1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
// This file is part of Substrate.

// Copyright (C) 2021 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Trie recorder
//!
//! Provides an implementation of the [`TrieRecorder`](trie_db::TrieRecorder) trait. It can be used
//! to record storage accesses to the state to generate a [`StorageProof`].

use crate::{NodeCodec, StorageProof};
use codec::Encode;
use hash_db::Hasher;
use parking_lot::Mutex;
use std::{
	collections::HashMap,
	marker::PhantomData,
	mem,
	ops::DerefMut,
	sync::{
		atomic::{AtomicUsize, Ordering},
		Arc,
	},
};
use trie_db::{RecordedForKey, TrieAccess};

const LOG_TARGET: &str = "trie-recorder";

/// The internals of [`Recorder`].
struct RecorderInner<H> {
	/// The keys for that we have recorded the trie nodes and if we have recorded up to the value.
	recorded_keys: HashMap<H, HashMap<Vec<u8>, RecordedForKey>>,
	/// The encoded nodes we accessed while recording.
	accessed_nodes: HashMap<H, Vec<u8>>,
}

impl<H> Default for RecorderInner<H> {
	fn default() -> Self {
		Self { recorded_keys: Default::default(), accessed_nodes: Default::default() }
	}
}

/// The trie recorder.
///
/// It can be used to record accesses to the trie and then to convert them into a [`StorageProof`].
pub struct Recorder<H: Hasher> {
	inner: Arc<Mutex<RecorderInner<H::Out>>>,
	/// The estimated encoded size of the storage proof this recorder will produce.
	///
	/// We store this in an atomic to be able to fetch the value while the `inner` is may locked.
	encoded_size_estimation: Arc<AtomicUsize>,
}

impl<H: Hasher> Default for Recorder<H> {
	fn default() -> Self {
		Self { inner: Default::default(), encoded_size_estimation: Arc::new(0.into()) }
	}
}

impl<H: Hasher> Clone for Recorder<H> {
	fn clone(&self) -> Self {
		Self {
			inner: self.inner.clone(),
			encoded_size_estimation: self.encoded_size_estimation.clone(),
		}
	}
}

impl<H: Hasher> Recorder<H> {
	/// Returns the recorder as [`TrieRecorder`](trie_db::TrieRecorder) compatible type.
	///
	/// - `storage_root`: The storage root of the trie for which accesses are recorded. This is
	///   important when recording access to different tries at once (like top and child tries).
	pub fn as_trie_recorder(
		&self,
		storage_root: H::Out,
	) -> impl trie_db::TrieRecorder<H::Out> + '_ {
		TrieRecorder::<H, _> {
			inner: self.inner.lock(),
			storage_root,
			encoded_size_estimation: self.encoded_size_estimation.clone(),
			_phantom: PhantomData,
		}
	}

	/// Drain the recording into a [`StorageProof`].
	///
	/// While a recorder can be cloned, all share the same internal state. After calling this
	/// function, all other instances will have their internal state reset as well.
	///
	/// If you don't want to drain the recorded state, use [`Self::to_storage_proof`].
	///
	/// Returns the [`StorageProof`].
	pub fn drain_storage_proof(self) -> StorageProof {
		let mut recorder = mem::take(&mut *self.inner.lock());
		StorageProof::new(recorder.accessed_nodes.drain().map(|(_, v)| v))
	}

	/// Convert the recording to a [`StorageProof`].
	///
	/// In contrast to [`Self::drain_storage_proof`] this doesn't consumes and doesn't clears the
	/// recordings.
	///
	/// Returns the [`StorageProof`].
	pub fn to_storage_proof(&self) -> StorageProof {
		let recorder = self.inner.lock();
		StorageProof::new(recorder.accessed_nodes.values().cloned())
	}

	/// Returns the estimated encoded size of the proof.
	///
	/// The estimation is based on all the nodes that were accessed until now while
	/// accessing the trie.
	pub fn estimate_encoded_size(&self) -> usize {
		self.encoded_size_estimation.load(Ordering::Relaxed)
	}

	/// Reset the state.
	///
	/// This discards all recorded data.
	pub fn reset(&self) {
		mem::take(&mut *self.inner.lock());
		self.encoded_size_estimation.store(0, Ordering::Relaxed);
	}
}

