sp_runtime/generic/
era.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
// This file is part of Substrate.

// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Generic implementation of an unchecked (pre-verification) extrinsic.

#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};

use crate::codec::{Decode, Encode, Error, Input, Output};

/// Era period
pub type Period = u64;

/// Era phase
pub type Phase = u64;

/// An era to describe the longevity of a transaction.
#[derive(PartialEq, Eq, Clone, Copy, sp_core::RuntimeDebug)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum Era {
	/// The transaction is valid forever. The genesis hash must be present in the signed content.
	Immortal,

	/// Period and phase are encoded:
	/// - The period of validity from the block hash found in the signing material.
	/// - The phase in the period that this transaction's lifetime begins (and, importantly,
	/// implies which block hash is included in the signature material). If the `period` is
	/// greater than 1 << 12, then it will be a factor of the times greater than 1<<12 that
	/// `period` is.
	///
	/// When used on `FRAME`-based runtimes, `period` cannot exceed `BlockHashCount` parameter
	/// of `system` module.
	Mortal(Period, Phase),
}

// E.g. with period == 4:
// 0         10        20        30        40
// 0123456789012345678901234567890123456789012
//              |...|
//    authored -/   \- expiry
// phase = 1
// n = Q(current - phase, period) + phase
impl Era {
	/// Create a new era based on a period (which should be a power of two between 4 and 65536
	/// inclusive) and a block number on which it should start (or, for long periods, be shortly
	/// after the start).
	///
	/// If using `Era` in the context of `FRAME` runtime, make sure that `period`
	/// does not exceed `BlockHashCount` parameter passed to `system` module, since that
	/// prunes old blocks and renders transactions immediately invalid.
	pub fn mortal(period: u64, current: u64) -> Self {
		let period = period.checked_next_power_of_two().unwrap_or(1 << 16).clamp(4, 1 << 16);
		let phase = current % period;
		let quantize_factor = (period >> 12).max(1);
		let quantized_phase = phase / quantize_factor * quantize_factor;

		Self::Mortal(period, quantized_phase)
	}

	/// Create an "immortal" transaction.
	pub fn immortal() -> Self {
		Self::Immortal
	}

	/// `true` if this is an immortal transaction.
	pub fn is_immortal(&self) -> bool {
		matches!(self, Self::Immortal)
	}

	/// Get the block number of the start of the era whose properties this object
	/// describes that `current` belongs to.
	pub fn birth(self, current: u64) -> u64 {
		match self {
			Self::Immortal => 0,
			Self::Mortal(period, phase) => (current.max(phase) - phase) / period * period + phase,
		}
	}

	/// Get the block number of the first block at which the era has ended.
	pub fn death(self, current: u64) -> u64 {
		match self {
			Self::Immortal => u64::MAX,
			Self::Mortal(period, _) => self.birth(current) + period,
		}
	}
}

impl Encode for Era {
	fn encode_to<T: Output + ?Sized>(&self, output: &mut T) {
		match self {
			Self::Immortal => output.push_byte(0),
			Self::Mortal(period, phase) => {
				let quantize_factor = (*period as u64 >> 12).max(1);
				let encoded = (period.trailing_zeros() - 1).clamp(1, 15) as u16 |
					((phase / quantize_factor) << 4) as u16;
				encoded.encode_to(output);
			},
		}
	}
}

impl codec::EncodeLike for Era {}

impl Decode for Era {
	fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
		let first = input.read_byte()?;
		if first == 0 {
			Ok(Self::Immortal)
		} else {
			let encoded = first as u64 + ((input.read_byte()? as u64) << 8);
			let period = 2 << (encoded % (1 << 4));
			let quantize_factor = (period >> 12).max(1);
			let phase = (encoded >> 4) * quantize_factor;
			if period >= 4 && phase < period {
				Ok(Self::Mortal(period, phase))
			} else {
				Err("Invalid period and phase".into())
			}
		}
	}
}

/// Add Mortal{N}(u8) variants with the given indices, to describe custom encoding.
macro_rules! mortal_variants {
    ($variants:ident, $($index:literal),* ) => {
		$variants
		$(
			.variant(concat!(stringify!(Mortal), stringify!($index)), |v| v
				.index($index)
				.fields(scale_info::build::Fields::unnamed().field(|f| f.ty::<u8>()))
			)
		)*
    }
}

impl scale_info::TypeInfo for Era {
	type Identity = Self;

	fn type_info() -> scale_info::Type {
		let variants = scale_info::build::Variants::new().variant("Immortal", |v| v.index(0));

		// this is necessary since the size of the encoded Mortal variant is `u16`, conditional on
		// the value of the first byte being > 0.
		let variants = mortal_variants!(
			variants, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
			22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
			44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65,
			66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,
			88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107,
			108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124,
			125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141,
			142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
			159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175,
			176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192,
			193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209,
			210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226,
			227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243,
			244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255
		);

		scale_info::Type::builder()
			.path(scale_info::Path::new("Era", module_path!()))
			.variant(variants)
	}
}

#[cfg(test)]
mod tests {
	use super::*;

	#[test]
	fn immortal_works() {
		let e = Era::immortal();
		assert_eq!(e.birth(0), 0);
		assert_eq!(e.death(0), u64::MAX);
		assert_eq!(e.birth(1), 0);
		assert_eq!(e.death(1), u64::MAX);
		assert_eq!(e.birth(u64::MAX), 0);
		assert_eq!(e.death(u64::MAX), u64::MAX);
		assert!(e.is_immortal());

		assert_eq!(e.encode(), vec![0u8]);
		assert_eq!(e, Era::decode(&mut &[0u8][..]).unwrap());
	}

	#[test]
	fn mortal_codec_works() {
		let e = Era::mortal(64, 42);
		assert!(!e.is_immortal());

		let expected = vec![5 + 42 % 16 * 16, 42 / 16];
		assert_eq!(e.encode(), expected);
		assert_eq!(e, Era::decode(&mut &expected[..]).unwrap());
	}

	#[test]
	fn long_period_mortal_codec_works() {
		let e = Era::mortal(32768, 20000);

		let expected = vec![(14 + 2500 % 16 * 16) as u8, (2500 / 16) as u8];
		assert_eq!(e.encode(), expected);
		assert_eq!(e, Era::decode(&mut &expected[..]).unwrap());
	}

	#[test]
	fn era_initialization_works() {
		assert_eq!(Era::mortal(64, 42), Era::Mortal(64, 42));
		assert_eq!(Era::mortal(32768, 20000), Era::Mortal(32768, 20000));
		assert_eq!(Era::mortal(200, 513), Era::Mortal(256, 1));
		assert_eq!(Era::mortal(2, 1), Era::Mortal(4, 1));
		assert_eq!(Era::mortal(4, 5), Era::Mortal(4, 1));
	}

	#[test]
	fn quantized_clamped_era_initialization_works() {
		// clamp 1000000 to 65536, quantize 1000001 % 65536 to the nearest 4
		assert_eq!(Era::mortal(1000000, 1000001), Era::Mortal(65536, 1000001 % 65536 / 4 * 4));
	}

	#[test]
	fn mortal_birth_death_works() {
		let e = Era::mortal(4, 6);
		for i in 6..10 {
			assert_eq!(e.birth(i), 6);
			assert_eq!(e.death(i), 10);
		}

		// wrong because it's outside of the (current...current + period) range
		assert_ne!(e.birth(10), 6);
		assert_ne!(e.birth(5), 6);
	}

	#[test]
	fn current_less_than_phase() {
		// should not panic
		Era::mortal(4, 3).birth(1);
	}
}