1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
// This file is part of Substrate.

// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

///! Provides the [`SharedNodeCache`], the [`SharedValueCache`] and the [`SharedTrieCache`]
///! that combines both caches and is exported to the outside.
use super::{CacheSize, NodeCached};
use hash_db::Hasher;
use hashbrown::{hash_set::Entry as SetEntry, HashSet};
use nohash_hasher::BuildNoHashHasher;
use parking_lot::{Mutex, RwLock, RwLockWriteGuard};
use schnellru::LruMap;
use std::{
	hash::{BuildHasher, Hasher as _},
	sync::Arc,
};
use trie_db::{node::NodeOwned, CachedValue};

lazy_static::lazy_static! {
	static ref RANDOM_STATE: ahash::RandomState = {
		use rand::Rng;
		let mut rng = rand::thread_rng();
		ahash::RandomState::generate_with(rng.gen(), rng.gen(), rng.gen(), rng.gen())
	};
}

pub struct SharedNodeCacheLimiter {
	/// The maximum size (in bytes) the cache can hold inline.
	///
	/// This space is always consumed whether there are any items in the map or not.
	max_inline_size: usize,

	/// The maximum size (in bytes) the cache can hold on the heap.
	max_heap_size: usize,

	/// The current size (in bytes) of data allocated by this cache on the heap.
	///
	/// This doesn't include the size of the map itself.
	heap_size: usize,

	/// A counter with the number of elements that got evicted from the cache.
	///
	/// Reset to zero before every update.
	items_evicted: usize,

	/// The maximum number of elements that we allow to be evicted.
	///
	/// Reset on every update.
	max_items_evicted: usize,
}

impl<H> schnellru::Limiter<H, NodeOwned<H>> for SharedNodeCacheLimiter
where
	H: AsRef<[u8]>,
{
	type KeyToInsert<'a> = H;
	type LinkType = u32;

	#[inline]
	fn is_over_the_limit(&self, _length: usize) -> bool {
		// Once we hit the limit of max items evicted this will return `false` and prevent
		// any further evictions, but this is fine because the outer loop which inserts
		// items into this cache will just detect this and stop inserting new items.
		self.items_evicted <= self.max_items_evicted && self.heap_size > self.max_heap_size
	}

	#[inline]
	fn on_insert(
		&mut self,
		_length: usize,
		key: Self::KeyToInsert<'_>,
		node: NodeOwned<H>,
	) -> Option<(H, NodeOwned<H>)> {
		let new_item_heap_size = node.size_in_bytes() - std::mem::size_of::<NodeOwned<H>>();
		if new_item_heap_size > self.max_heap_size {
			// Item's too big to add even if the cache's empty; bail.
			return None
		}

		self.heap_size += new_item_heap_size;
		Some((key, node))
	}

	#[inline]
	fn on_replace(
		&mut self,
		_length: usize,
		_old_key: &mut H,
		_new_key: H,
		old_node: &mut NodeOwned<H>,
		new_node: &mut NodeOwned<H>,
	) -> bool {
		debug_assert_eq!(_old_key.as_ref(), _new_key.as_ref());

		let new_item_heap_size = new_node.size_in_bytes() - std::mem::size_of::<NodeOwned<H>>();
		if new_item_heap_size > self.max_heap_size {
			// Item's too big to add even if the cache's empty; bail.
			return false
		}

		let old_item_heap_size = old_node.size_in_bytes() - std::mem::size_of::<NodeOwned<H>>();
		self.heap_size = self.heap_size - old_item_heap_size + new_item_heap_size;
		true
	}

	#[inline]
	fn on_cleared(&mut self) {
		self.heap_size = 0;
	}

	#[inline]
	fn on_removed(&mut self, _: &mut H, node: &mut NodeOwned<H>) {
		self.heap_size -= node.size_in_bytes() - std::mem::size_of::<NodeOwned<H>>();
		self.items_evicted += 1;
	}

	#[inline]
	fn on_grow(&mut self, new_memory_usage: usize) -> bool {
		new_memory_usage <= self.max_inline_size
	}
}

pub struct SharedValueCacheLimiter {
	/// The maximum size (in bytes) the cache can hold inline.
	///
	/// This space is always consumed whether there are any items in the map or not.
	max_inline_size: usize,

	/// The maximum size (in bytes) the cache can hold on the heap.
	max_heap_size: usize,

