1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
use alloc::vec::Vec;
use num_traits::{Float, NumCast};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use crate::cdt::ConflictRegionEnd::{EdgeOverlap, Existing};
use crate::delaunay_core::dcel_operations::flip_cw;
use crate::delaunay_core::{bulk_load_cdt, bulk_load_stable};
use crate::{
delaunay_core::Dcel, intersection_iterator::LineIntersectionIterator, PositionInTriangulation,
SpadeNum,
};
use crate::{handles::*, intersection_iterator::Intersection};
use crate::{
DelaunayTriangulation, HasPosition, HintGenerator, InsertionError, LastUsedVertexHintGenerator,
Point2, Triangulation, TriangulationExt,
};
/// Undirected edge type of a [ConstrainedDelaunayTriangulation] (CDT).
///
/// CDTs need to store if an undirected edge is a constrained edge. To do so, CDTs don't use
/// the configured undirected edge type directly but wrap it into `CdtEdge<UE>` first.
///
/// This type will only be relevant if the triangulation's undirected edge type is being
/// overwritten.
///
/// # Type parameters
/// UE: The user configurable undirected edge type.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(
feature = "serde",
derive(Serialize, Deserialize),
serde(crate = "serde")
)]
pub struct CdtEdge<UE>(bool, UE);
impl<UE> CdtEdge<UE> {
/// Returns `true` if this edge is a constraint edge.
pub fn is_constraint_edge(&self) -> bool {
self.0
}
fn make_constraint_edge(&mut self) {
assert!(!self.is_constraint_edge());
self.0 = true;
}
fn unmake_constraint_edge(&mut self) {
assert!(self.is_constraint_edge());
self.0 = false;
}
/// Returns the wrapped undirected edge data type.
pub fn data(&self) -> &UE {
&self.1
}
/// Returns the wrapped undirected edge data type.
pub fn data_mut(&mut self) -> &mut UE {
&mut self.1
}
}
impl<UE: Default> Default for CdtEdge<UE> {
fn default() -> Self {
CdtEdge(false, UE::default())
}
}
impl<UE> AsRef<UE> for CdtEdge<UE> {
fn as_ref(&self) -> &UE {
self.data()
}
}
impl<UE> AsMut<UE> for CdtEdge<UE> {
fn as_mut(&mut self) -> &mut UE {
self.data_mut()
}
}
/// A two-dimensional
/// [constrained Delaunay triangulation](https://en.wikipedia.org/wiki/Constrained_Delaunay_triangulation).
///
/// A constrained Delaunay triangulation (CDT) is a triangulation that
/// can contain _constraint edges_. These edges will always be present
/// in the resulting triangulation.
///
#[doc = include_str!("../images/cdt.svg")]
///
/// *Left: A CDT with 4 constraint edges. Right: The same triangulation
/// without constraint edges*
///
///
/// The resulting triangulation
/// does not necessarily fulfill the Delaunay property.
///
/// This implementation currently supports only _weakly intersecting_
/// constraints, thus, constraint edges are allowed to touch at
/// their start or end point but are not allowed to intersect at
/// any interior point.
///
/// The constrained triangulation shares most of the implementation of
/// the usual Delaunay triangulation, refer to `DelaunayTriangulation`
/// for more information about type parameters, iteration, performance
/// and more examples.
///
/// # Example
///
/// ```
/// use spade::{ConstrainedDelaunayTriangulation, Point2, Triangulation};
/// # fn try_main() -> Result<(), spade::InsertionError> {
/// let mut cdt = ConstrainedDelaunayTriangulation::<Point2<_>>::new();
/// let v0 = cdt.insert(Point2::new(0f64, 0.0))?;
/// let v1 = cdt.insert(Point2::new(1.0, 0.0))?;
/// cdt.add_constraint(v0, v1);
/// // Alternatively, consider using this shorthand
/// cdt.add_constraint_edge(Point2::new(1.0, 1.0), Point2::new(1.0, 0.0))?;
/// println!("Number of constraints: {}", cdt.num_constraints()); // 2 constraints
/// // Constraints are bidirectional!
/// assert!(cdt.exists_constraint(v1, v0));
/// assert!(cdt.exists_constraint(v0, v1));
/// // Check if a new constraint could be added
/// let from = Point2::new(1.0, -2.0);
/// let to = Point2::new(1.0, 0.0);
/// if !cdt.intersects_constraint(from, to) {
/// // No intersections, the edge can be added
/// cdt.add_constraint_edge(from, to)?;
/// }
/// # Ok(()) }
/// # fn main() { try_main().unwrap() }
/// ```
///
/// # See also
/// Refer to [Triangulation] for most implemented methods on this type.
/// Refer to [DelaunayTriangulation](DelaunayTriangulation) for general
/// information about using Delaunay triangulations.
#[doc(alias = "CDT")]
#[derive(Clone)]
#[cfg_attr(
feature = "serde",
derive(Serialize, Deserialize),
serde(crate = "serde")
)]
pub struct ConstrainedDelaunayTriangulation<
V,
DE = (),
UE = (),
F = (),
L = LastUsedVertexHintGenerator,
> where
V: HasPosition,
DE: Default,
UE: Default,
F: Default,
L: HintGenerator<<V as HasPosition>::Scalar>,
{
dcel: Dcel<V, DE, CdtEdge<UE>, F>,
num_constraints: usize,
hint_generator: L,
}
impl<V, DE, UE, F, L> Default for ConstrainedDelaunayTriangulation<V, DE, UE, F, L>
where
V: HasPosition,
DE: Default,
UE: Default,
F: Default,
L: HintGenerator<<V as HasPosition>::Scalar>,
{
fn default() -> Self {
ConstrainedDelaunayTriangulation {
dcel: Default::default(),
num_constraints: 0,
hint_generator: Default::default(),
}
}
}
impl<V, DE, UE, F, L> Triangulation for ConstrainedDelaunayTriangulation<V, DE, UE, F, L>
where
V: HasPosition,
DE: Default,
UE: Default,
F: Default,
L: HintGenerator<<V as HasPosition>::Scalar>,
{
type Vertex = V;
type DirectedEdge = DE;
type UndirectedEdge = CdtEdge<UE>;
type Face = F;
type HintGenerator = L;
fn s(&self) -> &Dcel<V, DE, CdtEdge<UE>, F> {
&self.dcel
}
fn s_mut(&mut self) -> &mut Dcel<V, DE, CdtEdge<UE>, F> {
&mut self.dcel
}
fn is_defined_legal(&self, edge: FixedUndirectedEdgeHandle) -> bool {
self.is_constraint_edge(edge)
}
fn handle_legal_edge_split(&mut self, handles: [FixedDirectedEdgeHandle; 2]) {
self.num_constraints += 1;
for handle in handles.iter().map(|e| e.as_undirected()) {
if !self.is_constraint_edge(handle) {
self.dcel
.undirected_edge_data_mut(handle)
.make_constraint_edge();
}
}
}
fn hint_generator(&self) -> &Self::HintGenerator {
&self.hint_generator
}
fn hint_generator_mut(&mut self) -> &mut Self::HintGenerator {
&mut self.hint_generator
}
fn from_parts(
dcel: Dcel<Self::Vertex, Self::DirectedEdge, Self::UndirectedEdge, Self::Face>,
hint_generator: Self::HintGenerator,
num_constraints: usize,
) -> Self {
Self {
dcel,
num_constraints,
hint_generator,
}
}
fn into_parts(
self,
) -> (
Dcel<Self::Vertex, Self::DirectedEdge, Self::UndirectedEdge, Self::Face>,
Self::HintGenerator,
usize,
) {
(self.dcel, self.hint_generator, self.num_constraints)
}
fn clear(&mut self) {
self.num_constraints = 0;
self.s_mut().clear();
let new_hint_generator = HintGenerator::initialize_from_triangulation(self);
*self.hint_generator_mut() = new_hint_generator;
}
}
impl<V, DE, UE, F, L> From<DelaunayTriangulation<V, DE, UE, F, L>>
for ConstrainedDelaunayTriangulation<V, DE, UE, F, L>
where
V: HasPosition,
DE: Default,
UE: Default,
F: Default,
L: HintGenerator<<V as HasPosition>::Scalar>,
{
fn from(value: DelaunayTriangulation<V, DE, UE, F, L>) -> Self {
let dcel = value.dcel;
let s = dcel.map_undirected_edges(|edge| CdtEdge(false, edge));
let lookup = value.hint_generator;
ConstrainedDelaunayTriangulation {
dcel: s,
num_constraints: 0,
hint_generator: lookup,
}
}
}
impl<V, DE, UE, F, L> ConstrainedDelaunayTriangulation<V, DE, UE, F, L>
where
V: HasPosition,
DE: Default,
UE: Default,
F: Default,
L: HintGenerator<<V as HasPosition>::Scalar>,
{
/// Efficient bulk loading of a constraint delaunay triangulation, including both vertices and constraint edges.
///
/// The edges are given as pairs of vertex indices.
///
/// Note that the vertex order is not preserved by this function - iterating through all vertices will not result in
/// the same sequence as the input vertices. Use [ConstrainedDelaunayTriangulation::bulk_load_cdt_stable] for a
/// slower but order preserving variant.
///
/// Input vertices may have the same position. However, only one vertex for each position will be kept. Edges
/// that go to a discarded vertex are rerouted and still inserted.
/// It is arbitrary which duplicated vertex remains.
