)
//! 		}).boxed()
//! 	} else {
//! 		futures::future::pending().boxed()
//! 	};
//!
//! 	futures::pin_mut!(block_import);
//!
//! 	futures::future::select(block_import, block_production).await;
//! }
//! ```
//!
//! # Creating the inherent
//!
//! As the inherents are created by the runtime, it depends on the runtime implementation on how
//! to create the inherents. As already described above the client side passes the [`InherentData`]
//! and expects the runtime to construct the inherents out of it. When validating the inherents,
//! [`CheckInherentsResult`] is used to communicate the result client side.

#![cfg_attr(not(feature = "std"), no_std)]
#![warn(missing_docs)]

use codec::{Decode, Encode};

use sp_std::{
	collections::btree_map::{BTreeMap, Entry, IntoIter},
	vec::Vec,
};

#[cfg(feature = "std")]
mod client_side;

#[cfg(feature = "std")]
pub use client_side::*;

/// Errors that occur in context of inherents.
#[derive(Debug)]
#[cfg_attr(feature = "std", derive(thiserror::Error))]
#[allow(missing_docs)]
pub enum Error {
	#[cfg_attr(
		feature = "std",
		error("Inherent data already exists for identifier: {}", "String::from_utf8_lossy(_0)")
	)]
	InherentDataExists(InherentIdentifier),
	#[cfg_attr(
		feature = "std",
		error("Failed to decode inherent data for identifier: {}", "String::from_utf8_lossy(_1)")
	)]
	DecodingFailed(#[cfg_attr(feature = "std", source)] codec::Error, InherentIdentifier),
	#[cfg_attr(
		feature = "std",
		error("There was already a fatal error reported and no other errors are allowed")
	)]
	FatalErrorReported,
	#[cfg(feature = "std")]
	#[error(transparent)]
	Application(#[from] Box<dyn std::error::Error + Send + Sync>),
}

/// An identifier for an inherent.
pub type InherentIdentifier = [u8; 8];

/// Inherent data to include in a block.
#[derive(Clone, Default, Encode, Decode, scale_info::TypeInfo)]
pub struct InherentData {
	/// All inherent data encoded with parity-scale-codec and an identifier.
	data: BTreeMap<InherentIdentifier, Vec<u8>>,
}

impl InherentData {
	/// Create a new instance.
	pub fn new() -> Self {
		Self::default()
	}

	/// Put data for an inherent into the internal storage.
	///
	/// # Return
	///
	/// Returns `Ok(())` if the data could be inserted and no data for an inherent with the same
	/// identifier existed, otherwise an error is returned.
	///
	/// Inherent identifiers need to be unique, otherwise decoding of these values will not work!
	pub fn put_data<I: codec::Encode>(
		&mut self,
		identifier: InherentIdentifier,
		inherent: &I,
	) -> Result<(), Error> {
		match self.data.entry(identifier) {
			Entry::Vacant(entry) => {
				entry.insert(inherent.encode());
				Ok(())
			},
			Entry::Occupied(_) => Err(Error::InherentDataExists(identifier)),
		}
	}

	/// Replace the data for an inherent.
	///
	/// If it does not exist, the data is just inserted.
	pub fn replace_data<I: codec::Encode>(&mut self, identifier: InherentIdentifier, inherent: &I) {
		self.data.insert(identifier, inherent.encode());
	}

	/// Returns the data for the requested inherent.
	///
	/// # Return
	///
	/// - `Ok(Some(I))` if the data could be found and deserialized.
	/// - `Ok(None)` if the data could not be found.
	/// - `Err(_)` if the data could be found, but deserialization did not work.
	pub fn get_data<I: codec::Decode>(
		&self,
		identifier: &InherentIdentifier,
	) -> Result<Option<I>, Error> {
		match self.data.get(identifier) {
			Some(inherent) => I::decode(&mut &inherent[..])
				.map_err(|e| Error::DecodingFailed(e, *identifier))
				.map(Some),
			None => Ok(None),
		}
	}