	/// The current size (in bytes) of data allocated by this cache on the heap.
	///
	/// This doesn't include the size of the map itself.
	heap_size: usize,

	/// A set with all of the keys deduplicated to save on memory.
	known_storage_keys: HashSet<Arc<[u8]>>,

	/// A counter with the number of elements that got evicted from the cache.
	///
	/// Reset to zero before every update.
	items_evicted: usize,

	/// The maximum number of elements that we allow to be evicted.
	///
	/// Reset on every update.
	max_items_evicted: usize,
}

impl<H> schnellru::Limiter<ValueCacheKey<H>, CachedValue<H>> for SharedValueCacheLimiter
where
	H: AsRef<[u8]>,
{
	type KeyToInsert<'a> = ValueCacheKey<H>;
	type LinkType = u32;

	#[inline]
	fn is_over_the_limit(&self, _length: usize) -> bool {
		self.items_evicted <= self.max_items_evicted && self.heap_size > self.max_heap_size
	}

	#[inline]
	fn on_insert(
		&mut self,
		_length: usize,
		mut key: Self::KeyToInsert<'_>,
		value: CachedValue<H>,
	) -> Option<(ValueCacheKey<H>, CachedValue<H>)> {
		match self.known_storage_keys.entry(key.storage_key.clone()) {
			SetEntry::Vacant(entry) => {
				let new_item_heap_size = key.storage_key.len();
				if new_item_heap_size > self.max_heap_size {
					// Item's too big to add even if the cache's empty; bail.
					return None
				}

				self.heap_size += new_item_heap_size;
				entry.insert();
			},
			SetEntry::Occupied(entry) => {
				key.storage_key = entry.get().clone();
			},
		}

		Some((key, value))
	}

	#[inline]
	fn on_replace(
		&mut self,
		_length: usize,
		_old_key: &mut ValueCacheKey<H>,
		_new_key: ValueCacheKey<H>,
		_old_value: &mut CachedValue<H>,
		_new_value: &mut CachedValue<H>,
	) -> bool {
		debug_assert_eq!(_new_key.storage_key, _old_key.storage_key);
		true
	}

	#[inline]
	fn on_removed(&mut self, key: &mut ValueCacheKey<H>, _: &mut CachedValue<H>) {
		if Arc::strong_count(&key.storage_key) == 2 {
			// There are only two instances of this key:
			//   1) one memoized in `known_storage_keys`,
			//   2) one inside the map.
			//
			// This means that after this remove goes through the `Arc` will be deallocated.
			self.heap_size -= key.storage_key.len();
			self.known_storage_keys.remove(&key.storage_key);
		}
		self.items_evicted += 1;
	}

	#[inline]
	fn on_cleared(&mut self) {
		self.heap_size = 0;
		self.known_storage_keys.clear();
	}

	#[inline]
	fn on_grow(&mut self, new_memory_usage: usize) -> bool {
		new_memory_usage <= self.max_inline_size
	}
}

type SharedNodeCacheMap<H> =
	LruMap<H, NodeOwned<H>, SharedNodeCacheLimiter, schnellru::RandomState>;

/// The shared node cache.
///
/// Internally this stores all cached nodes in a [`LruMap`]. It ensures that when updating the
/// cache, that the cache stays within its allowed bounds.
pub(super) struct SharedNodeCache<H>
where
	H: AsRef<[u8]>,
{
	/// The cached nodes, ordered by least recently used.
	pub(super) lru: SharedNodeCacheMap<H>,
}

impl<H: AsRef<[u8]> + Eq + std::hash::Hash> SharedNodeCache<H> {
	/// Create a new instance.
	fn new(max_inline_size: usize, max_heap_size: usize) -> Self {
		Self {
			lru: LruMap::new(SharedNodeCacheLimiter {
				max_inline_size,
				max_heap_size,
				heap_size: 0,
				items_evicted: 0,
				max_items_evicted: 0, // Will be set during `update`.
			}),
		}
	}

