1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
#![warn(missing_docs)] //! # SPECS Parallel ECS //! //! This library provides an ECS variant designed for parallel execution //! and convenient usage. It is highly flexible when it comes to actual //! component data and the way it is stored and accessed. //! //! Features: //! //! * depending on chosen features either 0 virtual function calls or one per //! system //! * parallel iteration over components //! * parallel execution of systems //! //! ## High-level overview //! //! One could basically split this library up into two parts: //! The data part and the execution part. //! //! ### The data //! //! `World` is where component storages, resources and entities are stored. //! See the docs of [`World`] for more. //! //! [`World`]: world/struct.World.html //! //! [`Component`]s can be easily implemented like this: //! //! [`Component`]: trait.Component.html //! //! ```rust //! use specs::prelude::*; //! //! struct MyComp; //! //! impl Component for MyComp { //! type Storage = VecStorage<Self>; //! } //! ``` //! //! Or alternatively, if you enable the `specs-derive` feature, you can use a //! custom `#[derive]` macro: //! //! ```rust //! # extern crate specs; //! # extern crate specs_derive; //! # #[cfg(not(feature = "specs-derive"))] use specs_derive::Component; //! # #[cfg(not(feature = "specs-derive"))] use specs::prelude::*; //! //! # #[cfg(feature = "specs-derive")] //! use specs::{prelude::*, Component}; //! //! #[derive(Component)] //! #[storage(VecStorage)] // default is `DenseVecStorage` //! struct MyComp; //! # fn main() {} //! ``` //! //! You can choose different storages according to your needs. //! //! These storages can be [`join`]ed together, for example joining a `Velocity` //! and a `Position` storage means you'll only get entities which have both of //! them. Thanks to rayon, this is even possible in parallel! See [`ParJoin`] //! for more. //! //! [`join`]: trait.Join.html#method.join //! [`ParJoin`]: trait.ParJoin.html //! //! ### System execution //! //! Here we have [`System`] and [`Dispatcher`] as our core types. Both types //! are provided by a library called `shred`. //! //! [`Dispatcher`]: struct.Dispatcher.html //! [`System`]: trait.System.html //! //! The `Dispatcher` can be seen as an optional part here; //! it allows dispatching the systems in parallel, given a list //! of systems and their dependencies on other systems. //! //! If you don't like it, you can also execute the systems yourself //! by using [`RunNow`]. //! //! [`RunNow`]: trait.RunNow.html //! //! `System`s are traits with a `run()` method and an associated //! [`SystemData`], allowing type-safe aspects (knowledge about the //! reads / writes of the systems). //! //! [`SystemData`]: trait.SystemData.html //! //! ## Examples //! //! This is a basic example of using Specs: //! //! ```rust //! extern crate specs; //! //! use specs::prelude::*; //! //! // A component contains data which is //! // associated with an entity. //! //! struct Vel(f32); //! //! impl Component for Vel { //! type Storage = VecStorage<Self>; //! } //! //! struct Pos(f32); //! //! impl Component for Pos { //! type Storage = VecStorage<Self>; //! } //! //! struct SysA; //! //! impl<'a> System<'a> for SysA { //! // These are the resources required for execution. //! // You can also define a struct and `#[derive(SystemData)]`, //! // see the `full` example. //! type SystemData = (WriteStorage<'a, Pos>, ReadStorage<'a, Vel>); //! //! fn run(&mut self, (mut pos, vel): Self::SystemData) { //! // The `.join()` combines multiple components, //! // so we only access those entities which have //! // both of them. //! //! // This joins the component storages for Position //! // and Velocity together; it's also possible to do this //! // in parallel using rayon's `ParallelIterator`s. //! // See `ParJoin` for more. //! for (pos, vel) in (&mut pos, &vel).join() { //! pos.0 += vel.0; //! } //! } //! } //! //! fn main() { //! // The `World` is our //! // container for components //! // and other resources. //! //! let mut world = World::new(); //! world.register::<Pos>(); //! world.register::<Vel>(); //! //! // An entity may or may not contain some component. //! //! world.create_entity().with(Vel(2.0)).with(Pos(0.0)).build(); //! world.create_entity().with(Vel(4.0)).with(Pos(1.6)).build(); //! world.create_entity().with(Vel(1.5)).with(Pos(5.4)).build(); //! //! // This entity does not have `Vel`, so it won't be dispatched. //! world.create_entity().with(Pos(2.0)).build(); //! //! // This builds a dispatcher. //! // The third parameter of `add` specifies //! // logical dependencies on other systems. //! // Since we only have one, we don't depend on anything. //! // See the `full` example for dependencies. //! let mut dispatcher = DispatcherBuilder::new().with(SysA, "sys_a", &[]).build(); //! //! // This dispatches all the systems in parallel (but blocking). //! dispatcher.dispatch(&mut world); //! } //! ``` //! //! You can also easily create new entities on the fly: //! //! ``` //! use specs::prelude::*; //! //! struct EnemySpawner; //! //! impl<'a> System<'a> for EnemySpawner { //! type SystemData = Entities<'a>; //! //! fn run(&mut self, entities: Entities<'a>) { //! let enemy = entities.create(); //! } //! } //! ``` //! //! See the repository's examples directory for more examples. pub extern crate hibitset; #[cfg(feature = "parallel")] pub extern crate rayon; pub extern crate shred; pub extern crate shrev; #[cfg(feature = "uuid_entity")] pub extern crate uuid; #[cfg(feature = "serde")] pub mod saveload; mod bitset; pub mod changeset; pub mod error; pub mod join; pub mod prelude; pub mod storage; pub mod world; pub use hibitset::BitSet; pub use shred::{ Accessor, AccessorCow, BatchAccessor, BatchController, BatchUncheckedWorld, DefaultBatchControllerSystem, Dispatcher, DispatcherBuilder, Read, ReadExpect, RunNow, RunningTime, StaticAccessor, System, SystemData, World, Write, WriteExpect, }; pub use shrev::ReaderId; #[cfg(feature = "parallel")] pub use shred::AsyncDispatcher; #[cfg(feature = "specs-derive")] pub use specs_derive::{Component, ConvertSaveload}; #[cfg(feature = "parallel")] pub use crate::join::ParJoin; pub use crate::{ changeset::ChangeSet, join::Join, storage::{ DefaultVecStorage, DenseVecStorage, FlaggedStorage, HashMapStorage, NullStorage, ReadStorage, Storage, Tracked, VecStorage, WriteStorage, }, world::{Builder, Component, Entities, Entity, EntityBuilder, LazyUpdate, WorldExt}, };