	/// Get the number of inherents in this instance
	pub fn len(&self) -> usize {
		self.data.len()
	}
}

/// The result of checking inherents.
///
/// It either returns okay for all checks, stores all occurred errors or just one fatal error.
///
/// When a fatal error occurs, all other errors are removed and the implementation needs to
/// abort checking inherents.
#[derive(Encode, Decode, Clone, scale_info::TypeInfo)]
pub struct CheckInherentsResult {
	/// Did the check succeed?
	okay: bool,
	/// Did we encounter a fatal error?
	fatal_error: bool,
	/// We use the `InherentData` to store our errors.
	errors: InherentData,
}

impl Default for CheckInherentsResult {
	fn default() -> Self {
		Self { okay: true, errors: InherentData::new(), fatal_error: false }
	}
}

impl CheckInherentsResult {
	/// Create a new instance.
	pub fn new() -> Self {
		Self::default()
	}

	/// Put an error into the result.
	///
	/// This makes this result resolve to `ok() == false`.
	///
	/// # Parameters
	///
	/// - identifier - The identifier of the inherent that generated the error.
	/// - error - The error that will be encoded.
	pub fn put_error<E: codec::Encode + IsFatalError>(
		&mut self,
		identifier: InherentIdentifier,
		error: &E,
	) -> Result<(), Error> {
		// Don't accept any other error
		if self.fatal_error {
			return Err(Error::FatalErrorReported)
		}

		if error.is_fatal_error() {
			// remove the other errors.
			self.errors.data.clear();
		}

		self.errors.put_data(identifier, error)?;

		self.okay = false;
		self.fatal_error = error.is_fatal_error();
		Ok(())
	}

	/// Get an error out of the result.
	///
	/// # Return
	///
	/// - `Ok(Some(I))` if the error could be found and deserialized.
	/// - `Ok(None)` if the error could not be found.
	/// - `Err(_)` if the error could be found, but deserialization did not work.
	pub fn get_error<E: codec::Decode>(
		&self,
		identifier: &InherentIdentifier,
	) -> Result<Option<E>, Error> {
		self.errors.get_data(identifier)
	}

	/// Convert into an iterator over all contained errors.
	pub fn into_errors(self) -> IntoIter<InherentIdentifier, Vec<u8>> {
		self.errors.data.into_iter()
	}

	/// Is this result ok?
	pub fn ok(&self) -> bool {
		self.okay
	}

	/// Is this a fatal error?
	pub fn fatal_error(&self) -> bool {
		self.fatal_error
	}
}

#[cfg(feature = "std")]
impl PartialEq for CheckInherentsResult {
	fn eq(&self, other: &Self) -> bool {
		self.fatal_error == other.fatal_error &&
			self.okay == other.okay &&
			self.errors.data == other.errors.data
	}
}

/// Did we encounter a fatal error while checking an inherent?
///
/// A fatal error is everything that fails while checking an inherent error, e.g. the inherent
/// was not found, could not be decoded etc.
/// Then there are cases where you not want the inherent check to fail, but report that there is an
/// action required. For example a timestamp of a block is in the future, the timestamp is still
/// correct, but it is required to verify the block at a later time again and then the inherent
/// check will succeed.
pub trait IsFatalError {
	/// Is this a fatal error?
	fn is_fatal_error(&self) -> bool;
}

/// Auxiliary to make any given error resolve to `is_fatal_error() == true` for [`IsFatalError`].
#[derive(codec::Encode)]
pub struct MakeFatalError<E>(E);

impl<E: codec::Encode> From<E> for MakeFatalError<E> {
	fn from(err: E) -> Self {
		MakeFatalError(err)
	}
}

impl<E: codec::Encode> IsFatalError for MakeFatalError<E> {
	fn is_fatal_error(&self) -> bool {
		true
	}
}