	/// Update the cache with the `list` of nodes which were either newly added or accessed.
	pub fn update(&mut self, list: impl IntoIterator<Item = (H, NodeCached<H>)>) {
		let mut access_count = 0;
		let mut add_count = 0;

		self.lru.limiter_mut().items_evicted = 0;
		self.lru.limiter_mut().max_items_evicted =
			self.lru.len() * 100 / super::SHARED_NODE_CACHE_MAX_REPLACE_PERCENT;

		for (key, cached_node) in list {
			if cached_node.is_from_shared_cache {
				if self.lru.get(&key).is_some() {
					access_count += 1;

					if access_count >= super::SHARED_NODE_CACHE_MAX_PROMOTED_KEYS {
						// Stop when we've promoted a large enough number of items.
						break
					}

					continue
				}
			}

			self.lru.insert(key, cached_node.node);
			add_count += 1;

			if self.lru.limiter().items_evicted > self.lru.limiter().max_items_evicted {
				// Stop when we've evicted a big enough chunk of the shared cache.
				break
			}
		}

		tracing::debug!(
			target: super::LOG_TARGET,
			"Updated the shared node cache: {} accesses, {} new values, {}/{} evicted (length = {}, inline size={}/{}, heap size={}/{})",
			access_count,
			add_count,
			self.lru.limiter().items_evicted,
			self.lru.limiter().max_items_evicted,
			self.lru.len(),
			self.lru.memory_usage(),
			self.lru.limiter().max_inline_size,
			self.lru.limiter().heap_size,
			self.lru.limiter().max_heap_size,
		);
	}

	/// Reset the cache.
	fn reset(&mut self) {
		self.lru.clear();
	}
}

/// The hash of [`ValueCacheKey`].
#[derive(PartialEq, Eq, Clone, Copy, Hash)]
#[repr(transparent)]
pub struct ValueCacheKeyHash(u64);

impl ValueCacheKeyHash {
	pub fn raw(self) -> u64 {
		self.0
	}
}

impl ValueCacheKeyHash {
	pub fn from_hasher_and_storage_key(
		mut hasher: impl std::hash::Hasher,
		storage_key: &[u8],
	) -> Self {
		hasher.write(storage_key);

		Self(hasher.finish())
	}
}

impl nohash_hasher::IsEnabled for ValueCacheKeyHash {}

/// The key type that is being used to address a [`CachedValue`].
#[derive(Eq)]
pub(super) struct ValueCacheKey<H> {
	/// The storage root of the trie this key belongs to.
	pub storage_root: H,
	/// The key to access the value in the storage.
	pub storage_key: Arc<[u8]>,
	/// The hash that identifies this instance of `storage_root` and `storage_key`.
	pub hash: ValueCacheKeyHash,
}

/// A borrowed variant of [`ValueCacheKey`].
pub(super) struct ValueCacheRef<'a, H> {
	/// The storage root of the trie this key belongs to.
	pub storage_root: H,
	/// The key to access the value in the storage.
	pub storage_key: &'a [u8],
	/// The hash that identifies this instance of `storage_root` and `storage_key`.
	pub hash: ValueCacheKeyHash,
}

impl<'a, H> ValueCacheRef<'a, H> {
	pub fn new(storage_key: &'a [u8], storage_root: H) -> Self
	where
		H: AsRef<[u8]>,
	{
		let hash = ValueCacheKey::<H>::hash_data(&storage_key, &storage_root);
		Self { storage_root, storage_key, hash }
	}
}

impl<'a, H> From<ValueCacheRef<'a, H>> for ValueCacheKey<H> {
	fn from(value: ValueCacheRef<'a, H>) -> Self {
		ValueCacheKey {
			storage_root: value.storage_root,
			storage_key: value.storage_key.into(),
			hash: value.hash,
		}
	}
}

impl<'a, H: std::hash::Hash> std::hash::Hash for ValueCacheRef<'a, H> {
	fn hash<Hasher: std::hash::Hasher>(&self, state: &mut Hasher) {
		self.hash.hash(state)
	}
}

impl<'a, H> PartialEq<ValueCacheKey<H>> for ValueCacheRef<'a, H>
where
	H: AsRef<[u8]>,
{
	fn eq(&self, rhs: &ValueCacheKey<H>) -> bool {
		self.storage_root.as_ref() == rhs.storage_root.as_ref() &&
			self.storage_key == &*rhs.storage_key
	}
}

impl<H> ValueCacheKey<H> {
	/// Constructs [`Self::Value`].
	#[cfg(test)] // Only used in tests.
	pub fn new_value(storage_key: impl Into<Arc<[u8]>>, storage_root: H) -> Self
	where
		H: AsRef<[u8]>,
	{
		let storage_key = storage_key.into();
		let hash = Self::hash_data(&storage_key, &storage_root);
		Self { storage_root, storage_key, hash }
	}

