1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
// This file is part of Substrate.

// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! # Primitives for transaction weighting.

#![cfg_attr(not(feature = "std"), no_std)]

extern crate self as sp_weights;

mod weight_meter;
mod weight_v2;

use bounded_collections::Get;
use codec::{Decode, Encode};
use scale_info::TypeInfo;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use smallvec::SmallVec;
use sp_arithmetic::{
	traits::{BaseArithmetic, SaturatedConversion, Unsigned},
	Perbill,
};
use sp_debug_derive::RuntimeDebug;

pub use weight_meter::*;
pub use weight_v2::*;

pub mod constants {
	pub const WEIGHT_REF_TIME_PER_SECOND: u64 = 1_000_000_000_000;
	pub const WEIGHT_REF_TIME_PER_MILLIS: u64 = 1_000_000_000;
	pub const WEIGHT_REF_TIME_PER_MICROS: u64 = 1_000_000;
	pub const WEIGHT_REF_TIME_PER_NANOS: u64 = 1_000;

	pub const WEIGHT_PROOF_SIZE_PER_MB: u64 = 1024 * 1024;
	pub const WEIGHT_PROOF_SIZE_PER_KB: u64 = 1024;
}

/// The weight of database operations that the runtime can invoke.
///
/// NOTE: This is currently only measured in computational time, and will probably
/// be updated all together once proof size is accounted for.
#[derive(Clone, Copy, Eq, PartialEq, Default, RuntimeDebug, Encode, Decode, TypeInfo)]
pub struct RuntimeDbWeight {
	pub read: u64,
	pub write: u64,
}

impl RuntimeDbWeight {
	pub fn reads(self, r: u64) -> Weight {
		Weight::from_parts(self.read.saturating_mul(r), 0)
	}

	pub fn writes(self, w: u64) -> Weight {
		Weight::from_parts(self.write.saturating_mul(w), 0)
	}

	pub fn reads_writes(self, r: u64, w: u64) -> Weight {
		let read_weight = self.read.saturating_mul(r);
		let write_weight = self.write.saturating_mul(w);
		Weight::from_parts(read_weight.saturating_add(write_weight), 0)
	}
}

/// One coefficient and its position in the `WeightToFee`.
///
/// One term of polynomial is calculated as:
///
/// ```ignore
/// coeff_integer * x^(degree) + coeff_frac * x^(degree)
/// ```
///
/// The `negative` value encodes whether the term is added or subtracted from the
/// overall polynomial result.
#[derive(Clone, Encode, Decode, TypeInfo)]
pub struct WeightToFeeCoefficient<Balance> {
	/// The integral part of the coefficient.
	pub coeff_integer: Balance,
	/// The fractional part of the coefficient.
	pub coeff_frac: Perbill,
	/// True iff the coefficient should be interpreted as negative.
	pub negative: bool,
	/// Degree/exponent of the term.
	pub degree: u8,
}

impl<Balance> WeightToFeeCoefficient<Balance>
where
	Balance: BaseArithmetic + From<u32> + Copy + Unsigned,
{
	/// Evaluate the term at `x` and saturatingly amalgamate into `result`.
	///
	/// The unsigned value for the term is calculated as:
	/// ```ignore
	/// (frac * x^(degree) + integer * x^(degree))
	/// ```
	/// Depending on the value of `negative`, it is added or subtracted from the `result`.
	pub fn saturating_eval(&self, mut result: Balance, x: Balance) -> Balance {
		let power = x.saturating_pow(self.degree.into());

		let frac = self.coeff_frac * power; // Overflow safe.
		let integer = self.coeff_integer.saturating_mul(power);
		// Do not add them together here to avoid an underflow.

		if self.negative {
			result = result.saturating_sub(frac);
			result = result.saturating_sub(integer);
		} else {
			result = result.saturating_add(frac);
			result = result.saturating_add(integer);
		}

		result
	}
}

/// A list of coefficients that represent a polynomial.
pub type WeightToFeeCoefficients<T> = SmallVec<[WeightToFeeCoefficient<T>; 4]>;

