1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
use std::marker::PhantomData;

use either::Either;
use futures_core::stream::BoxStream;
use futures_util::{future, StreamExt, TryFutureExt, TryStreamExt};

use crate::arguments::{Arguments, IntoArguments};
use crate::database::{Database, HasArguments, HasStatement, HasStatementCache};
use crate::encode::Encode;
use crate::error::Error;
use crate::executor::{Execute, Executor};
use crate::statement::Statement;
use crate::types::Type;

/// A single SQL query as a prepared statement. Returned by [`query()`].
#[must_use = "query must be executed to affect database"]
pub struct Query<'q, DB: Database, A> {
    pub(crate) statement: Either<&'q str, &'q <DB as HasStatement<'q>>::Statement>,
    pub(crate) arguments: Option<A>,
    pub(crate) database: PhantomData<DB>,
    pub(crate) persistent: bool,
}

/// A single SQL query that will map its results to an owned Rust type.
///
/// Executes as a prepared statement.
///
/// Returned by [`Query::try_map`], `query!()`, etc. Has most of the same methods as [`Query`] but
/// the return types are changed to reflect the mapping. However, there is no equivalent of
/// [`Query::execute`] as it doesn't make sense to map the result type and then ignore it.
///
/// [`Query::bind`] is also omitted; stylistically we recommend placing your `.bind()` calls
/// before `.try_map()`. This is also to prevent adding superfluous binds to the result of
/// `query!()` et al.
#[must_use = "query must be executed to affect database"]
pub struct Map<'q, DB: Database, F, A> {
    inner: Query<'q, DB, A>,
    mapper: F,
}

impl<'q, DB, A> Execute<'q, DB> for Query<'q, DB, A>
where
    DB: Database,
    A: Send + IntoArguments<'q, DB>,
{
    #[inline]
    fn sql(&self) -> &'q str {
        match self.statement {
            Either::Right(ref statement) => statement.sql(),
            Either::Left(sql) => sql,
        }
    }

    fn statement(&self) -> Option<&<DB as HasStatement<'q>>::Statement> {
        match self.statement {
            Either::Right(ref statement) => Some(&statement),
            Either::Left(_) => None,
        }
    }

    #[inline]
    fn take_arguments(&mut self) -> Option<<DB as HasArguments<'q>>::Arguments> {
        self.arguments.take().map(IntoArguments::into_arguments)
    }

    #[inline]
    fn persistent(&self) -> bool {
        self.persistent
    }
}

impl<'q, DB: Database> Query<'q, DB, <DB as HasArguments<'q>>::Arguments> {
    /// Bind a value for use with this SQL query.
    ///
    /// If the number of times this is called does not match the number of bind parameters that
    /// appear in the query (`?` for most SQL flavors, `$1 .. $N` for Postgres) then an error
    /// will be returned when this query is executed.
    ///
    /// There is no validation that the value is of the type expected by the query. Most SQL
    /// flavors will perform type coercion (Postgres will return a database error).
    pub fn bind<T: 'q + Send + Encode<'q, DB> + Type<DB>>(mut self, value: T) -> Self {
        if let Some(arguments) = &mut self.arguments {
            arguments.add(value);
        }

        self
    }
}

impl<'q, DB, A> Query<'q, DB, A>
where
    DB: Database + HasStatementCache,
{
    /// If `true`, the statement will get prepared once and cached to the
    /// connection's statement cache.
    ///
    /// If queried once with the flag set to `true`, all subsequent queries
    /// matching the one with the flag will use the cached statement until the
    /// cache is cleared.
    ///
    /// If `false`, the prepared statement will be closed after execution.
    ///
    /// Default: `true`.
    pub fn persistent(mut self, value: bool) -> Self {
        self.persistent = value;
        self
    }
}