///
/// # Example
/// ```
/// # fn main() -> Result<(), spade::InsertionError> {
/// use spade::{ConstrainedDelaunayTriangulation, Point2, Triangulation};
/// let mut vertices = vec![
/// Point2::new(0.0, 1.0),
/// Point2::new(1.0, 2.0),
/// Point2::new(3.0, -3.0),
/// Point2::new(-1.0, -2.0),
/// Point2::new(-4.0, -5.0),
/// ];
/// let mut edges = vec![[0, 1], [1, 2], [2, 3], [3, 4]];
/// let cdt = ConstrainedDelaunayTriangulation::<_>::bulk_load_cdt(vertices.clone(), edges)?;
///
/// assert_eq!(cdt.num_vertices(), 5);
/// assert_eq!(cdt.num_constraints(), 4);
/// // The order will usually change
/// assert_ne!(cdt.vertices().map(|v| v.position()).collect::<Vec<_>>(), vertices);
/// # Ok(())
/// # }
/// ```
///
/// # Panics
///
/// Panics if any constraint edges overlap. Panics if the edges contain an invalid index (out of range).
pub fn bulk_load_cdt(vertices: Vec<V>, edges: Vec<[usize; 2]>) -> Result<Self, InsertionError> {
let mut result = bulk_load_cdt(vertices, edges)?;
*result.hint_generator_mut() = L::initialize_from_triangulation(&result);
Ok(result)
}
/// Stable bulk load variant that preserves the input vertex order
///
/// The resulting vertex set will be equal to the input vertex set if their positions are all distinct.
/// See [ConstrainedDelaunayTriangulation::bulk_load_cdt] for additional details like panic behavior and duplicate
/// handling.
///
/// # Example
/// ```
/// # fn main() -> Result<(), spade::InsertionError> {
/// use spade::{ConstrainedDelaunayTriangulation, Point2, Triangulation};
/// let mut vertices = vec![
/// Point2::new(0.0, 1.0),
/// Point2::new(1.0, 2.0),
/// Point2::new(3.0, -3.0),
/// Point2::new(-1.0, -2.0),
/// Point2::new(-4.0, -5.0),
/// ];
/// let mut edges = vec![[0, 1], [1, 2], [2, 3], [3, 4]];
/// let cdt = ConstrainedDelaunayTriangulation::<_>::bulk_load_cdt_stable(vertices.clone(), edges)?;
///
/// // The ordered will be preserved:
/// assert_eq!(cdt.vertices().map(|v| v.position()).collect::<Vec<_>>(), vertices);
/// # Ok(())
/// # }
/// ```
///
/// It is fine to include vertex positions multiple times. The resulting order will be the same as if
/// the duplicates were removed prior to insertion. However, it is unclear *which* duplicates are
/// removed - e.g. do not assume that always the first duplicated vertex remains.
///
/// ```
/// # fn main() -> Result<(), spade::InsertionError> {
/// use spade::{ConstrainedDelaunayTriangulation, Point2, Triangulation};
/// let mut vertices = vec![
/// Point2::new(0.0, 1.0),
/// Point2::new(1.0, 2.0), // Duplicate
/// Point2::new(1.0, 2.0),
/// Point2::new(3.0, -3.0),
/// Point2::new(3.0, -3.0), // Duplicate
/// Point2::new(-4.0, -5.0),
/// ];
/// let mut edges = vec![[0, 1], [2, 3], [4, 5]];
/// let cdt = ConstrainedDelaunayTriangulation::<_>::bulk_load_cdt_stable(vertices.clone(), edges)?;
///
/// // The choice of deduplicated vertices is arbitrary. In this example, dedup[1] and dedup[2] could
/// // have been swapped
/// let dedup = [
/// Point2::new(0.0, 1.0),
/// Point2::new(1.0, 2.0),
/// Point2::new(3.0, -3.0),
/// Point2::new(-4.0, -5.0),
/// ];
/// assert_eq!(cdt.vertices().map(|v| v.position()).collect::<Vec<_>>(), dedup);
/// # Ok(())
/// # }
/// ```
pub fn bulk_load_cdt_stable(
vertices: Vec<V>,
edges: Vec<[usize; 2]>,
) -> Result<Self, InsertionError> {
let mut result: Self =
bulk_load_stable(move |vertices| bulk_load_cdt(vertices, edges), vertices)?;
*result.hint_generator_mut() = L::initialize_from_triangulation(&result);
Ok(result)
}
/// Removes a vertex from the triangulation.
///
/// This operation runs in O(n²), where n is the degree of the
/// removed vertex.
///
/// # Handle invalidation
/// This method will invalidate all vertex, edge and face handles.
pub fn remove(&mut self, vertex: FixedVertexHandle) -> V {
let num_removed_constraints = self
.dcel
.vertex(vertex)
.out_edges()
.map(|edge| edge.is_constraint_edge())
.filter(|b| *b)
.count();
self.num_constraints -= num_removed_constraints;
self.remove_and_notify(vertex)
}
/// Returns the number of constraint edges.
pub fn num_constraints(&self) -> usize {
self.num_constraints
}
/// Returns `true` if a given edge is a constraint edge.
pub fn is_constraint_edge(&self, edge: FixedUndirectedEdgeHandle) -> bool {
self.dcel.undirected_edge_data(edge).is_constraint_edge()
}
/// Checks if two vertices are connected by a constraint edge.
pub fn exists_constraint(&self, from: FixedVertexHandle, to: FixedVertexHandle) -> bool {
self.get_edge_from_neighbors(from, to)
.map(|e| e.is_constraint_edge())
.unwrap_or(false)
}
/// Checks if a constraint edge can be added.
///
/// Returns `false` if the line from `from` to `to` intersects another
/// constraint edge.
pub fn can_add_constraint(&self, from: FixedVertexHandle, to: FixedVertexHandle) -> bool {
let line_intersection_iterator = LineIntersectionIterator::new_from_handles(self, from, to);
!self.contains_any_constraint_edge(line_intersection_iterator)
}
/// Checks if a line intersects a constraint edge.
///
/// Returns `true` if the edge from `from` to `to` intersects a
/// constraint edge.
pub fn intersects_constraint(
&self,
line_from: Point2<V::Scalar>,
line_to: Point2<V::Scalar>,
) -> bool {
let line_intersection_iterator = LineIntersectionIterator::new(self, line_from, line_to);
self.contains_any_constraint_edge(line_intersection_iterator)
}
fn contains_any_constraint_edge(
&self,
mut line_intersection_iterator: LineIntersectionIterator<V, DE, CdtEdge<UE>, F>,
) -> bool {
line_intersection_iterator.any(|intersection| match intersection {
Intersection::EdgeIntersection(edge) => edge.is_constraint_edge(),
_ => false,
})
}
/// Creates a several constraint edges by taking and connecting vertices from an iterator.
///
/// Every two sequential vertices in the input iterator will be connected by a constraint edge.
/// If `closed` is set to true, the first and last vertex will also be connected.
///
/// # Special cases:
/// - Does nothing if input iterator is empty
/// - Only inserts the single vertex if the input iterator contains exactly one element
///
/// # Example
/// ```
/// # fn main() -> Result<(), spade::InsertionError> {
/// use spade::{ConstrainedDelaunayTriangulation, Point2};
///
/// const NUM_VERTICES: usize = 51;
///
/// let mut cdt = ConstrainedDelaunayTriangulation::<_>::default();
///
/// // Iterates through vertices on a circle
/// let vertices = (0..NUM_VERTICES).map(|i| {
/// let angle = std::f64::consts::PI * 2.0 * i as f64 / NUM_VERTICES as f64;
/// let (sin, cos) = angle.sin_cos();
/// Point2::new(sin, cos)
/// });
///
/// cdt.add_constraint_edges(vertices, true)?;
/// # Ok(()) }
/// ```
///
/// # Panics
///
/// Panics if any of the generated constraints intersects with any other constraint edge.
pub fn add_constraint_edges(
&mut self,
vertices: impl IntoIterator<Item = V>,
closed: bool,
) -> Result<(), InsertionError> {
let mut iter = vertices.into_iter();
if let Some(first) = iter.next() {
let first_handle = self.insert(first)?;
let mut previous_handle = first_handle;
let mut current_handle = first_handle;
for current in iter {
current_handle = self.insert(current)?;
self.add_constraint(previous_handle, current_handle);
previous_handle = current_handle;
}
if closed && current_handle != first_handle {
self.add_constraint(current_handle, first_handle);
}
}
Ok(())
}
/// Insert two points and creates a constraint between them.
///
/// Returns `true` if at least one constraint edge was added.
///
/// # Panics
///
/// Panics if the new constraint edge intersects with an existing
/// constraint edge. Use [can_add_constraint](Self::can_add_constraint) to check.
pub fn add_constraint_edge(&mut self, from: V, to: V) -> Result<bool, InsertionError> {
let from_handle = self.insert(from)?;
let to_handle = self.insert(to)?;
Ok(self.add_constraint(from_handle, to_handle))
}
/// Adds a constraint edge between to vertices.
///
/// Returns `true` if at least one constraint edge was added.
/// Note that the given constraint might be split into smaller edges
/// if a vertex in the triangulation lies exactly on the constraint edge.
/// Thus, `cdt.exists_constraint(from, to)` is not necessarily `true`
/// after a call to this function.
///
/// Returns false and does nothing if `from == to`.
///
/// # Panics
///
/// Panics if the new constraint edge intersects an existing
/// constraint edge. Use [Self::try_add_constraint] or [Self::add_constraint_and_split] to work
/// around that.
pub fn add_constraint(&mut self, from: FixedVertexHandle, to: FixedVertexHandle) -> bool {
let initial_num_constraints = self.num_constraints();
self.try_add_constraint_inner(from, to, |_| panic!("Constraint edges must not intersect."));
self.num_constraints != initial_num_constraints
}
/// Takes a conflict region (expressed as a list of intersecting edges) rotates edges to create
/// a new constraint edge. Then, the rotated edges (except the new constraint edge)
/// are legalized to restore the Delaunay property.