	/// Returns a hasher prepared to build the final hash to identify [`Self`].
	///
	/// See [`Self::hash_data`] for building the hash directly.
	pub fn hash_partial_data(storage_root: &H) -> impl std::hash::Hasher + Clone
	where
		H: AsRef<[u8]>,
	{
		let mut hasher = RANDOM_STATE.build_hasher();
		hasher.write(storage_root.as_ref());
		hasher
	}

	/// Hash the `key` and `storage_root` that identify [`Self`].
	///
	/// Returns a `u64` which represents the unique hash for the given inputs.
	pub fn hash_data(key: &[u8], storage_root: &H) -> ValueCacheKeyHash
	where
		H: AsRef<[u8]>,
	{
		let hasher = Self::hash_partial_data(storage_root);

		ValueCacheKeyHash::from_hasher_and_storage_key(hasher, key)
	}

	/// Checks whether the key is equal to the given `storage_key` and `storage_root`.
	#[inline]
	pub fn is_eq(&self, storage_root: &H, storage_key: &[u8]) -> bool
	where
		H: PartialEq,
	{
		self.storage_root == *storage_root && *self.storage_key == *storage_key
	}
}

// Implement manually so that only `hash` is accessed.
impl<H: std::hash::Hash> std::hash::Hash for ValueCacheKey<H> {
	fn hash<Hasher: std::hash::Hasher>(&self, state: &mut Hasher) {
		self.hash.hash(state)
	}
}

impl<H> nohash_hasher::IsEnabled for ValueCacheKey<H> {}

// Implement manually to not have to compare `hash`.
impl<H: PartialEq> PartialEq for ValueCacheKey<H> {
	#[inline]
	fn eq(&self, other: &Self) -> bool {
		self.is_eq(&other.storage_root, &other.storage_key)
	}
}

type SharedValueCacheMap<H> = schnellru::LruMap<
	ValueCacheKey<H>,
	CachedValue<H>,
	SharedValueCacheLimiter,
	BuildNoHashHasher<ValueCacheKey<H>>,
>;

/// The shared value cache.
///
/// The cache ensures that it stays in the configured size bounds.
pub(super) struct SharedValueCache<H>
where
	H: AsRef<[u8]>,
{
	/// The cached nodes, ordered by least recently used.
	pub(super) lru: SharedValueCacheMap<H>,
}

impl<H: Eq + std::hash::Hash + Clone + Copy + AsRef<[u8]>> SharedValueCache<H> {
	/// Create a new instance.
	fn new(max_inline_size: usize, max_heap_size: usize) -> Self {
		Self {
			lru: schnellru::LruMap::with_hasher(
				SharedValueCacheLimiter {
					max_inline_size,
					max_heap_size,
					heap_size: 0,
					known_storage_keys: Default::default(),
					items_evicted: 0,
					max_items_evicted: 0, // Will be set during `update`.
				},
				Default::default(),
			),
		}
	}

	/// Update the cache with the `added` values and the `accessed` values.
	///
	/// The `added` values are the ones that have been collected by doing operations on the trie and
	/// now should be stored in the shared cache. The `accessed` values are only referenced by the
	/// [`ValueCacheKeyHash`] and represent the values that were retrieved from this shared cache.
	/// These `accessed` values are being put to the front of the internal [`LruMap`] like the
	/// `added` ones.
	pub fn update(
		&mut self,
		added: impl IntoIterator<Item = (ValueCacheKey<H>, CachedValue<H>)>,
		accessed: impl IntoIterator<Item = ValueCacheKeyHash>,
	) {
		let mut access_count = 0;
		let mut add_count = 0;

		for hash in accessed {
			// Access every node in the map to put it to the front.
			//
			// Since we are only comparing the hashes here it may lead us to promoting the wrong
			// values as the most recently accessed ones. However this is harmless as the only
			// consequence is that we may accidentally prune a recently used value too early.
			self.lru.get_by_hash(hash.raw(), |existing_key, _| existing_key.hash == hash);
			access_count += 1;
		}

		// Insert all of the new items which were *not* found in the shared cache.
		//
		// Limit how many items we'll replace in the shared cache in one go so that
		// we don't evict the whole shared cache nor we keep spinning our wheels
		// evicting items which we've added ourselves in previous iterations of this loop.

