1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
use std::marker::PhantomData;
use either::Either;
use futures_core::stream::BoxStream;
use futures_util::{StreamExt, TryStreamExt};
use crate::arguments::IntoArguments;
use crate::database::{Database, HasArguments, HasStatement, HasStatementCache};
use crate::encode::Encode;
use crate::error::Error;
use crate::executor::{Execute, Executor};
use crate::from_row::FromRow;
use crate::query::{query, query_statement, query_statement_with, query_with, Query};
use crate::types::Type;
/// A single SQL query as a prepared statement, mapping results using [`FromRow`].
/// Returned by [`query_as()`].
#[must_use = "query must be executed to affect database"]
pub struct QueryAs<'q, DB: Database, O, A> {
pub(crate) inner: Query<'q, DB, A>,
pub(crate) output: PhantomData<O>,
}
impl<'q, DB, O: Send, A: Send> Execute<'q, DB> for QueryAs<'q, DB, O, A>
where
DB: Database,
A: 'q + IntoArguments<'q, DB>,
{
#[inline]
fn sql(&self) -> &'q str {
self.inner.sql()
}
#[inline]
fn statement(&self) -> Option<&<DB as HasStatement<'q>>::Statement> {
self.inner.statement()
}
#[inline]
fn take_arguments(&mut self) -> Option<<DB as HasArguments<'q>>::Arguments> {
self.inner.take_arguments()
}
#[inline]
fn persistent(&self) -> bool {
self.inner.persistent()
}
}
impl<'q, DB: Database, O> QueryAs<'q, DB, O, <DB as HasArguments<'q>>::Arguments> {
/// Bind a value for use with this SQL query.
///
/// See [`Query::bind`](Query::bind).
pub fn bind<T: 'q + Send + Encode<'q, DB> + Type<DB>>(mut self, value: T) -> Self {
self.inner = self.inner.bind(value);
self
}
}
impl<'q, DB, O, A> QueryAs<'q, DB, O, A>
where
DB: Database + HasStatementCache,
{
/// If `true`, the statement will get prepared once and cached to the
/// connection's statement cache.
///
/// If queried once with the flag set to `true`, all subsequent queries
/// matching the one with the flag will use the cached statement until the
/// cache is cleared.
///
/// If `false`, the prepared statement will be closed after execution.
///
/// Default: `true`.
pub fn persistent(mut self, value: bool) -> Self {
self.inner = self.inner.persistent(value);
self
}
}
// FIXME: This is very close, nearly 1:1 with `Map`
// noinspection DuplicatedCode
impl<'q, DB, O, A> QueryAs<'q, DB, O, A>
where
DB: Database,
A: 'q + IntoArguments<'q, DB>,
O: Send + Unpin + for<'r> FromRow<'r, DB::Row>,
{
/// Execute the query and return the generated results as a stream.
pub fn fetch<'e, 'c: 'e, E>(self, executor: E) -> BoxStream<'e, Result<O, Error>>
where
'q: 'e,
E: 'e + Executor<'c, Database = DB>,
DB: 'e,
O: 'e,
A: 'e,
{
// FIXME: this should have used `executor.fetch()` but that's a breaking change
// because this technically allows multiple statements in one query string.
#[allow(deprecated)]
self.fetch_many(executor)
.try_filter_map(|step| async move { Ok(step.right()) })
.boxed()
}
/// Execute multiple queries and return the generated results as a stream
/// from each query, in a stream.
#[deprecated = "Only the SQLite driver supports multiple statements in one prepared statement and that behavior is deprecated. Use `sqlx::raw_sql()` instead. See https://github.com/launchbadge/sqlx/issues/3108 for discussion."]
pub fn fetch_many<'e, 'c: 'e, E>(
self,
executor: E,
) -> BoxStream<'e, Result<Either<DB::QueryResult, O>, Error>>
where
'q: 'e,
E: 'e + Executor<'c, Database = DB>,
DB: 'e,
O: 'e,
A: 'e,
{
executor
.fetch_many(self.inner)
.map(|v| match v {
Ok(Either::Right(row)) => O::from_row(&row).map(Either::Right),
Ok(Either::Left(v)) => Ok(Either::Left(v)),
Err(e) => Err(e),
})
.boxed()
}
/// Execute the query and return all the resulting rows collected into a [`Vec`].
///
/// ### Note: beware result set size.
/// This will attempt to collect the full result set of the query into memory.
///
/// To avoid exhausting available memory, ensure the result set has a known upper bound,
/// e.g. using `LIMIT`.