///
/// Usually, this step is described as "delete all conflicting edges, then re-triangulate the
/// hole". Spade avoids the removal of edges by _rotating_ (flipping) them into place instead.
/// The final constraint edge is created implicitly.
/// This works as long as the intersecting edges are ordered "along the constraint edge", i.e.
/// the intersection points increase in distance from the constraint edge origin.
///
/// # Example
///
/// The input conflict region might look like this (assuming the target constraint edge goes
/// from v0 to v1):
///
/// ```text
/// v__________v
/// / | / |\
/// / | / | \
/// v0 |e0 /e1 e2| v1
/// \ | / | /
/// \ |/ |/
/// v_________ v
/// ```
///
/// `conflict_edges` would be set to `vec![e0, e1, e2]` in this case, `target_vertex` would be
/// `v1`.
///
/// Now, flipping these edges _in this order_ will implicitly create the desired edge:
///
/// After flipping the result looks like this with all edges going out of `v0`:
///
/// ```text
/// v_________v
/// / __--- \
/// / __--- \
/// v0--------------v1
/// \ --___ /
/// \ --___ /
/// v---------v
///```
///
/// Now, the new edges can be legalized as usual.
///
/// Returns a handle to the new constraint edge (pointing toward `target_vertex`).
fn resolve_conflict_region(
&mut self,
conflict_edges: Vec<FixedDirectedEdgeHandle>,
target_vertex: FixedVertexHandle,
) -> Option<FixedDirectedEdgeHandle> {
let first = conflict_edges.first()?;
let mut temporary_constraint_edges = Vec::new();
let first = self.directed_edge(*first);
// These refer to the two edges that go out of the constraint edge origin initially.
// They are used below but need to be defined declared here to appease the borrow checker.
let first_border_edge = first.rev().prev().fix();
let last_border_edge = first.rev().next().fix();
// Flip all conflict edges in the input order - see function comment.
for edge in &conflict_edges {
flip_cw(self.s_mut(), edge.as_undirected());
}
// Small optimization: For the legalization, the algorithm doesn't need to look at edges
// outside the conflict region. They are known to be already legal.
// To do so, we will make the border edges that encompass the conflict region into temporary
// constraint edges. The legalization will then skip them. This is undone later,
let mut make_temporary_edge = |cdt: &mut Self, edge: FixedUndirectedEdgeHandle| {
// Exclude edges that are already a constraint - those should remain constraint edges
// and not be undone later!
if !cdt.undirected_edge(edge).is_constraint_edge() {
temporary_constraint_edges.push(edge);
cdt.undirected_edge_data_mut(edge).make_constraint_edge();
}
};
make_temporary_edge(self, first_border_edge.as_undirected());
make_temporary_edge(self, last_border_edge.as_undirected());
let mut current = first_border_edge;
let mut result = None;
// Loops around all border edges and adds them to the temporary constraint edge list.
// `first_border_edge` and `last_border_edge` refer to the two border edges that are
// initially going out of the constraint edge start (the two left most edges in the first
// ascii drawing of the function comment).
while current != last_border_edge.rev() {
let handle = self.directed_edge(current);
let fixed = handle.fix();
let next = handle.next().fix().as_undirected();
current = handle.ccw().fix();
if target_vertex == handle.to().fix() {
// This loop also finds the implicitly created constraint edge and makes it an
// official constraint edge!
self.make_constraint_edge(fixed.as_undirected());
result = Some(fixed);
}
make_temporary_edge(self, next);
}
self.legalize_edges_after_removal(
&mut conflict_edges
.into_iter()
.map(|edge| edge.as_undirected())
.collect(),
|_| false,
);
// Undo the previously made temporary constraint edges
for edge in temporary_constraint_edges {
self.undirected_edge_data_mut(edge).0 = false;
}
result
}
/// Returns all constraint edges that would prevent creating a new constraint between two points.
///
/// # See also
///
/// See also [Self::get_conflicting_edges_between_vertices]
pub fn get_conflicting_edges_between_points(
&self,
from: Point2<<V as HasPosition>::Scalar>,
to: Point2<<V as HasPosition>::Scalar>,
) -> impl Iterator<Item = DirectedEdgeHandle<V, DE, CdtEdge<UE>, F>> {
LineIntersectionIterator::new(self, from, to)
.flat_map(|intersection| intersection.as_edge_intersection())
.filter(|e| e.is_constraint_edge())
}
/// Returns all constraint edges that would prevent inserting a new constraint connecting two existing
/// vertices.
///
/// # See also
///
/// See also [Self::get_conflicting_edges_between_points]
pub fn get_conflicting_edges_between_vertices(
&self,
from: FixedVertexHandle,
to: FixedVertexHandle,
) -> impl Iterator<Item = DirectedEdgeHandle<V, DE, CdtEdge<UE>, F>> {
LineIntersectionIterator::new_from_handles(self, from, to)
.flat_map(|intersection| intersection.as_edge_intersection())
.filter(|e| e.is_constraint_edge())
}
fn make_constraint_edge(&mut self, edge: FixedUndirectedEdgeHandle) -> bool {
if !self.is_constraint_edge(edge) {
self.dcel
.undirected_edge_data_mut(edge)
.make_constraint_edge();
self.num_constraints += 1;
true
} else {
false
}
}
#[cfg(any(test, fuzzing))]
pub fn cdt_sanity_check(&self) {
self.cdt_sanity_check_with_params(true);
}
#[cfg(any(test, fuzzing))]
pub fn cdt_sanity_check_with_params(&self, check_convexity: bool) {
let num_undirected_edges = self
.dcel
.undirected_edges()
.filter(|e| e.is_constraint_edge())
.count();
assert_eq!(num_undirected_edges, self.num_constraints());
if self.num_constraints() == 0 && check_convexity {
self.sanity_check();
} else {
self.basic_sanity_check(check_convexity);
}
}
/// Removes a constraint edge.
///
/// Does nothing and returns `false` if the given edge is not a constraint edge.
/// Otherwise, the edge is unmarked and the Delaunay property is restored in its vicinity.
pub fn remove_constraint_edge(&mut self, edge: FixedUndirectedEdgeHandle) -> bool {
if self.is_constraint_edge(edge) {
self.dcel
.undirected_edge_data_mut(edge)
.unmake_constraint_edge();
self.num_constraints -= 1;
self.legalize_edge(edge.as_directed(), true);
true
} else {
false
}
}
/// Attempts to add a constraint edge. Leaves the triangulation unchanged if the new edge would
/// intersect an existing constraint edge.
///
/// Returns all constraint edges that connect `from` and `to`. This includes any constraint
/// edge that was already present.
/// Multiple edges are returned if the line from `from` to `to` intersects an existing vertex.
/// Returns an empty list if the new constraint would intersect any existing constraint or if
/// `from == to`.
///
/// # Example
///
/// ```
/// use spade::{ConstrainedDelaunayTriangulation, Point2, Triangulation};
/// # fn try_main() -> Result<(), spade::InsertionError> {
/// let mut cdt = ConstrainedDelaunayTriangulation::<Point2<_>>::new();
/// let v0 = cdt.insert(Point2::new(-1.0, 0.0))?;
/// let v1 = cdt.insert(Point2::new(1.0, 0.0))?;
/// let v2 = cdt.insert(Point2::new(0.0, 1.0))?;
/// let v3 = cdt.insert(Point2::new(0.0, -1.0))?;
/// let first_constraints = cdt.try_add_constraint(v2, v3);
/// let second_constraints = cdt.try_add_constraint(v0, v1);
///
/// // The first constraint edge can be added as there are no intersecting constraint edges
/// assert_eq!(first_constraints.len(), 1);
/// let edge = cdt.directed_edge(first_constraints[0]);
/// assert_eq!(edge.from().fix(), v2);
/// assert_eq!(edge.to().fix(), v3);
///
/// // The second edge should not be created as it intersects the first edge.
/// assert!(second_constraints.is_empty());
///
/// // Consider comparing this to the number of constraints prior to calling
/// // `try_add_constraint` to check if any new constraint edge was created.
/// assert_eq!(cdt.num_constraints(), 1);
/// # Ok(()) }
/// # fn main() { try_main().unwrap() }
/// ```
pub fn try_add_constraint(
&mut self,
from: FixedVertexHandle,
to: FixedVertexHandle,
) -> Vec<FixedDirectedEdgeHandle> {
self.try_add_constraint_inner(from, to, |_| ConflictResolution::Cancel)
}
fn try_add_constraint_inner<R>(
&mut self,
from: FixedVertexHandle,
to: FixedVertexHandle,
mut conflict_resolver: R,
) -> Vec<FixedDirectedEdgeHandle>
where
R: FnMut(DirectedEdgeHandle<V, DE, CdtEdge<UE>, F>) -> ConflictResolution<V>,
{
// Constraint edges are added with a two-pass approach:
// - First, identify potential constraint edge intersections (conflicts). This must be done
// beforehand in case that the caller chooses to `ConflictResolution::Cancel` the
// operation - no mutation should have happened at this stage.
let (initial_conflict_regions, all_regions_intact) =
self.get_conflict_resolutions(from, to, &mut conflict_resolver);
// - Second, apply the conflict resolutions, e.g. by inserting new split points and by
// rotating non-constraint edges that intersect the new constraint edge (see function
// `resolve_conflict_region`).
if all_regions_intact {
self.resolve_conflict_groups(to, initial_conflict_regions)
} else {
self.add_splitting_constraint_edge_fallback(initial_conflict_regions)
}
}
/// Fallback routine to add splitting constraints that cannot be added via the fast path.