/// The [`TrieRecorder`](trie_db::TrieRecorder) implementation.
struct TrieRecorder<H: Hasher, I> {
	inner: I,
	storage_root: H::Out,
	encoded_size_estimation: Arc<AtomicUsize>,
	_phantom: PhantomData<H>,
}

impl<H: Hasher, I: DerefMut<Target = RecorderInner<H::Out>>> trie_db::TrieRecorder<H::Out>
	for TrieRecorder<H, I>
{
	fn record<'b>(&mut self, access: TrieAccess<'b, H::Out>) {
		let mut encoded_size_update = 0;

		match access {
			TrieAccess::NodeOwned { hash, node_owned } => {
				tracing::trace!(
					target: LOG_TARGET,
					hash = ?hash,
					"Recording node",
				);

				self.inner.accessed_nodes.entry(hash).or_insert_with(|| {
					let node = node_owned.to_encoded::<NodeCodec<H>>();

					encoded_size_update += node.encoded_size();

					node
				});
			},
			TrieAccess::EncodedNode { hash, encoded_node } => {
				tracing::trace!(
					target: LOG_TARGET,
					hash = ?hash,
					"Recording node",
				);

				self.inner.accessed_nodes.entry(hash).or_insert_with(|| {
					let node = encoded_node.into_owned();

					encoded_size_update += node.encoded_size();

					node
				});
			},
			TrieAccess::Value { hash, value, full_key } => {
				tracing::trace!(
					target: LOG_TARGET,
					hash = ?hash,
					key = ?sp_core::hexdisplay::HexDisplay::from(&full_key),
					"Recording value",
				);

				self.inner.accessed_nodes.entry(hash).or_insert_with(|| {
					let value = value.into_owned();

					encoded_size_update += value.encoded_size();

					value
				});

				self.inner
					.recorded_keys
					.entry(self.storage_root)
					.or_default()
					.entry(full_key.to_vec())
					.and_modify(|e| *e = RecordedForKey::Value)
					.or_insert(RecordedForKey::Value);
			},
			TrieAccess::Hash { full_key } => {
				tracing::trace!(
					target: LOG_TARGET,
					key = ?sp_core::hexdisplay::HexDisplay::from(&full_key),
					"Recorded hash access for key",
				);

				// We don't need to update the `encoded_size_update` as the hash was already
				// accounted for by the recorded node that holds the hash.
				self.inner
					.recorded_keys
					.entry(self.storage_root)
					.or_default()
					.entry(full_key.to_vec())
					.or_insert(RecordedForKey::Hash);
			},
			TrieAccess::NonExisting { full_key } => {
				tracing::trace!(
					target: LOG_TARGET,
					key = ?sp_core::hexdisplay::HexDisplay::from(&full_key),
					"Recorded non-existing value access for key",
				);

				// Non-existing access means we recorded all trie nodes up to the value.
				// Not the actual value, as it doesn't exist, but all trie nodes to know
				// that the value doesn't exist in the trie.
				self.inner
					.recorded_keys
					.entry(self.storage_root)
					.or_default()
					.entry(full_key.to_vec())
					.and_modify(|e| *e = RecordedForKey::Value)
					.or_insert(RecordedForKey::Value);
			},
		};

		self.encoded_size_estimation.fetch_add(encoded_size_update, Ordering::Relaxed);
	}

	fn trie_nodes_recorded_for_key(&self, key: &[u8]) -> RecordedForKey {
		self.inner
			.recorded_keys
			.get(&self.storage_root)
			.and_then(|k| k.get(key).copied())
			.unwrap_or(RecordedForKey::None)
	}
}

#[cfg(test)]
mod tests {
	use trie_db::{Trie, TrieDBBuilder, TrieDBMutBuilder, TrieHash, TrieMut};

	type MemoryDB = crate::MemoryDB<sp_core::Blake2Hasher>;
	type Layout = crate::LayoutV1<sp_core::Blake2Hasher>;
	type Recorder = super::Recorder<sp_core::Blake2Hasher>;

	const TEST_DATA: &[(&[u8], &[u8])] =
		&[(b"key1", b"val1"), (b"key2", b"val2"), (b"key3", b"val3"), (b"key4", b"val4")];

	fn create_trie() -> (MemoryDB, TrieHash<Layout>) {
		let mut db = MemoryDB::default();
		let mut root = Default::default();

		{
			let mut trie = TrieDBMutBuilder::<Layout>::new(&mut db, &mut root).build();
			for (k, v) in TEST_DATA {
				trie.insert(k, v).expect("Inserts data");
			}
		}

		(db, root)
	}

	#[test]
	fn recorder_works() {
		let (db, root) = create_trie();

		let recorder = Recorder::default();

		{
			let mut trie_recorder = recorder.as_trie_recorder(root);
			let trie = TrieDBBuilder::<Layout>::new(&db, &root)
				.with_recorder(&mut trie_recorder)
				.build();
			assert_eq!(TEST_DATA[0].1.to_vec(), trie.get(TEST_DATA[0].0).unwrap().unwrap());
		}

		let storage_proof = recorder.drain_storage_proof();
		let memory_db: MemoryDB = storage_proof.into_memory_db();

		// Check that we recorded the required data
		let trie = TrieDBBuilder::<Layout>::new(&memory_db, &root).build();
		assert_eq!(TEST_DATA[0].1.to_vec(), trie.get(TEST_DATA[0].0).unwrap().unwrap());
	}
}