impl<'q, DB, A: Send> Query<'q, DB, A>
where
    DB: Database,
    A: 'q + IntoArguments<'q, DB>,
{
    /// Map each row in the result to another type.
    ///
    /// See [`try_map`](Query::try_map) for a fallible version of this method.
    ///
    /// The [`query_as`](super::query_as::query_as) method will construct a mapped query using
    /// a [`FromRow`](super::from_row::FromRow) implementation.
    #[inline]
    pub fn map<F, O>(
        self,
        mut f: F,
    ) -> Map<'q, DB, impl FnMut(DB::Row) -> Result<O, Error> + Send, A>
    where
        F: FnMut(DB::Row) -> O + Send,
        O: Unpin,
    {
        self.try_map(move |row| Ok(f(row)))
    }

    /// Map each row in the result to another type.
    ///
    /// The [`query_as`](super::query_as::query_as) method will construct a mapped query using
    /// a [`FromRow`](super::from_row::FromRow) implementation.
    #[inline]
    pub fn try_map<F, O>(self, f: F) -> Map<'q, DB, F, A>
    where
        F: FnMut(DB::Row) -> Result<O, Error> + Send,
        O: Unpin,
    {
        Map {
            inner: self,
            mapper: f,
        }
    }

    /// Execute the query and return the total number of rows affected.
    #[inline]
    pub async fn execute<'e, 'c: 'e, E>(self, executor: E) -> Result<DB::QueryResult, Error>
    where
        'q: 'e,
        A: 'e,
        E: Executor<'c, Database = DB>,
    {
        executor.execute(self).await
    }

    /// Execute multiple queries and return the rows affected from each query, in a stream.
    #[inline]
    #[deprecated = "Only the SQLite driver supports multiple statements in one prepared statement and that behavior is deprecated. Use `sqlx::raw_sql()` instead. See https://github.com/launchbadge/sqlx/issues/3108 for discussion."]
    pub async fn execute_many<'e, 'c: 'e, E>(
        self,
        executor: E,
    ) -> BoxStream<'e, Result<DB::QueryResult, Error>>
    where
        'q: 'e,
        A: 'e,
        E: Executor<'c, Database = DB>,
    {
        executor.execute_many(self)
    }

    /// Execute the query and return the generated results as a stream.
    #[inline]
    pub fn fetch<'e, 'c: 'e, E>(self, executor: E) -> BoxStream<'e, Result<DB::Row, Error>>
    where
        'q: 'e,
        A: 'e,
        E: Executor<'c, Database = DB>,
    {
        executor.fetch(self)
    }

    /// Execute multiple queries and return the generated results as a stream.
    ///
    /// For each query in the stream, any generated rows are returned first,
    /// then the `QueryResult` with the number of rows affected.
    #[inline]
    #[deprecated = "Only the SQLite driver supports multiple statements in one prepared statement and that behavior is deprecated. Use `sqlx::raw_sql()` instead. See https://github.com/launchbadge/sqlx/issues/3108 for discussion."]
    // TODO: we'll probably still want a way to get the `DB::QueryResult` at the end of a `fetch()` stream.
    pub fn fetch_many<'e, 'c: 'e, E>(
        self,
        executor: E,
    ) -> BoxStream<'e, Result<Either<DB::QueryResult, DB::Row>, Error>>
    where
        'q: 'e,
        A: 'e,
        E: Executor<'c, Database = DB>,
    {
        executor.fetch_many(self)
    }

    /// Execute the query and return all the resulting rows collected into a [`Vec`].
    ///
    /// ### Note: beware result set size.
    /// This will attempt to collect the full result set of the query into memory.
    ///
    /// To avoid exhausting available memory, ensure the result set has a known upper bound,
    /// e.g. using `LIMIT`.
    #[inline]
    pub async fn fetch_all<'e, 'c: 'e, E>(self, executor: E) -> Result<Vec<DB::Row>, Error>
    where
        'q: 'e,
        A: 'e,
        E: Executor<'c, Database = DB>,
    {
        executor.fetch_all(self).await
    }