///
/// This routine simply adds all split vertices first and then adds any missing constraints.
/// This avoids edge cases that can arise when the split point for a constraint
/// intersection lies "too far" off the conflict edge due to imprecise calculations.
fn add_splitting_constraint_edge_fallback(
&mut self,
initial_conflict_regions: Vec<InitialConflictRegion<V>>,
) -> Vec<FixedDirectedEdgeHandle> {
let mut vertices_to_connect = Vec::new();
let mut temporarily_removed = Vec::new();
// Phase 1: Add all pending split vertices directly.
for region in initial_conflict_regions {
let group_end_vertex = match region.group_end {
Existing(v) => v,
ConflictRegionEnd::ConstraintEdgeSplit(new_vertex, edge) => {
let new_handle = match new_vertex {
Ok(new_vertex) => self
.insert(new_vertex)
.expect("Failed to insert vertex as expected. This is a bug in spade."),
Err(handle) => handle,
};
let [old_from, old_to] = self.directed_edge(edge).vertices().map(|v| v.fix());
// The conflict edge can prevent the forced insertion to the split vertex.
// It will be removed temporarily
self.remove_constraint_edge(edge.as_undirected());
// Re-add the temporarily removed edge later as if it was split by the new
// vertex
temporarily_removed.push([old_from, new_handle]);
temporarily_removed.push([new_handle, old_to]);
new_handle
}
EdgeOverlap(edge) => self.directed_edge(edge).to().fix(),
};
vertices_to_connect.push(group_end_vertex);
}
let mut result = Vec::new();
let mut last_vertex = None;
// Phase 2: Add all constraint edges
for vertex in vertices_to_connect {
if let Some(last_vertex) = last_vertex {
let new_edges = self.try_add_constraint(last_vertex, vertex);
// try_add_constraint should always succeed as any conflicting edge should have been
// removed temporarily
assert_ne!(new_edges, Vec::new());
result.extend(new_edges);
}
last_vertex = Some(vertex);
}
for [from, to] in temporarily_removed {
self.try_add_constraint(from, to);
}
result
}
fn get_conflict_resolutions<R>(
&mut self,
from: FixedVertexHandle,
to: FixedVertexHandle,
conflict_resolver: &mut R,
) -> (Vec<InitialConflictRegion<V>>, bool)
where
R: FnMut(DirectedEdgeHandle<V, DE, CdtEdge<UE>, F>) -> ConflictResolution<V>,
{
let mut all_regions_intact = true;
let mut conflict_groups = Vec::new();
let mut current_group = Vec::new();
let mut ignore_next_vertex = false;
for intersection in LineIntersectionIterator::new_from_handles(self, from, to) {
match intersection {
Intersection::EdgeIntersection(edge) => {
if !edge.is_constraint_edge() {
current_group.push(edge.fix());
continue;
}
// The new constraint intersects an existing constraint edge. Start conflict
// resolution.
match conflict_resolver(edge) {
ConflictResolution::Cancel => {
return (Vec::new(), true);
}
ConflictResolution::Split(new_vertex) => {
let position = new_vertex.position();
let (overlap_vertex, is_valid) =
self.verify_split_position(edge, position);
// A region is considered to be intact if the split vertex lies
// within the region and not outside or on its border.
all_regions_intact &= is_valid;
let conflict_edges = core::mem::take(&mut current_group);
// overlap_vertex.is_some() indicates that the split position
// overlaps an existing vertex. This can happen due to rounding
// errors and needs some special handling
ignore_next_vertex = overlap_vertex.is_some();
let group_end_vertex =
overlap_vertex.map(|h| Err(h)).unwrap_or(Ok(new_vertex));
let group_end = ConflictRegionEnd::ConstraintEdgeSplit(
group_end_vertex,
edge.fix(),
);
conflict_groups.push(InitialConflictRegion {
conflict_edges,
group_end,
});
}
}
}
Intersection::VertexIntersection(v) => {
if ignore_next_vertex {
ignore_next_vertex = false;
continue;
}
let group_end = Existing(v.fix());
let conflict_edges = core::mem::take(&mut current_group);
conflict_groups.push(InitialConflictRegion {
conflict_edges,
group_end,
});
}
Intersection::EdgeOverlap(edge) => {
conflict_groups.push(InitialConflictRegion {
conflict_edges: Vec::new(),
group_end: EdgeOverlap(edge.fix()),
});
// The next intersection is going to be edge.to(). It would be incorrect to
// create a conflict region from that vertex as that region is already handled
// by the GroupEnd::EdgeOverlap cases
ignore_next_vertex = true;
}
}
}
(conflict_groups, all_regions_intact)
}
fn verify_split_position(
&self,
conflict_edge: DirectedEdgeHandle<V, DE, CdtEdge<UE>, F>,
split_position: Point2<<V as HasPosition>::Scalar>,
) -> (Option<FixedVertexHandle>, bool) {
// Not every split vertex may lead to a conflict region that will properly contain the
// split vertex. This can happen as not all split positions can be represented precisely.
//
// Instead, these vertices will be handled by a slower fallback routine.
//
// A split position is considered to be valid if it lies either *on* the edge that was split
// or *within any of the edges neighboring faces*.
match self.locate_with_hint(split_position, conflict_edge.from().fix()) {
PositionInTriangulation::OnEdge(real_edge) => {
let is_valid = real_edge.as_undirected() == conflict_edge.fix().as_undirected();
(None, is_valid)
}
PositionInTriangulation::OnFace(face) => {
let face = face.adjust_inner_outer();
let is_valid =
face == conflict_edge.face().fix() || face == conflict_edge.rev().face().fix();
(None, is_valid)
}
PositionInTriangulation::OutsideOfConvexHull(_) => {
let is_valid = conflict_edge.is_part_of_convex_hull();
(None, is_valid)
}
PositionInTriangulation::OnVertex(v) => (Some(v), false),
PositionInTriangulation::NoTriangulation => unreachable!(),
}
}
fn resolve_conflict_groups(
&mut self,
final_vertex: FixedVertexHandle,
conflict_groups: Vec<InitialConflictRegion<V>>,
) -> Vec<FixedDirectedEdgeHandle> {
let mut constraint_edges = Vec::new();
let mut last_vertex = None;
for InitialConflictRegion {
conflict_edges,
group_end,
} in conflict_groups
{
let mut last_edge = None;
let target_vertex = match group_end {
Existing(v) => v,
ConflictRegionEnd::ConstraintEdgeSplit(v, conflict_edge) => {
let v = v.expect(
"Expected a new vertex for insertion. \
An existing vertex should be handled by the fallback routine. \
This is a bug in spade.",
);
let (new_vertex, [e0, e1]) = self.insert_on_edge(conflict_edge, v);
let e1_handle = self.directed_edge(e1);
// edge_in / edge_out refer to the edge going into / out of the newly split off
// vertex.
let edge_out = e1_handle.ccw();
let edge_in = e1_handle.cw();
if Some(edge_in.to().fix()) == last_vertex {
constraint_edges.push(edge_in.fix().rev());
}
if edge_out.to().fix() == final_vertex {
// The edge reaches the target vertex - we're done! However, this can
// sometimes omit to make the last edge a constraint. This special case
// fixes that issue.
last_edge = Some(edge_out.fix());
}
self.handle_legal_edge_split([e0, e1]);
new_vertex
}
EdgeOverlap(edge) => {
constraint_edges.push(edge);
last_vertex = Some(self.directed_edge(edge).to().fix());
// No need to resolve conflict regions - there are no conflicting edges in the
// GroupEnd::EdgeOverlap case
continue;
}
};
constraint_edges.extend(self.resolve_conflict_region(conflict_edges, target_vertex));
constraint_edges.extend(last_edge);
last_vertex = Some(target_vertex);
}
for edge in &constraint_edges {
self.make_constraint_edge(edge.as_undirected());
}
constraint_edges
}
}
impl<V, DE, UE, F, L> ConstrainedDelaunayTriangulation<V, DE, UE, F, L>
where
V: HasPosition,
V::Scalar: Float,
DE: Default,
UE: Default,
F: Default,
L: HintGenerator<<V as HasPosition>::Scalar>,
{
/// Adds a constraint to the triangulation. Splits any existing constraint edge that would
/// intersect the new constraint edge.
///
/// The `vertex_constructor` closure is used to convert the position of the intersection into
/// a vertex. The returned vertex must have exactly the same position as the argument of the
/// closure.
///
/// Returns all constraint edges that connect `from` and `to`. This includes any constraint
/// edge that was already present.
/// Multiple edges are returned if the line from `from` to `to` intersects any existing vertex
/// or any existing constraint edge.
/// Returns an empty list if `from == to`.