#[cfg(test)]
mod tests {
	use super::*;
	use codec::{Decode, Encode};

	const TEST_INHERENT_0: InherentIdentifier = *b"testinh0";
	const TEST_INHERENT_1: InherentIdentifier = *b"testinh1";

	#[derive(Encode)]
	struct NoFatalError<E: codec::Encode>(E);
	impl<E: codec::Encode> IsFatalError for NoFatalError<E> {
		fn is_fatal_error(&self) -> bool {
			false
		}
	}

	#[test]
	fn inherent_data_encodes_and_decodes() {
		let inherent_0 = vec![1, 2, 3];
		let inherent_1: u32 = 7;

		let mut data = InherentData::new();
		data.put_data(TEST_INHERENT_0, &inherent_0).unwrap();
		data.put_data(TEST_INHERENT_1, &inherent_1).unwrap();

		let encoded = data.encode();

		let decoded = InherentData::decode(&mut &encoded[..]).unwrap();

		assert_eq!(decoded.get_data::<Vec<u32>>(&TEST_INHERENT_0).unwrap().unwrap(), inherent_0);
		assert_eq!(decoded.get_data::<u32>(&TEST_INHERENT_1).unwrap().unwrap(), inherent_1);
	}

	#[test]
	fn adding_same_inherent_returns_an_error() {
		let mut data = InherentData::new();
		data.put_data(TEST_INHERENT_0, &8).unwrap();
		assert!(data.put_data(TEST_INHERENT_0, &10).is_err());
	}

	#[derive(Clone)]
	struct TestInherentDataProvider;

	const ERROR_TO_STRING: &str = "Found error!";

	#[async_trait::async_trait]
	impl InherentDataProvider for TestInherentDataProvider {
		async fn provide_inherent_data(&self, data: &mut InherentData) -> Result<(), Error> {
			data.put_data(TEST_INHERENT_0, &42)
		}

		async fn try_handle_error(
			&self,
			_: &InherentIdentifier,
			_: &[u8],
		) -> Option<Result<(), Error>> {
			Some(Err(Error::Application(Box::from(ERROR_TO_STRING))))
		}
	}

	#[test]
	fn create_inherent_data() {
		let provider = TestInherentDataProvider;

		let inherent_data = futures::executor::block_on(provider.create_inherent_data()).unwrap();

		assert_eq!(inherent_data.get_data::<u32>(&TEST_INHERENT_0).unwrap().unwrap(), 42u32);
	}

	#[test]
	fn check_inherents_result_encodes_and_decodes() {
		let mut result = CheckInherentsResult::new();
		assert!(result.ok());

		result.put_error(TEST_INHERENT_0, &NoFatalError(2u32)).unwrap();
		assert!(!result.ok());
		assert!(!result.fatal_error());

		let encoded = result.encode();

		let decoded = CheckInherentsResult::decode(&mut &encoded[..]).unwrap();

		assert_eq!(decoded.get_error::<u32>(&TEST_INHERENT_0).unwrap().unwrap(), 2);
		assert!(!decoded.ok());
		assert!(!decoded.fatal_error());
	}

	#[test]
	fn check_inherents_result_removes_other_errors_on_fatal_error() {
		let mut result = CheckInherentsResult::new();
		assert!(result.ok());

		result.put_error(TEST_INHERENT_0, &NoFatalError(2u32)).unwrap();
		assert!(!result.ok());
		assert!(!result.fatal_error());

		result.put_error(TEST_INHERENT_1, &MakeFatalError(4u32)).unwrap();
		assert!(!result.ok());
		assert!(result.fatal_error());

		assert!(result.put_error(TEST_INHERENT_0, &NoFatalError(5u32)).is_err());

		result.into_errors().for_each(|(i, e)| match i {
			TEST_INHERENT_1 => assert_eq!(u32::decode(&mut &e[..]).unwrap(), 4),
			_ => panic!("There should be no other error!"),
		});
	}
}