/// A list of coefficients that represent a polynomial.
///
/// Can be [eval](Self::eval)uated at a specific `u64` to get the fee. The evaluations happens by
/// summing up all term [results](`WeightToFeeCoefficient::saturating_eval`). The order of the
/// coefficients matters since it uses saturating arithmetic. This struct does therefore not model a
/// polynomial in the mathematical sense (polynomial ring).
///
/// For visualization purposes, the formulas of the unsigned terms look like:
///
/// ```ignore
/// (c[0].frac * x^(c[0].degree) + c[0].integer * x^(c[0].degree))
/// (c[1].frac * x^(c[1].degree) + c[1].integer * x^(c[1].degree))
/// ...
/// ```
/// Depending on the value of `c[i].negative`, each term is added or subtracted from the result.
/// The result is initialized as zero.
pub struct FeePolynomial<Balance> {
	coefficients: SmallVec<[WeightToFeeCoefficient<Balance>; 4]>,
}

impl<Balance> From<WeightToFeeCoefficients<Balance>> for FeePolynomial<Balance> {
	fn from(coefficients: WeightToFeeCoefficients<Balance>) -> Self {
		Self { coefficients }
	}
}

impl<Balance> FeePolynomial<Balance>
where
	Balance: BaseArithmetic + From<u32> + Copy + Unsigned,
{
	/// Evaluate the polynomial at a specific `x`.
	pub fn eval(&self, x: u64) -> Balance {
		self.coefficients.iter().fold(Balance::zero(), |acc, term| {
			term.saturating_eval(acc, Balance::saturated_from(x))
		})
	}
}

/// A trait that describes the weight to fee calculation.
pub trait WeightToFee {
	/// The type that is returned as result from calculation.
	type Balance: BaseArithmetic + From<u32> + Copy + Unsigned;

	/// Calculates the fee from the passed `weight`.
	fn weight_to_fee(weight: &Weight) -> Self::Balance;
}

/// A trait that describes the weight to fee calculation as polynomial.
///
/// An implementor should only implement the `polynomial` function.
pub trait WeightToFeePolynomial {
	/// The type that is returned as result from polynomial evaluation.
	type Balance: BaseArithmetic + From<u32> + Copy + Unsigned;

	/// Returns a polynomial that describes the weight to fee conversion.
	///
	/// This is the only function that should be manually implemented. Please note
	/// that all calculation is done in the probably unsigned `Balance` type. This means
	/// that the order of coefficients is important as putting the negative coefficients
	/// first will most likely saturate the result to zero mid evaluation.
	fn polynomial() -> WeightToFeeCoefficients<Self::Balance>;
}

impl<T> WeightToFee for T
where
	T: WeightToFeePolynomial,
{
	type Balance = <Self as WeightToFeePolynomial>::Balance;

	/// Calculates the fee from the passed `weight` according to the `polynomial`.
	///
	/// This should not be overridden in most circumstances. Calculation is done in the
	/// `Balance` type and never overflows. All evaluation is saturating.
	fn weight_to_fee(weight: &Weight) -> Self::Balance {
		let poly: FeePolynomial<Self::Balance> = Self::polynomial().into();
		poly.eval(weight.ref_time())
	}
}

/// Implementor of `WeightToFee` that maps one unit of weight to one unit of fee.
pub struct IdentityFee<T>(core::marker::PhantomData<T>);

impl<T> WeightToFee for IdentityFee<T>
where
	T: BaseArithmetic + From<u32> + Copy + Unsigned,
{
	type Balance = T;

	fn weight_to_fee(weight: &Weight) -> Self::Balance {
		Self::Balance::saturated_from(weight.ref_time())
	}
}

/// Implementor of [`WeightToFee`] such that it maps any unit of weight to a fixed fee.
pub struct FixedFee<const F: u32, T>(core::marker::PhantomData<T>);

impl<const F: u32, T> WeightToFee for FixedFee<F, T>
where
	T: BaseArithmetic + From<u32> + Copy + Unsigned,
{
	type Balance = T;

	fn weight_to_fee(_: &Weight) -> Self::Balance {
		F.into()
	}
}

/// An implementation of [`WeightToFee`] that collects no fee.
pub type NoFee<T> = FixedFee<0, T>;