    /// Execute the query, returning the first row or [`Error::RowNotFound`] otherwise.
    ///
    /// ### Note: for best performance, ensure the query returns at most one row.
    /// Depending on the driver implementation, if your query can return more than one row,
    /// it may lead to wasted CPU time and bandwidth on the database server.
    ///
    /// Even when the driver implementation takes this into account, ensuring the query returns at most one row
    /// can result in a more optimal query plan.
    ///
    /// If your query has a `WHERE` clause filtering a unique column by a single value, you're good.
    ///
    /// Otherwise, you might want to add `LIMIT 1` to your query.
    #[inline]
    pub async fn fetch_one<'e, 'c: 'e, E>(self, executor: E) -> Result<DB::Row, Error>
    where
        'q: 'e,
        A: 'e,
        E: Executor<'c, Database = DB>,
    {
        executor.fetch_one(self).await
    }

    /// Execute the query, returning the first row or `None` otherwise.
    ///
    /// ### Note: for best performance, ensure the query returns at most one row.
    /// Depending on the driver implementation, if your query can return more than one row,
    /// it may lead to wasted CPU time and bandwidth on the database server.
    ///
    /// Even when the driver implementation takes this into account, ensuring the query returns at most one row
    /// can result in a more optimal query plan.
    ///
    /// If your query has a `WHERE` clause filtering a unique column by a single value, you're good.
    ///
    /// Otherwise, you might want to add `LIMIT 1` to your query.
    #[inline]
    pub async fn fetch_optional<'e, 'c: 'e, E>(self, executor: E) -> Result<Option<DB::Row>, Error>
    where
        'q: 'e,
        A: 'e,
        E: Executor<'c, Database = DB>,
    {
        executor.fetch_optional(self).await
    }
}

impl<'q, DB, F: Send, A: Send> Execute<'q, DB> for Map<'q, DB, F, A>
where
    DB: Database,
    A: IntoArguments<'q, DB>,
{
    #[inline]
    fn sql(&self) -> &'q str {
        self.inner.sql()
    }

    #[inline]
    fn statement(&self) -> Option<&<DB as HasStatement<'q>>::Statement> {
        self.inner.statement()
    }

    #[inline]
    fn take_arguments(&mut self) -> Option<<DB as HasArguments<'q>>::Arguments> {
        self.inner.take_arguments()
    }

    #[inline]
    fn persistent(&self) -> bool {
        self.inner.arguments.is_some()
    }
}

impl<'q, DB, F, O, A> Map<'q, DB, F, A>
where
    DB: Database,
    F: FnMut(DB::Row) -> Result<O, Error> + Send,
    O: Send + Unpin,
    A: 'q + Send + IntoArguments<'q, DB>,
{
    /// Map each row in the result to another type.
    ///
    /// See [`try_map`](Map::try_map) for a fallible version of this method.
    ///
    /// The [`query_as`](super::query_as::query_as) method will construct a mapped query using
    /// a [`FromRow`](super::from_row::FromRow) implementation.
    #[inline]
    pub fn map<G, P>(
        self,
        mut g: G,
    ) -> Map<'q, DB, impl FnMut(DB::Row) -> Result<P, Error> + Send, A>
    where
        G: FnMut(O) -> P + Send,
        P: Unpin,
    {
        self.try_map(move |data| Ok(g(data)))
    }

    /// Map each row in the result to another type.
    ///
    /// The [`query_as`](super::query_as::query_as) method will construct a mapped query using
    /// a [`FromRow`](super::from_row::FromRow) implementation.
    #[inline]
    pub fn try_map<G, P>(
        self,
        mut g: G,
    ) -> Map<'q, DB, impl FnMut(DB::Row) -> Result<P, Error> + Send, A>
    where
        G: FnMut(O) -> Result<P, Error> + Send,
        P: Unpin,
    {
        let mut f = self.mapper;
        Map {
            inner: self.inner,
            mapper: move |row| f(row).and_then(|o| g(o)),
        }
    }