		self.lru.limiter_mut().items_evicted = 0;
		self.lru.limiter_mut().max_items_evicted =
			self.lru.len() * 100 / super::SHARED_VALUE_CACHE_MAX_REPLACE_PERCENT;

		for (key, value) in added {
			self.lru.insert(key, value);
			add_count += 1;

			if self.lru.limiter().items_evicted > self.lru.limiter().max_items_evicted {
				// Stop when we've evicted a big enough chunk of the shared cache.
				break
			}
		}

		tracing::debug!(
			target: super::LOG_TARGET,
			"Updated the shared value cache: {} accesses, {} new values, {}/{} evicted (length = {}, known_storage_keys = {}, inline size={}/{}, heap size={}/{})",
			access_count,
			add_count,
			self.lru.limiter().items_evicted,
			self.lru.limiter().max_items_evicted,
			self.lru.len(),
			self.lru.limiter().known_storage_keys.len(),
			self.lru.memory_usage(),
			self.lru.limiter().max_inline_size,
			self.lru.limiter().heap_size,
			self.lru.limiter().max_heap_size
		);
	}

	/// Reset the cache.
	fn reset(&mut self) {
		self.lru.clear();
	}
}

/// The inner of [`SharedTrieCache`].
pub(super) struct SharedTrieCacheInner<H: Hasher> {
	node_cache: SharedNodeCache<H::Out>,
	value_cache: SharedValueCache<H::Out>,
}

impl<H: Hasher> SharedTrieCacheInner<H> {
	/// Returns a reference to the [`SharedValueCache`].
	#[cfg(test)]
	pub(super) fn value_cache(&self) -> &SharedValueCache<H::Out> {
		&self.value_cache
	}

	/// Returns a mutable reference to the [`SharedValueCache`].
	pub(super) fn value_cache_mut(&mut self) -> &mut SharedValueCache<H::Out> {
		&mut self.value_cache
	}

	/// Returns a reference to the [`SharedNodeCache`].
	#[cfg(test)]
	pub(super) fn node_cache(&self) -> &SharedNodeCache<H::Out> {
		&self.node_cache
	}

	/// Returns a mutable reference to the [`SharedNodeCache`].
	pub(super) fn node_cache_mut(&mut self) -> &mut SharedNodeCache<H::Out> {
		&mut self.node_cache
	}
}

/// The shared trie cache.
///
/// It should be instantiated once per node. It will hold the trie nodes and values of all
/// operations to the state. To not use all available memory it will ensure to stay in the
/// bounds given via the [`CacheSize`] at startup.
///
/// The instance of this object can be shared between multiple threads.
pub struct SharedTrieCache<H: Hasher> {
	inner: Arc<RwLock<SharedTrieCacheInner<H>>>,
}

impl<H: Hasher> Clone for SharedTrieCache<H> {
	fn clone(&self) -> Self {
		Self { inner: self.inner.clone() }
	}
}

impl<H: Hasher> SharedTrieCache<H> {
	/// Create a new [`SharedTrieCache`].
	pub fn new(cache_size: CacheSize) -> Self {
		let total_budget = cache_size.0;

		// Split our memory budget between the two types of caches.
		let value_cache_budget = (total_budget as f32 * 0.20) as usize; // 20% for the value cache
		let node_cache_budget = total_budget - value_cache_budget; // 80% for the node cache

		// Split our memory budget between what we'll be holding inline in the map,
		// and what we'll be holding on the heap.
		let value_cache_inline_budget = (value_cache_budget as f32 * 0.70) as usize;
		let node_cache_inline_budget = (node_cache_budget as f32 * 0.70) as usize;

		// Calculate how much memory the maps will be allowed to hold inline given our budget.
		let value_cache_max_inline_size =
			SharedValueCacheMap::<H::Out>::memory_usage_for_memory_budget(
				value_cache_inline_budget,
			);

		let node_cache_max_inline_size =
			SharedNodeCacheMap::<H::Out>::memory_usage_for_memory_budget(node_cache_inline_budget);

		// And this is how much data we'll at most keep on the heap for each cache.
		let value_cache_max_heap_size = value_cache_budget - value_cache_max_inline_size;
		let node_cache_max_heap_size = node_cache_budget - node_cache_max_inline_size;

		tracing::debug!(
			target: super::LOG_TARGET,
			"Configured a shared trie cache with a budget of ~{} bytes (node_cache_max_inline_size = {}, node_cache_max_heap_size = {}, value_cache_max_inline_size = {}, value_cache_max_heap_size = {})",
			total_budget,
			node_cache_max_inline_size,
			node_cache_max_heap_size,
			value_cache_max_inline_size,
			value_cache_max_heap_size,
		);

