1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
use either::Either;
use futures_core::stream::BoxStream;
use futures_util::{StreamExt, TryFutureExt, TryStreamExt};
use crate::arguments::IntoArguments;
use crate::database::{Database, HasArguments, HasStatement, HasStatementCache};
use crate::encode::Encode;
use crate::error::Error;
use crate::executor::{Execute, Executor};
use crate::from_row::FromRow;
use crate::query_as::{
query_as, query_as_with, query_statement_as, query_statement_as_with, QueryAs,
};
use crate::types::Type;
/// A single SQL query as a prepared statement which extracts only the first column of each row.
/// Returned by [`query_scalar()`].
#[must_use = "query must be executed to affect database"]
pub struct QueryScalar<'q, DB: Database, O, A> {
pub(crate) inner: QueryAs<'q, DB, (O,), A>,
}
impl<'q, DB: Database, O: Send, A: Send> Execute<'q, DB> for QueryScalar<'q, DB, O, A>
where
A: 'q + IntoArguments<'q, DB>,
{
#[inline]
fn sql(&self) -> &'q str {
self.inner.sql()
}
fn statement(&self) -> Option<&<DB as HasStatement<'q>>::Statement> {
self.inner.statement()
}
#[inline]
fn take_arguments(&mut self) -> Option<<DB as HasArguments<'q>>::Arguments> {
self.inner.take_arguments()
}
#[inline]
fn persistent(&self) -> bool {
Execute::persistent(&self.inner)
}
}
impl<'q, DB: Database, O> QueryScalar<'q, DB, O, <DB as HasArguments<'q>>::Arguments> {
/// Bind a value for use with this SQL query.
///
/// See [`Query::bind`](crate::query::Query::bind).
pub fn bind<T: 'q + Send + Encode<'q, DB> + Type<DB>>(mut self, value: T) -> Self {
self.inner = self.inner.bind(value);
self
}
}
impl<'q, DB, O, A> QueryScalar<'q, DB, O, A>
where
DB: Database + HasStatementCache,
{
/// If `true`, the statement will get prepared once and cached to the
/// connection's statement cache.
///
/// If queried once with the flag set to `true`, all subsequent queries
/// matching the one with the flag will use the cached statement until the
/// cache is cleared.
///
/// If `false`, the prepared statement will be closed after execution.
///
/// Default: `true`.
pub fn persistent(mut self, value: bool) -> Self {
self.inner = self.inner.persistent(value);
self
}
}
// FIXME: This is very close, nearly 1:1 with `Map`
// noinspection DuplicatedCode
impl<'q, DB, O, A> QueryScalar<'q, DB, O, A>
where
DB: Database,
O: Send + Unpin,
A: 'q + IntoArguments<'q, DB>,
(O,): Send + Unpin + for<'r> FromRow<'r, DB::Row>,
{
/// Execute the query and return the generated results as a stream.
#[inline]
pub fn fetch<'e, 'c: 'e, E>(self, executor: E) -> BoxStream<'e, Result<O, Error>>
where
'q: 'e,
E: 'e + Executor<'c, Database = DB>,
DB: 'e,
A: 'e,
O: 'e,
{
self.inner.fetch(executor).map_ok(|it| it.0).boxed()
}
/// Execute multiple queries and return the generated results as a stream
/// from each query, in a stream.
#[inline]
#[deprecated = "Only the SQLite driver supports multiple statements in one prepared statement and that behavior is deprecated. Use `sqlx::raw_sql()` instead. See https://github.com/launchbadge/sqlx/issues/3108 for discussion."]
pub fn fetch_many<'e, 'c: 'e, E>(
self,
executor: E,
) -> BoxStream<'e, Result<Either<DB::QueryResult, O>, Error>>
where
'q: 'e,
E: 'e + Executor<'c, Database = DB>,
DB: 'e,
A: 'e,
O: 'e,
{
#[allow(deprecated)]
self.inner
.fetch_many(executor)
.map_ok(|v| v.map_right(|it| it.0))
.boxed()
}
/// Execute the query and return all the resulting rows collected into a [`Vec`].
///
/// ### Note: beware result set size.
/// This will attempt to collect the full result set of the query into memory.
///
/// To avoid exhausting available memory, ensure the result set has a known upper bound,
/// e.g. using `LIMIT`.
#[inline]
pub async fn fetch_all<'e, 'c: 'e, E>(self, executor: E) -> Result<Vec<O>, Error>
where
'q: 'e,
E: 'e + Executor<'c, Database = DB>,
DB: 'e,
(O,): 'e,
A: 'e,
{
self.inner
.fetch(executor)
.map_ok(|it| it.0)
.try_collect()
.await
}
/// Execute the query, returning the first row or [`Error::RowNotFound`] otherwise.