///
/// # Image example
///
/// This is an input CDT with 3 constraints:
///
#[doc = include_str!("../images/add_constraint_and_split_initial.svg")]
///
/// Calling `add_constraint_and_split(v0, v1, ...)` will result in this CDT:
///
#[doc = include_str!("../images/add_constraint_and_split_added.svg")]
///
/// # Code example
///
///```
/// use spade::{ConstrainedDelaunayTriangulation, Point2, Triangulation};
/// # fn try_main() -> Result<(), spade::InsertionError> {
/// use spade::handles::FixedVertexHandle;
/// let mut cdt = ConstrainedDelaunayTriangulation::<Point2<_>>::new();
/// let v0 = cdt.insert(Point2::new(-1.0, 0.0))?;
/// let v1 = cdt.insert(Point2::new(1.0, 0.0))?;
/// let v2 = cdt.insert(Point2::new(0.0, 1.0))?;
/// let v3 = cdt.insert(Point2::new(0.0, -1.0))?;
/// cdt.add_constraint(v2, v3);
///
/// // Should create a new split vertex at the origin
/// let second_constraints = cdt.add_constraint_and_split(v0, v1, |v| v);
///
/// // Expect one additional point introduced by splitting the first constraint edge:
/// assert_eq!(cdt.num_vertices(), 5);
///
/// let v4 = FixedVertexHandle::from_index(4); // Newly created
///
/// // Expect 4 constraints as the first constraint was split:
/// assert_eq!(cdt.num_constraints(), 4);
///
/// // The second edge should consist of two edges, v0 -> v4 and v4 -> v1
/// assert_eq!(second_constraints.len(), 2);
///
/// let [e0, e1] = [second_constraints[0], second_constraints[1]];
/// let [e0, e1] = [e0, e1].map(|e| cdt.directed_edge(e));
///
/// assert_eq!(e0.from().fix(), v0);
/// assert_eq!(e0.to().fix(), v4);
/// assert_eq!(e1.from().fix(), v4);
/// assert_eq!(e1.to().fix(), v1);
///
/// # Ok(()) }
/// # fn main() { try_main().unwrap() }
/// ```
///
/// # Precision warning
///
/// Intersection points may not _exactly_ lie on the line between `from` and `to`, either due to
/// loss of precision or as the exact value may not be representable with the underlying
/// floating point number.
///
/// Thus, iterating a `LineIntersectionIterator::new_from_handles(&cdt, from, to)` will often
/// not return only `Intersection::EdgeOverlap` as would be expected. Instead, use the returned
/// `Vec` to identify the edges that form the new constraint.
/// The absolute deviation from the correct position should be minimal, especially when using
/// `f64` coordinates as storage type.
pub fn add_constraint_and_split<C>(
&mut self,
from: FixedVertexHandle,
to: FixedVertexHandle,
vertex_constructor: C,
) -> Vec<FixedDirectedEdgeHandle>
where
C: Fn(Point2<<V as HasPosition>::Scalar>) -> V,
{
let from_pos = self.vertex(from).position();
let to_pos = self.vertex(to).position();
self.try_add_constraint_inner(from, to, |edge| {
let [p0, p1] = edge.positions();
let line_intersection = get_edge_intersections(p0, p1, from_pos, to_pos);
let new_vertex = vertex_constructor(line_intersection);
assert_eq!(new_vertex.position(), line_intersection);
ConflictResolution::Split(new_vertex)
})
}
}
/// Describes all possible ways in which conflict regions which are created while adding a
/// constraint edge may end.
enum ConflictRegionEnd<V> {
/// Conflict group ends with an existing vertex
Existing(FixedVertexHandle),
/// Special case of "Existing" - the constraint edge overlaps any existing edge which implies
/// that the conflict group also ends on an existing vertex.
/// However, it makes sense to handle this specially to prevent having to look up the overlapped
/// edge later.
EdgeOverlap(FixedDirectedEdgeHandle),
/// The conflict region ends in a vertex that splits an existing constraint edge. Usually, this
/// vertex is constructed anew and given by the `Ok` case.
/// In rare cases, the split vertex may be an existing vertex that does not lie exactly on the
/// line due to rounding issues. This is indicated by the `Err` case. The constraint edge that
/// should be split is the second field.
ConstraintEdgeSplit(Result<V, FixedVertexHandle>, FixedDirectedEdgeHandle),
}
/// Represents a conflict region that does not yet fully exist as a vertex may be missing. This can
/// happen if adding a constraint edge should split any intersecting existing edge.
/// This will eventually be turned into a "real" conflict group (described as a list of edges) by
/// inserting the missing vertex.
struct InitialConflictRegion<V> {
conflict_edges: Vec<FixedDirectedEdgeHandle>,
group_end: ConflictRegionEnd<V>,
}
enum ConflictResolution<V> {
Cancel,
Split(V),
}
pub fn get_edge_intersections<S: SpadeNum + Float>(
p1: Point2<S>,
p2: Point2<S>,
p3: Point2<S>,
p4: Point2<S>,
) -> Point2<S> {
let p1 = p1.to_f64();
let p2 = p2.to_f64();
let p3 = p3.to_f64();
let p4 = p4.to_f64();
let a1 = p2.y - p1.y;
let b1 = p1.x - p2.x;
let c1 = a1 * p1.x + b1 * p1.y;
let a2 = p4.y - p3.y;
let b2 = p3.x - p4.x;
let c2 = a2 * p3.x + b2 * p3.y;
let determinant = a1 * b2 - a2 * b1;
let x: f64;
let y: f64;
if determinant == 0.0 {
x = f64::infinity();
y = f64::infinity();
} else {
x = (b2 * c1 - b1 * c2) / determinant;
y = (a1 * c2 - a2 * c1) / determinant;
}
[x, y]
.map(|s| <S as NumCast>::from(s).unwrap_or_else(|| (s as f32).into()))
.into()
}
#[cfg(test)]
mod test {
use alloc::{vec, vec::Vec};
use rand::distributions::{Distribution, Uniform};
use rand::{Rng, SeedableRng};
use crate::delaunay_core::{FixedDirectedEdgeHandle, TriangulationExt};
use crate::handles::FixedVertexHandle;
use crate::test_utilities::*;
use crate::{DelaunayTriangulation, InsertionError, Point2, Triangulation};
use super::ConstrainedDelaunayTriangulation;
type Cdt = ConstrainedDelaunayTriangulation<Point2<f64>>;
type Delaunay = DelaunayTriangulation<Point2<f64>>;
#[test]
fn test_into() -> Result<(), InsertionError> {
let points = random_points_with_seed(100, SEED);
let delaunay = DelaunayTriangulation::<_>::bulk_load(points.clone())?;
let cdt = Cdt::from(delaunay.clone());
assert_eq!(delaunay.num_vertices(), cdt.num_vertices());
assert_eq!(delaunay.num_directed_edges(), cdt.num_directed_edges());
assert_eq!(cdt.num_constraints, 0);
Ok(())
}
#[test]
fn test_add_same_from_and_to_constraint() -> Result<(), InsertionError> {
let mut cdt = Cdt::new();
let v0 = cdt.insert(Point2::new(0.0, 0.0))?;
cdt.insert(Point2::new(2.0, 2.0))?;
cdt.insert(Point2::new(1.0, 2.0))?;
assert!(!cdt.add_constraint(v0, v0));
assert!(cdt.try_add_constraint(v0, v0).is_empty());
let new_point = Point2::new(3.1, 2.0);
assert!(!cdt.add_constraint_edge(new_point, new_point)?);
assert_eq!(0, cdt.num_constraints());
assert_eq!(4, cdt.num_vertices());
cdt.cdt_sanity_check();
Ok(())
}
#[test]
fn test_add_single_simple_constraint() -> Result<(), InsertionError> {
let mut cdt = Cdt::new();
let v0 = cdt.insert(Point2::new(0.0, 0.0))?;
let v1 = cdt.insert(Point2::new(2.0, 2.0))?;
let v2 = cdt.insert(Point2::new(1.0, 0.5))?;
let v3 = cdt.insert(Point2::new(0.5, 1.0))?;
assert!(cdt.get_edge_from_neighbors(v0, v1).is_none());
assert!(cdt.get_edge_from_neighbors(v2, v3).is_some());
assert!(cdt.add_constraint(v1, v0));
assert!(!cdt.add_constraint(v0, v1));
let edge = cdt
.get_edge_from_neighbors(v0, v1)
.expect("Expected constraint edge")
.as_undirected()
.fix();
assert!(cdt.get_edge_from_neighbors(v2, v3).is_none());
assert!(cdt.is_constraint_edge(edge));
cdt.cdt_sanity_check();
Ok(())
}
#[test]
fn test_existing_edge_constraint() -> Result<(), InsertionError> {
let mut cdt = Cdt::new();
let v0 = cdt.insert(Point2::new(0.0, 0.0))?;
let v1 = cdt.insert(Point2::new(2.0, 2.0))?;
let v2 = cdt.insert(Point2::new(1.0, 0.0))?;
assert!(cdt.add_constraint(v0, v1));
assert!(cdt.add_constraint(v0, v2));
assert!(cdt.add_constraint(v1, v2));
for edge in cdt.undirected_edges() {
assert!(cdt.is_constraint_edge(edge.fix()));
}
assert!(!cdt.add_constraint(v1, v0));
assert!(!cdt.add_constraint(v1, v2));
assert_eq!(cdt.num_constraints, 3);
Ok(())
}
#[test]
fn test_mid_overlapping_constraint() -> Result<(), InsertionError> {
let mut cdt = Cdt::new();