		Self {
			inner: Arc::new(RwLock::new(SharedTrieCacheInner {
				node_cache: SharedNodeCache::new(
					node_cache_max_inline_size,
					node_cache_max_heap_size,
				),
				value_cache: SharedValueCache::new(
					value_cache_max_inline_size,
					value_cache_max_heap_size,
				),
			})),
		}
	}

	/// Create a new [`LocalTrieCache`](super::LocalTrieCache) instance from this shared cache.
	pub fn local_cache(&self) -> super::LocalTrieCache<H> {
		super::LocalTrieCache {
			shared: self.clone(),
			node_cache: Default::default(),
			value_cache: Default::default(),
			shared_value_cache_access: Mutex::new(super::ValueAccessSet::with_hasher(
				schnellru::ByLength::new(super::SHARED_VALUE_CACHE_MAX_PROMOTED_KEYS),
				Default::default(),
			)),
			stats: Default::default(),
		}
	}

	/// Get a copy of the node for `key`.
	///
	/// This will temporarily lock the shared cache for reading.
	///
	/// This doesn't change the least recently order in the internal [`LruMap`].
	#[inline]
	pub fn peek_node(&self, key: &H::Out) -> Option<NodeOwned<H::Out>> {
		self.inner.read().node_cache.lru.peek(key).cloned()
	}

	/// Get a copy of the [`CachedValue`] for `key`.
	///
	/// This will temporarily lock the shared cache for reading.
	///
	/// This doesn't reorder any of the elements in the internal [`LruMap`].
	pub fn peek_value_by_hash(
		&self,
		hash: ValueCacheKeyHash,
		storage_root: &H::Out,
		storage_key: &[u8],
	) -> Option<CachedValue<H::Out>> {
		self.inner
			.read()
			.value_cache
			.lru
			.peek_by_hash(hash.0, |existing_key, _| existing_key.is_eq(storage_root, storage_key))
			.cloned()
	}

	/// Returns the used memory size of this cache in bytes.
	pub fn used_memory_size(&self) -> usize {
		let inner = self.inner.read();
		let value_cache_size =
			inner.value_cache.lru.memory_usage() + inner.value_cache.lru.limiter().heap_size;
		let node_cache_size =
			inner.node_cache.lru.memory_usage() + inner.node_cache.lru.limiter().heap_size;

		node_cache_size + value_cache_size
	}

	/// Reset the node cache.
	pub fn reset_node_cache(&self) {
		self.inner.write().node_cache.reset();
	}

	/// Reset the value cache.
	pub fn reset_value_cache(&self) {
		self.inner.write().value_cache.reset();
	}

	/// Reset the entire cache.
	pub fn reset(&self) {
		self.reset_node_cache();
		self.reset_value_cache();
	}

	/// Returns the read locked inner.
	#[cfg(test)]
	pub(super) fn read_lock_inner(
		&self,
	) -> parking_lot::RwLockReadGuard<'_, SharedTrieCacheInner<H>> {
		self.inner.read()
	}

	/// Returns the write locked inner.
	pub(super) fn write_lock_inner(&self) -> Option<RwLockWriteGuard<'_, SharedTrieCacheInner<H>>> {
		// This should never happen, but we *really* don't want to deadlock. So let's have it
		// timeout, just in case. At worst it'll do nothing, and at best it'll avert a catastrophe
		// and notify us that there's a problem.
		self.inner.try_write_for(super::SHARED_CACHE_WRITE_LOCK_TIMEOUT)
	}
}

#[cfg(test)]
mod tests {
	use super::*;
	use sp_core::H256 as Hash;

	#[test]
	fn shared_value_cache_works() {
		let mut cache = SharedValueCache::<sp_core::H256>::new(usize::MAX, 10 * 10);

		let key = vec![0; 10];

		let root0 = Hash::repeat_byte(1);
		let root1 = Hash::repeat_byte(2);

		cache.update(
			vec![
				(ValueCacheKey::new_value(&key[..], root0), CachedValue::NonExisting),
				(ValueCacheKey::new_value(&key[..], root1), CachedValue::NonExisting),
			],
			vec![],
		);