/// Implementor of [`WeightToFee`] that uses a constant multiplier.
///
/// # Example
///
/// ```
/// # use bounded_collections::ConstU128;
/// # use sp_weights::ConstantMultiplier;
/// // Results in a multiplier of 10 for each unit of weight (or length)
/// type LengthToFee = ConstantMultiplier::<u128, ConstU128<10u128>>;
/// ```
pub struct ConstantMultiplier<T, M>(core::marker::PhantomData<(T, M)>);

impl<T, M> WeightToFee for ConstantMultiplier<T, M>
where
	T: BaseArithmetic + From<u32> + Copy + Unsigned,
	M: Get<T>,
{
	type Balance = T;

	fn weight_to_fee(weight: &Weight) -> Self::Balance {
		Self::Balance::saturated_from(weight.ref_time()).saturating_mul(M::get())
	}
}

#[cfg(test)]
#[allow(dead_code)]
mod tests {
	use super::*;
	use smallvec::smallvec;

	type Balance = u64;

	// 0.5x^3 + 2.333x^2 + 7x - 10_000
	struct Poly;
	impl WeightToFeePolynomial for Poly {
		type Balance = Balance;

		fn polynomial() -> WeightToFeeCoefficients<Self::Balance> {
			smallvec![
				WeightToFeeCoefficient {
					coeff_integer: 0,
					coeff_frac: Perbill::from_float(0.5),
					negative: false,
					degree: 3
				},
				WeightToFeeCoefficient {
					coeff_integer: 2,
					coeff_frac: Perbill::from_rational(1u32, 3u32),
					negative: false,
					degree: 2
				},
				WeightToFeeCoefficient {
					coeff_integer: 7,
					coeff_frac: Perbill::zero(),
					negative: false,
					degree: 1
				},
				WeightToFeeCoefficient {
					coeff_integer: 10_000,
					coeff_frac: Perbill::zero(),
					negative: true,
					degree: 0
				},
			]
		}
	}

	#[test]
	fn polynomial_works() {
		// 100^3/2=500000 100^2*(2+1/3)=23333 700 -10000
		assert_eq!(Poly::weight_to_fee(&Weight::from_parts(100, 0)), 514033);
		// 10123^3/2=518677865433 10123^2*(2+1/3)=239108634 70861 -10000
		assert_eq!(Poly::weight_to_fee(&Weight::from_parts(10_123, 0)), 518917034928);
	}

	#[test]
	fn polynomial_does_not_underflow() {
		assert_eq!(Poly::weight_to_fee(&Weight::zero()), 0);
		assert_eq!(Poly::weight_to_fee(&Weight::from_parts(10, 0)), 0);
	}

	#[test]
	fn polynomial_does_not_overflow() {
		assert_eq!(Poly::weight_to_fee(&Weight::MAX), Balance::max_value() - 10_000);
	}

	#[test]
	fn identity_fee_works() {
		assert_eq!(IdentityFee::<Balance>::weight_to_fee(&Weight::zero()), 0);
		assert_eq!(IdentityFee::<Balance>::weight_to_fee(&Weight::from_parts(50, 0)), 50);
		assert_eq!(IdentityFee::<Balance>::weight_to_fee(&Weight::MAX), Balance::max_value());
	}

	#[test]
	fn constant_fee_works() {
		use bounded_collections::ConstU128;
		assert_eq!(
			ConstantMultiplier::<u128, ConstU128<100u128>>::weight_to_fee(&Weight::zero()),
			0
		);
		assert_eq!(
			ConstantMultiplier::<u128, ConstU128<10u128>>::weight_to_fee(&Weight::from_parts(
				50, 0
			)),
			500
		);
		assert_eq!(
			ConstantMultiplier::<u128, ConstU128<1024u128>>::weight_to_fee(&Weight::from_parts(
				16, 0
			)),
			16384
		);
		assert_eq!(
			ConstantMultiplier::<u128, ConstU128<{ u128::MAX }>>::weight_to_fee(
				&Weight::from_parts(2, 0)
			),
			u128::MAX
		);
	}
}