1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
use std::marker::PhantomData;

use either::Either;
use futures_core::stream::BoxStream;
use futures_util::{StreamExt, TryStreamExt};

use crate::arguments::IntoArguments;
use crate::database::{Database, HasArguments, HasStatement, HasStatementCache};
use crate::encode::Encode;
use crate::error::Error;
use crate::executor::{Execute, Executor};
use crate::from_row::FromRow;
use crate::query::{query, query_statement, query_statement_with, query_with, Query};
use crate::types::Type;

/// A single SQL query as a prepared statement, mapping results using [`FromRow`].
/// Returned by [`query_as()`].
#[must_use = "query must be executed to affect database"]
pub struct QueryAs<'q, DB: Database, O, A> {
    pub(crate) inner: Query<'q, DB, A>,
    pub(crate) output: PhantomData<O>,
}

impl<'q, DB, O: Send, A: Send> Execute<'q, DB> for QueryAs<'q, DB, O, A>
where
    DB: Database,
    A: 'q + IntoArguments<'q, DB>,
{
    #[inline]
    fn sql(&self) -> &'q str {
        self.inner.sql()
    }

    #[inline]
    fn statement(&self) -> Option<&<DB as HasStatement<'q>>::Statement> {
        self.inner.statement()
    }

    #[inline]
    fn take_arguments(&mut self) -> Option<<DB as HasArguments<'q>>::Arguments> {
        self.inner.take_arguments()
    }

    #[inline]
    fn persistent(&self) -> bool {
        self.inner.persistent()
    }
}

impl<'q, DB: Database, O> QueryAs<'q, DB, O, <DB as HasArguments<'q>>::Arguments> {
    /// Bind a value for use with this SQL query.
    ///
    /// See [`Query::bind`](Query::bind).
    pub fn bind<T: 'q + Send + Encode<'q, DB> + Type<DB>>(mut self, value: T) -> Self {
        self.inner = self.inner.bind(value);
        self
    }
}

impl<'q, DB, O, A> QueryAs<'q, DB, O, A>
where
    DB: Database + HasStatementCache,
{
    /// If `true`, the statement will get prepared once and cached to the
    /// connection's statement cache.
    ///
    /// If queried once with the flag set to `true`, all subsequent queries
    /// matching the one with the flag will use the cached statement until the
    /// cache is cleared.
    ///
    /// If `false`, the prepared statement will be closed after execution.
    ///
    /// Default: `true`.
    pub fn persistent(mut self, value: bool) -> Self {
        self.inner = self.inner.persistent(value);
        self
    }
}

// FIXME: This is very close, nearly 1:1 with `Map`
// noinspection DuplicatedCode
impl<'q, DB, O, A> QueryAs<'q, DB, O, A>
where
    DB: Database,
    A: 'q + IntoArguments<'q, DB>,
    O: Send + Unpin + for<'r> FromRow<'r, DB::Row>,
{
    /// Execute the query and return the generated results as a stream.
    pub fn fetch<'e, 'c: 'e, E>(self, executor: E) -> BoxStream<'e, Result<O, Error>>
    where
        'q: 'e,
        E: 'e + Executor<'c, Database = DB>,
        DB: 'e,
        O: 'e,
        A: 'e,
    {
        // FIXME: this should have used `executor.fetch()` but that's a breaking change
        // because this technically allows multiple statements in one query string.
        #[allow(deprecated)]
        self.fetch_many(executor)
            .try_filter_map(|step| async move { Ok(step.right()) })
            .boxed()
    }

    /// Execute multiple queries and return the generated results as a stream
    /// from each query, in a stream.
    #[deprecated = "Only the SQLite driver supports multiple statements in one prepared statement and that behavior is deprecated. Use `sqlx::raw_sql()` instead. See https://github.com/launchbadge/sqlx/issues/3108 for discussion."]
    pub fn fetch_many<'e, 'c: 'e, E>(
        self,
        executor: E,
    ) -> BoxStream<'e, Result<Either<DB::QueryResult, O>, Error>>
    where
        'q: 'e,
        E: 'e + Executor<'c, Database = DB>,
        DB: 'e,
        O: 'e,
        A: 'e,
    {
        executor
            .fetch_many(self.inner)
            .map(|v| match v {
                Ok(Either::Right(row)) => O::from_row(&row).map(Either::Right),
                Ok(Either::Left(v)) => Ok(Either::Left(v)),
                Err(e) => Err(e),
            })
            .boxed()
    }

    /// Execute the query and return all the resulting rows collected into a [`Vec`].
    ///
    /// ### Note: beware result set size.
    /// This will attempt to collect the full result set of the query into memory.
    ///
    /// To avoid exhausting available memory, ensure the result set has a known upper bound,
    /// e.g. using `LIMIT`.
    #[inline]
    pub async fn fetch_all<'e, 'c: 'e, E>(self, executor: E) -> Result<Vec<O>, Error>
    where
        'q: 'e,
        E: 'e + Executor<'c, Database = DB>,
        DB: 'e,
        O: 'e,
        A: 'e,
    {
        self.fetch(executor).try_collect().await
    }