    /// Execute the query and return the generated results as a stream.
    pub fn fetch<'e, 'c: 'e, E>(self, executor: E) -> BoxStream<'e, Result<O, Error>>
    where
        'q: 'e,
        E: 'e + Executor<'c, Database = DB>,
        DB: 'e,
        F: 'e,
        O: 'e,
    {
        // FIXME: this should have used `executor.fetch()` but that's a breaking change
        // because this technically allows multiple statements in one query string.
        #[allow(deprecated)]
        self.fetch_many(executor)
            .try_filter_map(|step| async move {
                Ok(match step {
                    Either::Left(_) => None,
                    Either::Right(o) => Some(o),
                })
            })
            .boxed()
    }

    /// Execute multiple queries and return the generated results as a stream
    /// from each query, in a stream.
    #[deprecated = "Only the SQLite driver supports multiple statements in one prepared statement and that behavior is deprecated. Use `sqlx::raw_sql()` instead."]
    pub fn fetch_many<'e, 'c: 'e, E>(
        mut self,
        executor: E,
    ) -> BoxStream<'e, Result<Either<DB::QueryResult, O>, Error>>
    where
        'q: 'e,
        E: 'e + Executor<'c, Database = DB>,
        DB: 'e,
        F: 'e,
        O: 'e,
    {
        Box::pin(try_stream! {
            let mut s = executor.fetch_many(self.inner);

            while let Some(v) = s.try_next().await? {
                r#yield!(match v {
                    Either::Left(v) => Either::Left(v),
                    Either::Right(row) => {
                        Either::Right((self.mapper)(row)?)
                    }
                });
            }

            Ok(())
        })
    }

    /// Execute the query and return all the resulting rows collected into a [`Vec`].
    ///
    /// ### Note: beware result set size.
    /// This will attempt to collect the full result set of the query into memory.
    ///
    /// To avoid exhausting available memory, ensure the result set has a known upper bound,
    /// e.g. using `LIMIT`.
    pub async fn fetch_all<'e, 'c: 'e, E>(self, executor: E) -> Result<Vec<O>, Error>
    where
        'q: 'e,
        E: 'e + Executor<'c, Database = DB>,
        DB: 'e,
        F: 'e,
        O: 'e,
    {
        self.fetch(executor).try_collect().await
    }

    /// Execute the query, returning the first row or [`Error::RowNotFound`] otherwise.
    ///
    /// ### Note: for best performance, ensure the query returns at most one row.
    /// Depending on the driver implementation, if your query can return more than one row,
    /// it may lead to wasted CPU time and bandwidth on the database server.
    ///
    /// Even when the driver implementation takes this into account, ensuring the query returns at most one row
    /// can result in a more optimal query plan.
    ///
    /// If your query has a `WHERE` clause filtering a unique column by a single value, you're good.
    ///
    /// Otherwise, you might want to add `LIMIT 1` to your query.
    pub async fn fetch_one<'e, 'c: 'e, E>(self, executor: E) -> Result<O, Error>
    where
        'q: 'e,
        E: 'e + Executor<'c, Database = DB>,
        DB: 'e,
        F: 'e,
        O: 'e,
    {
        self.fetch_optional(executor)
            .and_then(|row| match row {
                Some(row) => future::ok(row),
                None => future::err(Error::RowNotFound),
            })
            .await
    }

    /// Execute the query, returning the first row or `None` otherwise.
    ///
    /// ### Note: for best performance, ensure the query returns at most one row.
    /// Depending on the driver implementation, if your query can return more than one row,
    /// it may lead to wasted CPU time and bandwidth on the database server.
    ///
    /// Even when the driver implementation takes this into account, ensuring the query returns at most one row
    /// can result in a more optimal query plan.
    ///
    /// If your query has a `WHERE` clause filtering a unique column by a single value, you're good.
    ///
    /// Otherwise, you might want to add `LIMIT 1` to your query.
    pub async fn fetch_optional<'e, 'c: 'e, E>(mut self, executor: E) -> Result<Option<O>, Error>
    where
        'q: 'e,
        E: 'e + Executor<'c, Database = DB>,
        DB: 'e,
        F: 'e,
        O: 'e,
    {
        let row = executor.fetch_optional(self.inner).await?;

        if let Some(row) = row {
            (self.mapper)(row).map(Some)
        } else {
            Ok(None)
        }
    }
}