let v0 = cdt.insert(Point2::new(0.0, 0.5))?;
let v1 = cdt.insert(Point2::new(2.0, 0.5))?;
let v2 = cdt.insert(Point2::new(3.0, 0.5))?;
let v3 = cdt.insert(Point2::new(5.0, 0.5))?;
cdt.insert(Point2::new(1.0, 1.0))?;
cdt.insert(Point2::new(1.0, 0.0))?;
cdt.insert(Point2::new(3.0, 1.0))?;
cdt.insert(Point2::new(3.0, 0.0))?;
assert!(cdt.get_edge_from_neighbors(v1, v2).is_some());
let mut copy = cdt.clone();
assert!(cdt.add_constraint(v0, v3));
assert_eq!(cdt.num_constraints(), 3);
copy.add_constraint(v2, v3);
assert_eq!(copy.num_constraints(), 1);
copy.add_constraint(v0, v3);
assert_eq!(copy.num_constraints(), 3);
Ok(())
}
#[test]
fn test_add_single_complex_constraint() -> Result<(), InsertionError> {
let mut cdt = Cdt::new();
let v0 = cdt.insert(Point2::new(0.0, 0.0))?;
cdt.insert(Point2::new(1.0, 0.0))?;
cdt.insert(Point2::new(0.0, 1.0))?;
cdt.insert(Point2::new(2.0, 1.0))?;
let v1 = cdt.insert(Point2::new(2.0, 2.0))?;
assert!(cdt.get_edge_from_neighbors(v0, v1).is_none());
cdt.add_constraint(v0, v1);
cdt.cdt_sanity_check();
let edge = cdt
.get_edge_from_neighbors(v0, v1)
.expect("Expected constraint edge")
.fix()
.as_undirected();
assert!(cdt.is_constraint_edge(edge));
Ok(())
}
#[test]
fn test_add_single_constraint() -> Result<(), InsertionError> {
let points = random_points_with_seed(1000, SEED);
let mut cdt = Cdt::new();
assert_eq!(cdt.num_constraints(), 0);
let mut handles = Vec::new();
cdt.cdt_sanity_check();
for point in points.into_iter() {
handles.push(cdt.insert(point)?);
}
cdt.add_constraint(handles[40], handles[200]);
assert_eq!(cdt.num_constraints(), 1);
cdt.cdt_sanity_check();
Ok(())
}
#[test]
fn test_add_border_constraint() -> Result<(), InsertionError> {
let points = random_points_with_seed(1000, SEED);
let mut cdt = Cdt::new();
let mut max_y = -f64::MAX;
for point in points {
max_y = max_y.max(point.y);
cdt.insert(point)?;
}
let v0 = cdt.insert(Point2::new(-20., max_y + 10.))?;
let v1 = cdt.insert(Point2::new(20., max_y + 10.))?;
cdt.add_constraint(v0, v1);
assert_eq!(cdt.num_constraints(), 1);
cdt.cdt_sanity_check();
Ok(())
}
#[test]
fn test_add_multiple_constraints_overlapping() -> Result<(), InsertionError> {
test_add_multiple_constraints(true)
}
#[test]
fn test_add_multiple_constraints_non_overlapping() -> Result<(), InsertionError> {
test_add_multiple_constraints(false)
}
fn test_add_multiple_constraints(overlapping: bool) -> Result<(), InsertionError> {
const RANGE: f64 = 10.;
let seed = if overlapping { SEED } else { SEED2 };
let points = random_points_in_range(RANGE, 1000, seed);
let mut cdt = Cdt::new();
for point in points {
cdt.insert(point)?;
}
let seed = if overlapping { SEED } else { SEED2 };
let delaunay_points = random_points_in_range(RANGE * 0.9, 80, seed);
// Use a delaunay triangulation to "generate" non-intersecting constraint edges
let mut d = Delaunay::new();
for p in delaunay_points {
d.insert(p)?;
}
let mut used_vertices = hashbrown::HashSet::new();
let mut inserted_constraints = Vec::new();
for v in d.vertices() {
// Insert only edges that do not touch at the end points if
// overlapping is false
if overlapping || used_vertices.insert(v.fix()) {
let out_edge = v.out_edge().unwrap();
let to = out_edge.to();
used_vertices.insert(to.fix());
let h0 = cdt.insert(v.position())?;
let h1 = cdt.insert(to.position())?;
if cdt.add_constraint(h0, h1) {
inserted_constraints.push((h0, h1));
}
cdt.cdt_sanity_check();
assert_eq!(cdt.num_constraints(), inserted_constraints.len());
}
}
// Check if all constraints still exists
for (from, to) in inserted_constraints {
assert!(cdt.exists_constraint(from, to));
}
cdt.cdt_sanity_check();
Ok(())
}
#[test]
fn crash_case() -> Result<(), InsertionError> {
let mut cdt = Cdt::new();
cdt.insert(Point2::new(-8.403036273981348, -0.2248814041797189))?;
cdt.insert(Point2::new(-8.353215494321136, 0.6088667888877364))?;
cdt.insert(Point2::new(-7.811923439447166, -0.20003314976217013))?;
cdt.insert(Point2::new(-7.710431174668773, 0.40691184742787456))?;
let v0 = cdt.insert(Point2::new(-8.907731924022768, 1.7433952434737847))?;
let v1 = cdt.insert(Point2::new(-7.899415172394501, -1.4867902598716558))?;
cdt.cdt_sanity_check();
cdt.add_constraint(v0, v1);
cdt.cdt_sanity_check();
Ok(())
}
#[test]
fn test_split_constraint() -> Result<(), InsertionError> {
let mut cdt = Cdt::new();
cdt.insert(Point2::new(0.0, 0.0))?;
cdt.insert(Point2::new(1.0, 0.0))?;
cdt.insert(Point2::new(0.0, 1.0))?;
let v0 = cdt.insert(Point2::new(0.0, 0.5))?;
let v_last = cdt.insert(Point2::new(1.0, 0.5))?;
cdt.add_constraint(v0, v_last);
assert_eq!(cdt.num_constraints(), 1);
// These points split an existing constraint
let v1 = cdt.insert(Point2::new(0.25, 0.5))?;
assert_eq!(cdt.num_constraints(), 2);
let v2 = cdt.insert(Point2::new(0.75, 0.5))?;
assert_eq!(cdt.num_constraints(), 3);
assert!(cdt.exists_constraint(v0, v1));
assert!(cdt.exists_constraint(v1, v2));
assert!(cdt.exists_constraint(v2, v_last));
cdt.cdt_sanity_check();
Ok(())
}
#[test]
fn test_simple_retriangulation() -> Result<(), InsertionError> {
let mut cdt = Cdt::new();
let v0 = cdt.insert(Point2::new(0.0, 0.0))?;
cdt.insert(Point2::new(1.0, 0.25))?;
cdt.insert(Point2::new(1.0, -0.25))?;
let v3 = cdt.insert(Point2::new(2.0, 0.75))?;
let v4 = cdt.insert(Point2::new(2.5, -0.3))?;
cdt.insert(Point2::new(2.75, 0.75))?;
cdt.insert(Point2::new(3.0, 0.75))?;
cdt.insert(Point2::new(4.0, 0.25))?;
cdt.insert(Point2::new(4.0, -0.25))?;
let v7 = cdt.insert(Point2::new(5.0, 0.0))?;
assert!(cdt.get_edge_from_neighbors(v3, v4).is_some());
cdt.add_constraint(v0, v7);
assert!(cdt.get_edge_from_neighbors(v0, v7).is_some());
assert!(cdt.get_edge_from_neighbors(v3, v4).is_none());
cdt.cdt_sanity_check();
Ok(())
}
#[test]
fn test_add_constraint_over_point() -> Result<(), InsertionError> {
let mut cdt = Cdt::new();
let v0 = cdt.insert(Point2::new(0.0, 0.0))?;
let v1 = cdt.insert(Point2::new(1.0, 0.0))?;
let v2 = cdt.insert(Point2::new(2.0, 0.0))?;
cdt.insert(Point2::new(0.0, 1.0))?;
cdt.add_constraint(v0, v2);
assert_eq!(cdt.num_constraints(), 2);
assert!(cdt.exists_constraint(v0, v1));
assert!(cdt.exists_constraint(v1, v2));
cdt.cdt_sanity_check();
Ok(())
}
fn test_cdt() -> Result<Cdt, InsertionError> {
let mut cdt = Cdt::new();
let v0 = cdt.insert(Point2::new(1.0, 0.0))?;
let v1 = cdt.insert(Point2::new(0.0, 1.0))?;
cdt.insert(Point2::new(0.0, 0.0))?;
cdt.insert(Point2::new(1.0, 1.0))?;
cdt.add_constraint(v0, v1);
Ok(cdt)
}
#[test]
fn test_check_intersects_constraint_edge() -> Result<(), InsertionError> {
let cdt = test_cdt()?;
let from = Point2::new(0.2, 0.2);
let to = Point2::new(0.6, 0.7);
assert!(cdt.intersects_constraint(from, to));
assert!(cdt.intersects_constraint(to, from));
let to = Point2::new(-0.5, 0.2);
assert!(!cdt.intersects_constraint(from, to));
let from = Point2::new(0.5, 0.5);
assert!(cdt.intersects_constraint(from, to));
assert!(cdt.intersects_constraint(to, from));
Ok(())
}
#[test]
fn test_add_constraint_degenerate() -> Result<(), InsertionError> {
let mut cdt = Cdt::new();
let v0 = cdt.insert(Point2::new(0.0, 0.0))?;
let v1 = cdt.insert(Point2::new(0.0, 1.0))?;
assert!(cdt.add_constraint(v0, v1));
assert!(!cdt.add_constraint(v1, v0));
assert_eq!(cdt.num_constraints(), 1);
let mut cdt = Cdt::new();
let v0 = cdt.insert(Point2::new(0.0, 0.0))?;
let v1 = cdt.insert(Point2::new(0.0, 2.0))?;
cdt.insert(Point2::new(0.0, 1.0))?;
assert!(cdt.add_constraint(v0, v1));
assert_eq!(cdt.num_constraints(), 2);
Ok(())
}
fn random_points_on_line<R>(
range: i64,
num_points: usize,
rng: &mut R,
line_dir: Point2<f64>,
) -> Vec<Point2<f64>>
where
R: Rng,
{
let mut result = Vec::with_capacity(num_points);
let range = Uniform::new(-range, range);
for _ in 0..num_points {
let factor = range.sample(rng);
result.push(line_dir.mul(factor as f64));
}
result
}
#[test]
fn fuzz_test_on_line() -> Result<(), InsertionError> {
// Generates points on a single line and randomly connects
// them with constraints.