		// Ensure that the basics are working
		assert_eq!(1, cache.lru.limiter_mut().known_storage_keys.len());
		assert_eq!(
			3, // Two instances inside the cache + one extra in `known_storage_keys`.
			Arc::strong_count(cache.lru.limiter_mut().known_storage_keys.get(&key[..]).unwrap())
		);
		assert_eq!(key.len(), cache.lru.limiter().heap_size);
		assert_eq!(cache.lru.len(), 2);
		assert_eq!(cache.lru.peek_newest().unwrap().0.storage_root, root1);
		assert_eq!(cache.lru.peek_oldest().unwrap().0.storage_root, root0);
		assert!(cache.lru.limiter().heap_size <= cache.lru.limiter().max_heap_size);
		assert_eq!(cache.lru.limiter().heap_size, 10);

		// Just accessing a key should not change anything on the size and number of entries.
		cache.update(vec![], vec![ValueCacheKey::hash_data(&key[..], &root0)]);
		assert_eq!(1, cache.lru.limiter_mut().known_storage_keys.len());
		assert_eq!(
			3,
			Arc::strong_count(cache.lru.limiter_mut().known_storage_keys.get(&key[..]).unwrap())
		);
		assert_eq!(key.len(), cache.lru.limiter().heap_size);
		assert_eq!(cache.lru.len(), 2);
		assert_eq!(cache.lru.peek_newest().unwrap().0.storage_root, root0);
		assert_eq!(cache.lru.peek_oldest().unwrap().0.storage_root, root1);
		assert!(cache.lru.limiter().heap_size <= cache.lru.limiter().max_heap_size);
		assert_eq!(cache.lru.limiter().heap_size, 10);

		// Updating the cache again with exactly the same data should not change anything.
		cache.update(
			vec![
				(ValueCacheKey::new_value(&key[..], root1), CachedValue::NonExisting),
				(ValueCacheKey::new_value(&key[..], root0), CachedValue::NonExisting),
			],
			vec![],
		);
		assert_eq!(1, cache.lru.limiter_mut().known_storage_keys.len());
		assert_eq!(
			3,
			Arc::strong_count(cache.lru.limiter_mut().known_storage_keys.get(&key[..]).unwrap())
		);
		assert_eq!(key.len(), cache.lru.limiter().heap_size);
		assert_eq!(cache.lru.len(), 2);
		assert_eq!(cache.lru.peek_newest().unwrap().0.storage_root, root0);
		assert_eq!(cache.lru.peek_oldest().unwrap().0.storage_root, root1);
		assert!(cache.lru.limiter().heap_size <= cache.lru.limiter().max_heap_size);
		assert_eq!(cache.lru.limiter().items_evicted, 0);
		assert_eq!(cache.lru.limiter().heap_size, 10);

		// Add 10 other entries and this should move out two of the initial entries.
		cache.update(
			(1..11)
				.map(|i| vec![i; 10])
				.map(|key| (ValueCacheKey::new_value(&key[..], root0), CachedValue::NonExisting)),
			vec![],
		);

		assert_eq!(cache.lru.limiter().items_evicted, 2);
		assert_eq!(10, cache.lru.len());
		assert_eq!(10, cache.lru.limiter_mut().known_storage_keys.len());
		assert!(cache.lru.limiter_mut().known_storage_keys.get(&key[..]).is_none());
		assert_eq!(key.len() * 10, cache.lru.limiter().heap_size);
		assert_eq!(cache.lru.len(), 10);
		assert!(cache.lru.limiter().heap_size <= cache.lru.limiter().max_heap_size);
		assert_eq!(cache.lru.limiter().heap_size, 100);

		assert!(matches!(
			cache.lru.peek(&ValueCacheKey::new_value(&[1; 10][..], root0)).unwrap(),
			CachedValue::<Hash>::NonExisting
		));

		assert!(cache.lru.peek(&ValueCacheKey::new_value(&[1; 10][..], root1)).is_none(),);

		assert!(cache.lru.peek(&ValueCacheKey::new_value(&key[..], root0)).is_none());
		assert!(cache.lru.peek(&ValueCacheKey::new_value(&key[..], root1)).is_none());

		cache.update(
			vec![(ValueCacheKey::new_value(vec![10; 10], root0), CachedValue::NonExisting)],
			vec![],
		);

		assert!(cache.lru.limiter_mut().known_storage_keys.get(&key[..]).is_none());
	}
}