    /// Execute the query, returning the first row or [`Error::RowNotFound`] otherwise.
    ///
    /// ### Note: for best performance, ensure the query returns at most one row.
    /// Depending on the driver implementation, if your query can return more than one row,
    /// it may lead to wasted CPU time and bandwidth on the database server.
    ///
    /// Even when the driver implementation takes this into account, ensuring the query returns at most one row
    /// can result in a more optimal query plan.
    ///
    /// If your query has a `WHERE` clause filtering a unique column by a single value, you're good.
    ///
    /// Otherwise, you might want to add `LIMIT 1` to your query.
    pub async fn fetch_one<'e, 'c: 'e, E>(self, executor: E) -> Result<O, Error>
    where
        'q: 'e,
        E: 'e + Executor<'c, Database = DB>,
        DB: 'e,
        O: 'e,
        A: 'e,
    {
        self.fetch_optional(executor)
            .await
            .and_then(|row| row.ok_or(Error::RowNotFound))
    }

    /// Execute the query, returning the first row or `None` otherwise.
    ///
    /// ### Note: for best performance, ensure the query returns at most one row.
    /// Depending on the driver implementation, if your query can return more than one row,
    /// it may lead to wasted CPU time and bandwidth on the database server.
    ///
    /// Even when the driver implementation takes this into account, ensuring the query returns at most one row
    /// can result in a more optimal query plan.
    ///
    /// If your query has a `WHERE` clause filtering a unique column by a single value, you're good.
    ///
    /// Otherwise, you might want to add `LIMIT 1` to your query.
    pub async fn fetch_optional<'e, 'c: 'e, E>(self, executor: E) -> Result<Option<O>, Error>
    where
        'q: 'e,
        E: 'e + Executor<'c, Database = DB>,
        DB: 'e,
        O: 'e,
        A: 'e,
    {
        let row = executor.fetch_optional(self.inner).await?;
        if let Some(row) = row {
            O::from_row(&row).map(Some)
        } else {
            Ok(None)
        }
    }
}