let seed = SEED;
const RANGE: i64 = 10000;
const NUM_POINTS: usize = 1000;
let mut rng = rand::rngs::StdRng::from_seed(*seed);
let points = random_points_on_line(RANGE, NUM_POINTS, &mut rng, Point2::new(1.0, 0.0));
let mut cdt = ConstrainedDelaunayTriangulation::<_>::new();
for ps in points.chunks(2) {
let from = ps[0];
let to = ps[1];
let from = cdt.insert(from)?;
let to = cdt.insert(to)?;
let should_add_constraint: bool = rng.gen();
if from != to && should_add_constraint {
cdt.add_constraint(from, to);
}
cdt.cdt_sanity_check();
}
Ok(())
}
#[test]
fn fuzz_test_on_grid() -> Result<(), InsertionError> {
use rand::seq::SliceRandom;
// Generates points on a grid and randomly connects
// them with non-intersecting constraints
let seed = SEED;
let mut points = Vec::with_capacity((RANGE * RANGE) as usize);
const RANGE: i64 = 30;
const NUM_CONSTRAINTS: usize = 2000;
for x in -RANGE..RANGE {
for y in -RANGE..RANGE {
points.push(Point2::new(x as f64, y as f64));
}
}
let mut rng = rand::rngs::StdRng::from_seed(*seed);
points.shuffle(&mut rng);
let mut cdt = Cdt::new();
for p in points {
cdt.insert(p)?;
}
let range = Uniform::new(-RANGE, RANGE);
let directions_and_offset = [
(Point2::new(1.0, 0.0), Point2::new(0.0, 1.0)),
(Point2::new(0.0, 1.0), Point2::new(1.0, 0.0)),
(Point2::new(1.0, 1.0), Point2::new(0.0, 0.0)),
];
for _ in 0..NUM_CONSTRAINTS {
let &(direction, offset) = directions_and_offset.choose(&mut rng).unwrap();
let factor1 = range.sample(&mut rng);
let factor2 = range.sample(&mut rng);
let p1 = offset.add(direction.mul(factor1 as f64));
let p2 = offset.add(direction.mul(factor2 as f64));
if p1 != p2 {
cdt.add_constraint_edge(p1, p2)?;
}
}
cdt.cdt_sanity_check();
Ok(())
}
#[test]
#[should_panic]
fn test_panic_when_intersecting_a_constraint_edge() {
let mut cdt = Cdt::new();
let v0 = cdt.insert(Point2::new(0.0, 0.0)).unwrap();
let v1 = cdt.insert(Point2::new(1.0, 0.0)).unwrap();
cdt.add_constraint(v0, v1);
cdt.add_constraint(v0, v1);
cdt.add_constraint_edge(Point2::new(0.0, 0.0), Point2::new(1.0, 0.0))
.unwrap();
cdt.add_constraint_edge(Point2::new(0.5, 0.5), Point2::new(0.5, -0.5))
.unwrap();
}
#[test]
#[should_panic]
fn test_panic_when_intersecting_a_complex_constraint_edge() {
let mut cdt = Cdt::new();
let v0 = cdt.insert(Point2::new(0.5, 2.0)).unwrap();
cdt.insert(Point2::new(0.0, 1.5)).unwrap();
cdt.insert(Point2::new(1.0, 1.5)).unwrap();
cdt.add_constraint_edge(Point2::new(0.0, 0.5), Point2::new(1.0, 0.5))
.unwrap();
let v1 = cdt.insert(Point2::new(0.5, 0.0)).unwrap();
cdt.add_constraint(v0, v1);
}
#[test]
fn test_cdt_remove_degenerate() -> Result<(), InsertionError> {
let mut cdt = Cdt::new();
let v0 = cdt.insert(Point2::new(0.0, 0.0))?;
let v1 = cdt.insert(Point2::new(1.0, 0.0))?;
let v2 = cdt.insert(Point2::new(0.0, 1.0))?;
cdt.add_constraint(v0, v1);
cdt.add_constraint(v1, v2);
cdt.add_constraint(v2, v0);
assert_eq!(cdt.num_constraints(), 3);
cdt.remove(v1);
assert_eq!(cdt.num_constraints(), 1);
cdt.cdt_sanity_check();
Ok(())
}
#[test]
fn test_crash_scenario() -> Result<(), InsertionError> {
let mut cdt = Cdt::new();
for point in get_points().iter().cloned() {
cdt.insert(point)?;
}
let from = cdt.insert(Point2::new(3.2348222581121586, -8.136734693290444))?;
cdt.cdt_sanity_check();
let to = cdt.insert(Point2::new(-8.839844309691154, -8.930685085211245))?;
cdt.cdt_sanity_check();
cdt.add_constraint(from, to);
cdt.cdt_sanity_check();
Ok(())
}
fn get_points() -> Vec<Point2<f64>> {
vec![
Point2::new(-3.947938514986289, -8.016680534876258),
Point2::new(-4.016029045366132, -9.680855465455608),
Point2::new(-4.46653326962287, -8.462568264351527),
Point2::new(-7.033691993749462, -8.88072731817851),
Point2::new(-6.058360215097096, -8.644637388990939),
]
}
#[test]
fn test_add_constraint_edges() -> Result<(), InsertionError> {
for is_closed in [true, false] {
let mut cdt = Cdt::new();
const NUM_VERTICES: usize = 51;
let vertices = (0..NUM_VERTICES).map(|i| {
let angle = core::f64::consts::PI * 2.0 * i as f64 / NUM_VERTICES as f64;
let (sin, cos) = angle.sin_cos();
Point2::new(sin, cos)
});
cdt.add_constraint_edges(vertices, is_closed)?;
if is_closed {
assert_eq!(NUM_VERTICES, cdt.num_constraints());
} else {
assert_eq!(NUM_VERTICES - 1, cdt.num_constraints());
}
cdt.cdt_sanity_check();
}
Ok(())
}
#[test]
fn test_add_constraint_edges_empty() -> Result<(), InsertionError> {
let mut cdt = Cdt::new();
cdt.add_constraint_edges(core::iter::empty(), false)?;
cdt.add_constraint_edges(core::iter::empty(), true)?;
assert_eq!(cdt.num_vertices(), 0);
assert_eq!(cdt.num_constraints(), 0);
Ok(())
}
#[test]
fn test_add_constraint_edges_single() -> Result<(), InsertionError> {
let mut cdt = Cdt::new();
cdt.add_constraint_edges([Point2::new(1.0, 1.0)], true)?;
cdt.add_constraint_edges([Point2::new(2.0, 3.0)], false)?;
assert_eq!(cdt.num_vertices(), 2);
assert_eq!(cdt.num_constraints(), 0);
Ok(())
}
#[test]
fn test_add_constraint_edges_duplicate() -> Result<(), InsertionError> {
let mut cdt = Cdt::new();
let point = Point2::new(0.0, 1.0);
cdt.add_constraint_edges([point, point], true)?;
cdt.add_constraint_edges([point, point], false)?;
cdt.add_constraint_edges([point, point, point], true)?;
cdt.add_constraint_edges([point, point, point], false)?;
assert_eq!(cdt.num_vertices(), 1);
assert_eq!(cdt.num_constraints(), 0);
cdt.cdt_sanity_check();
Ok(())
}
#[test]
fn test_clear() -> Result<(), InsertionError> {
let mut cdt = test_cdt()?;
cdt.clear();
assert_eq!(cdt.num_constraints(), 0);
assert_eq!(cdt.num_all_faces(), 1);
assert_eq!(cdt.num_vertices(), 0);
assert_eq!(cdt.num_directed_edges(), 0);
Ok(())
}
#[test]
fn test_cdt_edge_split_degenerate() -> Result<(), InsertionError> {
let mut cdt = Cdt::new();
cdt.add_constraint_edge(Point2::new(-10.0, -10.0), Point2::new(20.0, -10.0))?;
cdt.insert(Point2::new(0.0, -10.0))?;
assert_eq!(cdt.num_constraints(), 2);
Ok(())
}
#[test]
fn infinite_loop_bug() -> Result<(), InsertionError> {
// See https://github.com/Stoeoef/spade/issues/98
let mut triangulation = Cdt::default();
let start = Point2::new(-21.296192169189453, 9.872323036193848);
let edges = [
(
Point2::new(-20.926544189453125, 16.53529167175293),
Point2::new(-27.772645950317383, 4.197676658630371),
),
(
Point2::new(-20.03745460510254, 12.93730354309082),
Point2::new(-20.930097579956055, 11.93786907196045),
),
(
Point2::new(-15.576859474182129, 8.772907257080078),
Point2::new(-22.373262405395508, 12.348699569702148),
),
(
Point2::new(-10.038422584533691, 5.663522243499756),
Point2::new(-16.382625579833984, 9.09498119354248),
),
(
Point2::new(0.0, 0.0),
Point2::new(-13.11422061920166, 7.30709171295166),
),
(
Point2::new(-19.230497360229492, -3.7645812034606934),
Point2::new(-7.411926746368408, 3.486957311630249),
),
(
Point2::new(-25.072885513305664, -9.239323616027832),
Point2::new(-19.462360382080078, -1.621320366859436),
),
(
Point2::new(-32.41080856323242, -13.72575855255127),
Point2::new(-22.58626365661621, -2.076631784439087),
),
(
Point2::new(-32.41080856323242, -13.72575855255127),
Point2::new(-25.57504653930664, -4.952820301055908),
),
(
Point2::new(-33.08932113647461, 0.31093916296958923),
Point2::new(-25.955543518066406, 0.18878456950187683),
),
];
for (p1, p2) in edges {
let p1 = triangulation.insert(p1)?;
let p2 = triangulation.insert(p2)?;
assert!(triangulation.can_add_constraint(p1, p2));
triangulation.add_constraint(p1, p2);
