sp_runtime/
curve.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
// This file is part of Substrate.

// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Provides some utilities to define a piecewise linear function.

use crate::{
	traits::{AtLeast32BitUnsigned, SaturatedConversion},
	Perbill,
};
use core::ops::Sub;
use scale_info::TypeInfo;

/// Piecewise Linear function in [0, 1] -> [0, 1].
#[derive(PartialEq, Eq, sp_core::RuntimeDebug, TypeInfo)]
pub struct PiecewiseLinear<'a> {
	/// Array of points. Must be in order from the lowest abscissas to the highest.
	pub points: &'a [(Perbill, Perbill)],
	/// The maximum value that can be returned.
	pub maximum: Perbill,
}

fn abs_sub<N: Ord + Sub<Output = N> + Clone>(a: N, b: N) -> N where {
	a.clone().max(b.clone()) - a.min(b)
}

impl<'a> PiecewiseLinear<'a> {
	/// Compute `f(n/d)*d` with `n <= d`. This is useful to avoid loss of precision.
	pub fn calculate_for_fraction_times_denominator<N>(&self, n: N, d: N) -> N
	where
		N: AtLeast32BitUnsigned + Clone,
	{
		let n = n.min(d.clone());

		if self.points.is_empty() {
			return N::zero()
		}

		let next_point_index = self.points.iter().position(|p| n < p.0 * d.clone());

		let (prev, next) = if let Some(next_point_index) = next_point_index {
			if let Some(previous_point_index) = next_point_index.checked_sub(1) {
				(self.points[previous_point_index], self.points[next_point_index])
			} else {
				// There is no previous points, take first point ordinate
				return self.points.first().map(|p| p.1).unwrap_or_else(Perbill::zero) * d
			}
		} else {
			// There is no next points, take last point ordinate
			return self.points.last().map(|p| p.1).unwrap_or_else(Perbill::zero) * d
		};

		let delta_y = multiply_by_rational_saturating(
			abs_sub(n.clone(), prev.0 * d.clone()),
			abs_sub(next.1.deconstruct(), prev.1.deconstruct()),
			// Must not saturate as prev abscissa > next abscissa
			next.0.deconstruct().saturating_sub(prev.0.deconstruct()),
		);

		// If both subtractions are same sign then result is positive
		if (n > prev.0 * d.clone()) == (next.1.deconstruct() > prev.1.deconstruct()) {
			(prev.1 * d).saturating_add(delta_y)
		// Otherwise result is negative
		} else {
			(prev.1 * d).saturating_sub(delta_y)
		}
	}
}

// Compute value * p / q.
// This is guaranteed not to overflow on whatever values nor lose precision.
// `q` must be superior to zero.
fn multiply_by_rational_saturating<N>(value: N, p: u32, q: u32) -> N
where
	N: AtLeast32BitUnsigned + Clone,
{
	let q = q.max(1);

	// Mul can saturate if p > q
	let result_divisor_part = (value.clone() / q.into()).saturating_mul(p.into());

	let result_remainder_part = {
		let rem = value % q.into();

		// Fits into u32 because q is u32 and remainder < q
		let rem_u32 = rem.saturated_into::<u32>();

		// Multiplication fits into u64 as both term are u32
		let rem_part = rem_u32 as u64 * p as u64 / q as u64;

		// Can saturate if p > q
		rem_part.saturated_into::<N>()
	};

	// Can saturate if p > q
	result_divisor_part.saturating_add(result_remainder_part)
}

#[test]
fn test_multiply_by_rational_saturating() {
	let div = 100u32;
	for value in 0..=div {
		for p in 0..=div {
			for q in 1..=div {
				let value: u64 =
					(value as u128 * u64::MAX as u128 / div as u128).try_into().unwrap();
				let p = (p as u64 * u32::MAX as u64 / div as u64).try_into().unwrap();
				let q = (q as u64 * u32::MAX as u64 / div as u64).try_into().unwrap();

				assert_eq!(
					multiply_by_rational_saturating(value, p, q),
					(value as u128 * p as u128 / q as u128).try_into().unwrap_or(u64::MAX)
				);
			}
		}
	}
}

#[test]
fn test_calculate_for_fraction_times_denominator() {
	let curve = PiecewiseLinear {
		points: &[
			(Perbill::from_parts(0_000_000_000), Perbill::from_parts(0_500_000_000)),
			(Perbill::from_parts(0_500_000_000), Perbill::from_parts(1_000_000_000)),
			(Perbill::from_parts(1_000_000_000), Perbill::from_parts(0_000_000_000)),
		],
		maximum: Perbill::from_parts(1_000_000_000),
	};

	pub fn formal_calculate_for_fraction_times_denominator(n: u64, d: u64) -> u64 {
		if n <= Perbill::from_parts(0_500_000_000) * d {
			n + d / 2
		} else {
			(d as u128 * 2 - n as u128 * 2).try_into().unwrap()
		}
	}

	let div = 100u32;
	for d in 0..=div {
		for n in 0..=d {
			let d: u64 = (d as u128 * u64::MAX as u128 / div as u128).try_into().unwrap();
			let n: u64 = (n as u128 * u64::MAX as u128 / div as u128).try_into().unwrap();

			let res = curve.calculate_for_fraction_times_denominator(n, d);
			let expected = formal_calculate_for_fraction_times_denominator(n, d);

			assert!(abs_sub(res, expected) <= 1);
		}
	}
}