/// Execute a single SQL query as a prepared statement (explicitly created).
pub fn query_statement<'q, DB>(
    statement: &'q <DB as HasStatement<'q>>::Statement,
) -> Query<'q, DB, <DB as HasArguments<'_>>::Arguments>
where
    DB: Database,
{
    Query {
        database: PhantomData,
        arguments: Some(Default::default()),
        statement: Either::Right(statement),
        persistent: true,
    }
}

/// Execute a single SQL query as a prepared statement (explicitly created), with the given arguments.
pub fn query_statement_with<'q, DB, A>(
    statement: &'q <DB as HasStatement<'q>>::Statement,
    arguments: A,
) -> Query<'q, DB, A>
where
    DB: Database,
    A: IntoArguments<'q, DB>,
{
    Query {
        database: PhantomData,
        arguments: Some(arguments),
        statement: Either::Right(statement),
        persistent: true,
    }
}

/// Execute a single SQL query as a prepared statement (transparently cached).
///
/// The query string may only contain a single DML statement: `SELECT`, `INSERT`, `UPDATE`, `DELETE` and variants.
/// The SQLite driver does not currently follow this restriction, but that behavior is deprecated.
///
/// The connection will transparently prepare and cache the statement, which means it only needs to be parsed once
/// in the connection's lifetime, and any generated query plans can be retained.
/// Thus, the overhead of executing the statement is amortized.
///
/// Some third-party databases that speak a supported protocol, e.g. CockroachDB or PGBouncer that speak Postgres,
/// may have issues with the transparent caching of prepared statements. If you are having trouble,
/// try setting [`.persistent(false)`][Query::persistent].
///
/// See the [`Query`] type for the methods you may call.
///
/// ### Dynamic Input: Use Query Parameters (Prevents SQL Injection)
/// At some point, you'll likely want to include some form of dynamic input in your query, possibly from the user.
///
/// Your first instinct might be to do something like this:
/// ```rust,no_run
/// # async fn example() -> sqlx::Result<()> {
/// # let mut conn: sqlx::PgConnection = unimplemented!();
/// // Imagine this is input from the user, e.g. a search form on a website.
/// let user_input = "possibly untrustworthy input!";
///
/// // DO NOT DO THIS unless you're ABSOLUTELY CERTAIN it's what you need!
/// let query = format!("SELECT * FROM articles WHERE content LIKE '%{user_input}%'");
/// // where `conn` is `PgConnection` or `MySqlConnection`
/// // or some other type that implements `Executor`.
/// let results = sqlx::query(&query).fetch_all(&mut conn).await?;
/// # }
/// ```
///
/// The example above showcases a **SQL injection vulnerability**, because it's trivial for a malicious user to craft
/// an input that can "break out" of the string literal.
///
/// For example, if they send the input `foo'; DELETE FROM articles; --`
/// then your application would send the following to the database server (line breaks added for clarity):
///
/// ```sql
/// SELECT * FROM articles WHERE content LIKE '%foo';
/// DELETE FROM articles;
/// --%'
/// ```
///
/// In this case, because this interface *always* uses prepared statements, you would likely be fine because prepared
/// statements _generally_ (see above) are only allowed to contain a single query. This would simply return an error.
///
/// However, it would also break on legitimate user input.
/// What if someone wanted to search for the string `Alice's Apples`? It would also return an error because
/// the database would receive a query with a broken string literal (line breaks added for clarity):
///
/// ```sql
/// SELECT * FROM articles WHERE content LIKE '%Alice'
/// s Apples%'
/// ```
///
/// Of course, it's possible to make this syntactically valid by escaping the apostrophe, but there's a better way.