///
/// ### Note: for best performance, ensure the query returns at most one row.
/// Depending on the driver implementation, if your query can return more than one row,
/// it may lead to wasted CPU time and bandwidth on the database server.
///
/// Even when the driver implementation takes this into account, ensuring the query returns at most one row
/// can result in a more optimal query plan.
///
/// If your query has a `WHERE` clause filtering a unique column by a single value, you're good.
///
/// Otherwise, you might want to add `LIMIT 1` to your query.
#[inline]
pub async fn fetch_one<'e, 'c: 'e, E>(self, executor: E) -> Result<O, Error>
where
'q: 'e,
E: 'e + Executor<'c, Database = DB>,
DB: 'e,
O: 'e,
A: 'e,
{
self.inner.fetch_one(executor).map_ok(|it| it.0).await
}
/// Execute the query, returning the first row or `None` otherwise.
///
/// ### Note: for best performance, ensure the query returns at most one row.
/// Depending on the driver implementation, if your query can return more than one row,
/// it may lead to wasted CPU time and bandwidth on the database server.
///
/// Even when the driver implementation takes this into account, ensuring the query returns at most one row
/// can result in a more optimal query plan.
///
/// If your query has a `WHERE` clause filtering a unique column by a single value, you're good.
///
/// Otherwise, you might want to add `LIMIT 1` to your query.
#[inline]
pub async fn fetch_optional<'e, 'c: 'e, E>(self, executor: E) -> Result<Option<O>, Error>
where
'q: 'e,
E: 'e + Executor<'c, Database = DB>,
DB: 'e,
O: 'e,
A: 'e,
{
Ok(self.inner.fetch_optional(executor).await?.map(|it| it.0))
}
}
/// Execute a single SQL query as a prepared statement (transparently cached) and extract the first
/// column of each row.
///
/// Extracts the first column of each row. Additional columns are ignored.
/// Any type that implements `Type<DB> + Decode<DB>` may be used.
///
/// For details about prepared statements and allowed SQL syntax, see [`query()`][crate::query::query].
///
/// ### Example: Simple Lookup
/// If you just want to look up a single value with little fanfare, this API is perfect for you:
///
/// ```rust,no_run
/// # async fn example_lookup() -> Result<(), Box<dyn std::error::Error>> {
/// # let mut conn: sqlx::PgConnection = unimplemented!();
/// use uuid::Uuid;
///
/// // MySQL and MariaDB: use `?`
/// let user_id: Option<Uuid> = sqlx::query_scalar("SELECT user_id FROM users WHERE username = $1")
/// .bind("alice")
/// // Use `&mut` where `conn` is a connection or a transaction, or use `&` for a `Pool`.
/// .fetch_optional(&mut conn)
/// .await?;
///
/// let user_id = user_id.ok_or("unknown user")?;
///
/// # Ok(())
/// # }
/// ```
///
/// Note how we're using `.fetch_optional()` because the lookup may return no results,
/// in which case we need to be able to handle an empty result set.
/// Any rows after the first are ignored.
///
/// ### Example: `COUNT`
/// This API is the easiest way to invoke an aggregate query like `SELECT COUNT(*)`, because you
/// can conveniently extract the result:
///
/// ```rust,no_run
/// # async fn example_count() -> sqlx::Result<()> {
/// # let mut conn: sqlx::PgConnection = unimplemented!();
/// // Note that `usize` is not used here because unsigned integers are generally not supported,
/// // and `usize` doesn't even make sense as a mapping because the database server may have
/// // a completely different architecture.
/// //
/// // `i64` is generally a safe choice for `COUNT`.
/// let count: i64 = sqlx::query_scalar("SELECT COUNT(*) FROM users WHERE accepted_tos IS TRUE")
/// // Use `&mut` where `conn` is a connection or a transaction, or use `&` for a `Pool`.
/// .fetch_one(&mut conn)
/// .await?;
///
/// // The above is functionally equivalent to the following:
/// // Note the trailing comma, required for the compiler to recognize a 1-element tuple.