}
triangulation.insert(start)?;
Ok(())
}
#[test]
pub fn infinite_loop_2() -> Result<(), InsertionError> {
let lines = [
[
Point2::new(0.9296344883099084, 0.03071359966930065),
Point2::new(0.26031306872107085, 0.34491289915959455),
],
[
Point2::new(0.7384289920396423, 0.4981747664368982),
Point2::new(0.06543525273452533, 0.34139896206401854),
],
[
Point2::new(0.9535295221136963, 0.9114305148801416),
Point2::new(0.8306091165247367, 0.08959389670590667),
],
];
let mut cdt = ConstrainedDelaunayTriangulation::<Point2<f64>>::new();
for [a, b] in lines {
let a = cdt.insert(a)?;
let b = cdt.insert(b)?;
cdt.add_constraint_and_split(a, b, |v| v);
}
// This insertion used to fail as the position could not be located
cdt.insert(Point2::new(0.5138795569454557, 0.3186272217036502))?;
Ok(())
}
fn get_cdt_for_try_add_constraint() -> Result<Cdt, InsertionError> {
let vertices = vec![
Point2::new(0.0, -10.0),
Point2::new(76.0, 0.0),
Point2::new(20.0, 20.0),
Point2::new(20.0, -30.0),
Point2::new(45.0, 25.0),
Point2::new(32.0, -35.0),
Point2::new(60.0, 20.0),
Point2::new(60.0, -30.0),
Point2::new(50.0, -34.0),
];
Cdt::bulk_load_cdt_stable(vertices, vec![[3, 2], [5, 4], [7, 6]])
}
#[test]
fn test_single_split() -> Result<(), InsertionError> {
let vertices = vec![
Point2::new(-1.0, 0.0),
Point2::new(1.0, 0.0),
Point2::new(0.0, -1.0),
Point2::new(0.0, 1.0),
];
let mut cdt = Cdt::bulk_load_cdt_stable(vertices, vec![[2, 3]])?;
let initial_num_vertices = cdt.num_vertices();
let from = FixedVertexHandle::from_index(0);
let to = FixedVertexHandle::from_index(1);
let edges = cdt.add_constraint_and_split(from, to, |v| v);
assert_eq!(cdt.num_vertices(), initial_num_vertices + 1);
assert_eq!(edges.len(), 2);
check_returned_edges(&mut cdt, &edges, from, to);
Ok(())
}
#[test]
fn test_multiple_splits() -> Result<(), InsertionError> {
let mut cdt = get_cdt_for_try_add_constraint()?;
let initial_num_vertices = cdt.num_vertices();
let from = FixedVertexHandle::from_index(0);
let to = FixedVertexHandle::from_index(1);
let edges = cdt.add_constraint_and_split(from, to, |v| v);
// 3 new points should be added as the constraint intersects all 3 existing edges
assert_eq!(cdt.num_vertices(), initial_num_vertices + 3);
assert_eq!(edges.len(), 4);
check_returned_edges(&mut cdt, &edges, from, to);
Ok(())
}
#[test]
fn test_try_add_constraint() -> Result<(), InsertionError> {
let mut cdt = get_cdt_for_try_add_constraint()?;
let initial_num_vertices = cdt.num_vertices();
let initial_num_constraints = cdt.num_constraints();
let from = FixedVertexHandle::from_index(0);
let to = FixedVertexHandle::from_index(1);
// Is expected to fail (return an empty list)
let edges = cdt.try_add_constraint(from, to);
assert_eq!(edges, Vec::new());
assert_eq!(cdt.num_vertices(), initial_num_vertices);
assert_eq!(cdt.num_constraints(), initial_num_constraints);
let from = FixedVertexHandle::from_index(2);
let to = FixedVertexHandle::from_index(3);
// Try to add on top of an existing edge
let edges = cdt.try_add_constraint(from, to);
assert_eq!(edges.len(), 1);
Ok(())
}
#[test]
fn test_remove_constraint_edge() -> Result<(), InsertionError> {
let mut cdt = get_cdt_for_try_add_constraint()?;
for edge in cdt.fixed_undirected_edges() {
cdt.remove_constraint_edge(edge);
}
assert_eq!(cdt.num_constraints, 0);
cdt.sanity_check();
let added_edges = cdt.try_add_constraint(
FixedVertexHandle::from_index(0),
FixedVertexHandle::from_index(1),
);
assert_eq!(added_edges.len(), 1);
assert!(cdt.remove_constraint_edge(added_edges.first().unwrap().as_undirected()));
assert_eq!(cdt.num_constraints, 0);
cdt.sanity_check();
Ok(())
}
#[test]
fn edge_intersection_precision_test() -> Result<(), InsertionError> {
let edges = [
[
Point2::new(17.064112, -17.96008),
Point2::new(16.249594, -17.145563),
],
[
Point2::new(-25.290726, -24.435482),
Point2::new(-5.6608872, -24.435482),
],
[
Point2::new(17.878626, -18.774595),
Point2::new(15.435078, -16.331045),
],
];
let mut cdt: ConstrainedDelaunayTriangulation<Point2<f32>> =
ConstrainedDelaunayTriangulation::new();
for edge in edges.iter() {
let point_a = cdt.insert(edge[0])?;
let point_b = cdt.insert(edge[1])?;
// The intersection calculation of the last edge is susceptible to floating point
// inaccuracies. Spade has a fallback routine that is more costly but should handle
// these more robustly. This test is set up to trigger this routine.
cdt.add_constraint_and_split(point_a, point_b, |v| v);
cdt.cdt_sanity_check();
}
assert_eq!(cdt.num_vertices(), 7);
// Gather all constraint edges as [from, to] index tuples
let mut constraint_edges = cdt
.undirected_edges()
.filter(|e| e.is_constraint_edge())
.map(|e| e.vertices().map(|v| v.index()))
.collect::<Vec<_>>();
// Normalize to make comparison order-independent
for edge_pair in &mut constraint_edges {
edge_pair.sort();
}
constraint_edges.sort();
// Manually checked for correctness...
assert_eq!(
constraint_edges,
vec![[0, 6], [1, 6], [2, 3], [4, 6], [5, 6]]
);
Ok(())
}
#[test]
fn edge_intersection_precision_test_2() -> Result<(), InsertionError> {
let edges = [
[
Point2 {
x: 18.69314193725586,
y: 19.589109420776367,
},
Point2 {
x: 18.69314193725586,
y: 20.40362548828125,
},
],
[
Point2 {
x: 19.507659912109375,
y: 20.40362548828125,
},
Point2 {
x: 17.878625869750977,
y: 18.774595260620117,
},
],
[
Point2 {
x: 20.322175979614258,
y: 21.218143463134766,
},
Point2 {
x: 15.435077667236328,
y: 16.331045150756836,
},
],
];
let mut cdt: ConstrainedDelaunayTriangulation<Point2<f64>> =
ConstrainedDelaunayTriangulation::new();
for edge in edges {
let point_a = cdt.insert(edge[0])?;
let point_b = cdt.insert(edge[1])?;
cdt.cdt_sanity_check();
cdt.add_constraint_and_split(point_a, point_b, |v| v);
cdt.cdt_sanity_check();
}
Ok(())
}
#[test]
fn edge_intersection_precision_test_3() -> Result<(), InsertionError> {
let edges = [
[
Point2 {
x: -11.673287,
y: -28.37192,
},
Point2 {
x: -16.214716,
y: -43.81278,
},
],
[
Point2 {
x: 7.4022045,
y: -51.355137,
},
Point2 {
x: -13.92232,
y: -36.01863,
},
],
];
// `f32` is important. This makes the intersection of the two edges coincide with an
// existing vertex, triggering an edge case.
let mut cdt: ConstrainedDelaunayTriangulation<Point2<f32>> =
ConstrainedDelaunayTriangulation::new();
let mut returned_constraint_edge_counts = Vec::new();
for edge in edges {
let point_a = cdt.insert(edge[0])?;
let point_b = cdt.insert(edge[1])?;
returned_constraint_edge_counts
.push(cdt.add_constraint_and_split(point_a, point_b, |v| v).len());
cdt.cdt_sanity_check();
}
// Usually, 4 constraints should be present. However, due to the overlap of the intersection
// point, the second call to `add_constraint_and_split` does not add 2 constraint edges.
// See issue #113 for more information
assert_eq!(cdt.num_constraints, 3);
assert_eq!(returned_constraint_edge_counts, vec![1, 1]);
Ok(())
}
fn check_returned_edges(
cdt: &mut ConstrainedDelaunayTriangulation<Point2<f64>>,
edges: &[FixedDirectedEdgeHandle],
first_vertex: FixedVertexHandle,
last_vertex: FixedVertexHandle,
) {
cdt.cdt_sanity_check();
let last = edges.last().expect("Edges cannot be empty");
let last = cdt.directed_edge(*last);
let mut current_from = first_vertex;
for edge in edges {
let edge = cdt.directed_edge(*edge);
assert_eq!(edge.from().fix(), current_from);
current_from = edge.to().fix();
}
assert_eq!(last.to().fix(), last_vertex);
}
}