///
/// ##### You should always prefer query parameters for dynamic input.
///
/// When using query parameters, you add placeholders to your query where a value
/// should be substituted at execution time, then call [`.bind()`][Query::bind] with that value.
///
/// The syntax for placeholders is unfortunately not standardized and depends on the database:
///
/// * Postgres and SQLite: use `$1`, `$2`, `$3`, etc.
///     * The number is the Nth bound value, starting from one.
///     * The same placeholder can be used arbitrarily many times to refer to the same bound value.
///     * SQLite technically supports MySQL's syntax as well as others, but we recommend using this syntax
///       as SQLx's SQLite driver is written with it in mind.
/// * MySQL and MariaDB: use `?`.
///     * Placeholders are purely positional, similar to `println!("{}, {}", foo, bar)`.
///     * The order of bindings must match the order of placeholders in the query.
///     * To use a value in multiple places, you must bind it multiple times.
///
/// In both cases, the placeholder syntax acts as a variable expression representing the bound value:
///
/// ```rust,no_run
/// # async fn example2() -> sqlx::Result<()> {
/// # let mut conn: sqlx::PgConnection = unimplemented!();
/// let user_input = "Alice's Apples";
///
/// // Postgres and SQLite
/// let results = sqlx::query(
///     // Notice how we only have to bind the argument once and we can use it multiple times:
///     "SELECT * FROM articles
///      WHERE title LIKE '%' || $1 || '%'
///      OR content LIKE '%' || $1 || '%'"
/// )
///     .bind(user_input)
///     .fetch_all(&mut conn)
///     .await?;
///
/// // MySQL and MariaDB
/// let results = sqlx::query(
///     "SELECT * FROM articles
///      WHERE title LIKE CONCAT('%', ?, '%')
///      OR content LIKE CONCAT('%', ?, '%')"
/// )
///     // If we want to reference the same value multiple times, we have to bind it multiple times:
///     .bind(user_input)
///     .bind(user_input)
///     .fetch_all(&mut conn)
///     .await?;
/// # Ok(())
/// # }
/// ```
/// ##### The value bound to a query parameter is entirely separate from the query and does not affect its syntax.
/// Thus, SQL injection is impossible (barring shenanigans like calling a SQL function that lets you execute a string
/// as a statement) and *all* strings are valid.
///
/// This also means you cannot use query parameters to add conditional SQL fragments.
///
/// **SQLx does not substitute placeholders on the client side**. It is done by the database server itself.
///
/// ##### SQLx supports many different types for parameter binding, not just strings.
/// Any type that implements [`Encode<DB>`][Encode] and [`Type<DB>`] can be bound as a parameter.
///
/// See [the `types` module][crate::types] (links to `sqlx_core::types` but you should use `sqlx::types`) for details.
///
/// As an additional benefit, query parameters are usually sent in a compact binary encoding instead of a human-readable
/// text encoding, which saves bandwidth.
pub fn query<DB>(sql: &str) -> Query<'_, DB, <DB as HasArguments<'_>>::Arguments>
where
    DB: Database,
{
    Query {
        database: PhantomData,
        arguments: Some(Default::default()),
        statement: Either::Left(sql),
        persistent: true,
    }
}

/// Execute a SQL query as a prepared statement (transparently cached), with the given arguments.
///
/// See [`query()`][query] for details, such as supported syntax.
pub fn query_with<'q, DB, A>(sql: &'q str, arguments: A) -> Query<'q, DB, A>
where
    DB: Database,
    A: IntoArguments<'q, DB>,
{
    Query {
        database: PhantomData,
        arguments: Some(arguments),
        statement: Either::Left(sql),
        persistent: true,
    }
}