/// let (count,): (i64,) = sqlx::query_as("SELECT COUNT(*) FROM users WHERE accepted_tos IS TRUE")
/// .fetch_one(&mut conn)
/// .await?;
/// # Ok(())
/// # }
/// ```
///
/// ### Example: `EXISTS`
/// To test if a row exists or not, use `SELECT EXISTS(<query>)`:
///
/// ```rust,no_run
/// # async fn example_exists() -> sqlx::Result<()> {
/// # let mut conn: sqlx::PgConnection = unimplemented!();
/// // MySQL and MariaDB: use `?`
/// let username_taken: bool = sqlx::query_scalar(
/// "SELECT EXISTS(SELECT 1 FROM users WHERE username = $1)"
/// )
/// .bind("alice")
/// // Use `&mut` where `conn` is a connection or a transaction, or use `&` for a `Pool`.
/// .fetch_one(&mut conn)
/// .await?;
/// # Ok(())
/// # }
/// ```
///
/// ### Example: Other Aggregates
/// Be aware that most other aggregate functions return `NULL` if the query yields an empty set:
///
/// ```rust,no_run
/// # async fn example_aggregate() -> sqlx::Result<()> {
/// # let mut conn: sqlx::PgConnection = unimplemented!();
/// let max_upvotes: Option<i64> = sqlx::query_scalar("SELECT MAX(upvotes) FROM posts")
/// // Use `&mut` where `conn` is a connection or a transaction, or use `&` for a `Pool`.
/// .fetch_one(&mut conn)
/// .await?;
/// # Ok(())
/// # }
/// ```
///
/// Note how we're using `Option<i64>` with `.fetch_one()`, because we're always expecting one row
/// but the column value may be `NULL`. If no rows are returned, this will error.
///
/// This is in contrast to using `.fetch_optional()` with `Option<i64>`, which implies that
/// we're expecting _either_ a row with a `i64` (`BIGINT`), _or_ no rows at all.
///
/// Either way, any rows after the first are ignored.
///
/// ### Example: `Vec` of Scalars
/// If you want to collect a single column from a query into a vector,
/// try `.fetch_all()`:
///
/// ```rust,no_run
/// # async fn example_vec() -> sqlx::Result<()> {
/// # let mut conn: sqlx::PgConnection = unimplemented!();
/// let top_users: Vec<String> = sqlx::query_scalar(
/// // Note the `LIMIT` to ensure that this doesn't return *all* users:
/// "SELECT username
/// FROM (
/// SELECT SUM(upvotes) total, user_id
/// FROM posts
/// GROUP BY user_id
/// ) top_users
/// INNER JOIN users USING (user_id)
/// ORDER BY total DESC
/// LIMIT 10"
/// )
/// // Use `&mut` where `conn` is a connection or a transaction, or use `&` for a `Pool`.
/// .fetch_all(&mut conn)
/// .await?;
///
/// // `top_users` could be empty, too.
/// assert!(top_users.len() <= 10);
/// # Ok(())
/// # }
/// ```
#[inline]
pub fn query_scalar<'q, DB, O>(
sql: &'q str,
) -> QueryScalar<'q, DB, O, <DB as HasArguments<'q>>::Arguments>
where
DB: Database,
(O,): for<'r> FromRow<'r, DB::Row>,
{
QueryScalar {
inner: query_as(sql),
}
}
/// Execute a SQL query as a prepared statement (transparently cached), with the given arguments,
/// and extract the first column of each row.
///
/// See [`query_scalar()`] for details.
///
/// For details about prepared statements and allowed SQL syntax, see [`query()`][crate::query::query].
#[inline]
pub fn query_scalar_with<'q, DB, O, A>(sql: &'q str, arguments: A) -> QueryScalar<'q, DB, O, A>
where
DB: Database,
A: IntoArguments<'q, DB>,
(O,): for<'r> FromRow<'r, DB::Row>,
{
QueryScalar {
inner: query_as_with(sql, arguments),
}
}
// Make a SQL query from a statement, that is mapped to a concrete value.
pub fn query_statement_scalar<'q, DB, O>(
statement: &'q <DB as HasStatement<'q>>::Statement,
) -> QueryScalar<'q, DB, O, <DB as HasArguments<'_>>::Arguments>
where
DB: Database,
(O,): for<'r> FromRow<'r, DB::Row>,
{
QueryScalar {
inner: query_statement_as(statement),
}
}
// Make a SQL query from a statement, with the given arguments, that is mapped to a concrete value.
pub fn query_statement_scalar_with<'q, DB, O, A>(
statement: &'q <DB as HasStatement<'q>>::Statement,
arguments: A,
) -> QueryScalar<'q, DB, O, A>
where
DB: Database,
A: IntoArguments<'q, DB>,
(O,): for<'r> FromRow<'r, DB::Row>,
{
QueryScalar {
inner: query_statement_as_with(statement, arguments),
}
}