/// Execute a single SQL query as a prepared statement (transparently cached).
/// Maps rows to Rust types using [`FromRow`].
///
/// For details about prepared statements and allowed SQL syntax, see [`query()`][crate::query::query].
///
/// ### Example: Map Rows using Tuples
/// [`FromRow`] is implemented for tuples of up to 16 elements<sup>1</sup>.
/// Using a tuple of N elements will extract the first N columns from each row using [`Decode`][crate::decode::Decode].
/// Any extra columns are ignored.
///
/// See [`sqlx::types`][crate::types] for the types that can be used.
///
/// The `FromRow` implementation will check [`Type::compatible()`] for each column to ensure a compatible type mapping
/// is used. If an incompatible mapping is detected, an error is returned.
/// To statically assert compatible types at compile time, see the `query!()` family of macros.
///
/// **NOTE**: `SELECT *` is not recommended with this approach because the ordering of returned columns may be different
/// than expected, especially when using joins.
///
/// ```rust,no_run
/// # async fn example1() -> sqlx::Result<()> {
/// use sqlx::Connection;
/// use sqlx::PgConnection;
///
/// // This example can be applied to any database as it only uses standard types and syntax.
/// let mut conn: PgConnection = PgConnection::connect("<Database URL>").await?;
///
/// sqlx::raw_sql(
///     "CREATE TABLE users(id INTEGER PRIMARY KEY, username TEXT UNIQUE, created_at TIMESTAMP DEFAULT (now())"
/// )
///     .execute(&mut conn)
///     .await?;
///
/// sqlx::query("INSERT INTO users(id, username) VALUES (1, 'alice'), (2, 'bob');")
///     .execute(&mut conn)
///     .await?;
///
/// // Get the first row of the result (note the `LIMIT 1` for efficiency)
/// // This assumes the `time` feature of SQLx is enabled.
/// let oldest_user: (i64, String, time::OffsetDateTime) = sqlx::query_as(
///     "SELECT id, username, created_at FROM users ORDER BY created_at LIMIT 1"
/// )
///     .fetch_one(&mut conn)
///     .await?;
///
/// assert_eq!(oldest_user.0, 1);
/// assert_eq!(oldest_user.1, "alice");
///
/// // Get at most one row
/// let maybe_charlie: Option<(i64, String, time::OffsetDateTime)> = sqlx::query_as(
///     "SELECT id, username, created_at FROM users WHERE username = 'charlie'"
/// )
///     .fetch_optional(&mut conn)
///     .await?;
///
/// assert_eq!(maybe_charlie, None);
///
/// // Get all rows in result (Beware of the size of the result set! Consider using `LIMIT`)
/// let users: Vec<(i64, String, time::OffsetDateTime)> = sqlx::query_as(
///     "SELECT id, username, created_at FROM users ORDER BY id"
/// )
///     .fetch_all(&mut conn)
///     .await?;
///
/// println!("{users:?}");
/// # Ok(())
/// # }
/// ```
///
/// <sup>1</sup>: It's impossible in Rust to implement a trait for tuples of arbitrary size.
/// For larger result sets, either use an explicit struct (see below) or use [`query()`][crate::query::query]
/// instead and extract columns dynamically.
///
/// ### Example: Map Rows using `#[derive(FromRow)]`
/// Using `#[derive(FromRow)]`, we can create a Rust struct to represent our row type
/// so we can look up fields by name instead of tuple index.
///
/// When querying this way, columns will be matched up to the corresponding fields by name, so `SELECT *` is safe to use.
/// However, you will still want to be aware of duplicate column names in your query when using joins.
///
/// The derived `FromRow` implementation will check [`Type::compatible()`] for each column to ensure a compatible type
/// mapping is used. If an incompatible mapping is detected, an error is returned.
/// To statically assert compatible types at compile time, see the `query!()` family of macros.
///
/// An error will also be returned if an expected column is missing from the result set.
///
/// `#[derive(FromRow)]` supports several control attributes which can be used to change how column names and types
/// are mapped. See [`FromRow`] for details.
///
/// Using our previous table definition, we can convert our queries like so:
/// ```rust,no_run
/// # async fn example2() -> sqlx::Result<()> {
/// use sqlx::Connection;
/// use sqlx::PgConnection;
///
/// use time::OffsetDateTime;
///
/// #[derive(sqlx::FromRow, Debug, PartialEq, Eq)]
/// struct User {
///     id: i64,
///     username: String,
///     // Note: the derive won't compile if the `time` feature of SQLx is not enabled.
///     created_at: OffsetDateTime,
/// }
///
/// let mut conn: PgConnection = PgConnection::connect("<Database URL>").await?;
///
/// // Get the first row of the result (note the `LIMIT 1` for efficiency)
/// let oldest_user: User = sqlx::query_as(
///     "SELECT id, username, created_at FROM users ORDER BY created_at LIMIT 1"
/// )
///     .fetch_one(&mut conn)
///     .await?;
///
/// assert_eq!(oldest_user.id, 1);
/// assert_eq!(oldest_user.username, "alice");
///
/// // Get at most one row
/// let maybe_charlie: Option<User> = sqlx::query_as(
///     "SELECT id, username, created_at FROM users WHERE username = 'charlie'"
/// )
///     .fetch_optional(&mut conn)
///     .await?;
///
/// assert_eq!(maybe_charlie, None);
///
/// // Get all rows in result (Beware of the size of the result set! Consider using `LIMIT`)
/// let users: Vec<User> = sqlx::query_as(
///     "SELECT id, username, created_at FROM users ORDER BY id"
/// )
///     .fetch_all(&mut conn)
///     .await?;
///
/// assert_eq!(users[1].id, 2);
/// assert_eq!(users[1].username, "bob");
/// # Ok(())
/// # }
///
/// ```
#[inline]
pub fn query_as<'q, DB, O>(sql: &'q str) -> QueryAs<'q, DB, O, <DB as HasArguments<'q>>::Arguments>
where
    DB: Database,
    O: for<'r> FromRow<'r, DB::Row>,
{
    QueryAs {
        inner: query(sql),
        output: PhantomData,
    }
}

/// Execute a single SQL query, with the given arguments as a prepared statement (transparently cached).
/// Maps rows to Rust types using [`FromRow`].
///
/// For details about prepared statements and allowed SQL syntax, see [`query()`][crate::query::query].
///
/// For details about type mapping from [`FromRow`], see [`query_as()`].
#[inline]
pub fn query_as_with<'q, DB, O, A>(sql: &'q str, arguments: A) -> QueryAs<'q, DB, O, A>
where
    DB: Database,
    A: IntoArguments<'q, DB>,
    O: for<'r> FromRow<'r, DB::Row>,
{
    QueryAs {
        inner: query_with(sql, arguments),
        output: PhantomData,
    }
}

// Make a SQL query from a statement, that is mapped to a concrete type.
pub fn query_statement_as<'q, DB, O>(
    statement: &'q <DB as HasStatement<'q>>::Statement,
) -> QueryAs<'q, DB, O, <DB as HasArguments<'_>>::Arguments>
where
    DB: Database,
    O: for<'r> FromRow<'r, DB::Row>,
{
    QueryAs {
        inner: query_statement(statement),
        output: PhantomData,
    }
}

// Make a SQL query from a statement, with the given arguments, that is mapped to a concrete type.
pub fn query_statement_as_with<'q, DB, O, A>(
    statement: &'q <DB as HasStatement<'q>>::Statement,
    arguments: A,
) -> QueryAs<'q, DB, O, A>
where
    DB: Database,
    A: IntoArguments<'q, DB>,
    O: for<'r> FromRow<'r, DB::Row>,
{
    QueryAs {
        inner: query_statement_with(statement, arguments),
        output: PhantomData,
    }
}