#[inline]
pub async fn fetch_all<'e, 'c: 'e, E>(self, executor: E) -> Result<Vec<O>, Error>
where
'q: 'e,
E: 'e + Executor<'c, Database = DB>,
DB: 'e,
O: 'e,
A: 'e,
{
self.fetch(executor).try_collect().await
}
/// Execute the query, returning the first row or [`Error::RowNotFound`] otherwise.
///
/// ### Note: for best performance, ensure the query returns at most one row.
/// Depending on the driver implementation, if your query can return more than one row,
/// it may lead to wasted CPU time and bandwidth on the database server.
///
/// Even when the driver implementation takes this into account, ensuring the query returns at most one row
/// can result in a more optimal query plan.
///
/// If your query has a `WHERE` clause filtering a unique column by a single value, you're good.
///
/// Otherwise, you might want to add `LIMIT 1` to your query.
pub async fn fetch_one<'e, 'c: 'e, E>(self, executor: E) -> Result<O, Error>
where
'q: 'e,
E: 'e + Executor<'c, Database = DB>,
DB: 'e,
O: 'e,
A: 'e,
{
self.fetch_optional(executor)
.await
.and_then(|row| row.ok_or(Error::RowNotFound))
}
/// Execute the query, returning the first row or `None` otherwise.
///
/// ### Note: for best performance, ensure the query returns at most one row.
/// Depending on the driver implementation, if your query can return more than one row,
/// it may lead to wasted CPU time and bandwidth on the database server.
///
/// Even when the driver implementation takes this into account, ensuring the query returns at most one row
/// can result in a more optimal query plan.
///
/// If your query has a `WHERE` clause filtering a unique column by a single value, you're good.
///
/// Otherwise, you might want to add `LIMIT 1` to your query.
pub async fn fetch_optional<'e, 'c: 'e, E>(self, executor: E) -> Result<Option<O>, Error>
where
'q: 'e,
E: 'e + Executor<'c, Database = DB>,
DB: 'e,
O: 'e,
A: 'e,
{
let row = executor.fetch_optional(self.inner).await?;
if let Some(row) = row {
O::from_row(&row).map(Some)
} else {
Ok(None)
}
}
}
/// Execute a single SQL query as a prepared statement (transparently cached).
/// Maps rows to Rust types using [`FromRow`].
///
/// For details about prepared statements and allowed SQL syntax, see [`query()`][crate::query::query].
///
/// ### Example: Map Rows using Tuples
/// [`FromRow`] is implemented for tuples of up to 16 elements<sup>1</sup>.
/// Using a tuple of N elements will extract the first N columns from each row using [`Decode`][crate::decode::Decode].
/// Any extra columns are ignored.
///
/// See [`sqlx::types`][crate::types] for the types that can be used.
///
/// The `FromRow` implementation will check [`Type::compatible()`] for each column to ensure a compatible type mapping
/// is used. If an incompatible mapping is detected, an error is returned.
/// To statically assert compatible types at compile time, see the `query!()` family of macros.
///
/// **NOTE**: `SELECT *` is not recommended with this approach because the ordering of returned columns may be different
/// than expected, especially when using joins.
///
/// ```rust,no_run
/// # async fn example1() -> sqlx::Result<()> {
/// use sqlx::Connection;
/// use sqlx::PgConnection;
///
/// // This example can be applied to any database as it only uses standard types and syntax.
/// let mut conn: PgConnection = PgConnection::connect("<Database URL>").await?;
///
/// sqlx::raw_sql(
/// "CREATE TABLE users(id INTEGER PRIMARY KEY, username TEXT UNIQUE, created_at TIMESTAMP DEFAULT (now())"
/// )
/// .execute(&mut conn)
/// .await?;
///
/// sqlx::query("INSERT INTO users(id, username) VALUES (1, 'alice'), (2, 'bob');")
/// .execute(&mut conn)
/// .await?;
///
/// // Get the first row of the result (note the `LIMIT 1` for efficiency)
/// // This assumes the `time` feature of SQLx is enabled.
/// let oldest_user: (i64, String, time::OffsetDateTime) = sqlx::query_as(
/// "SELECT id, username, created_at FROM users ORDER BY created_at LIMIT 1"
/// )
/// .fetch_one(&mut conn)
/// .await?;
///
/// assert_eq!(oldest_user.0, 1);
/// assert_eq!(oldest_user.1, "alice");
///
/// // Get at most one row
/// let maybe_charlie: Option<(i64, String, time::OffsetDateTime)> = sqlx::query_as(
/// "SELECT id, username, created_at FROM users WHERE username = 'charlie'"
/// )
/// .fetch_optional(&mut conn)
/// .await?;
///
/// assert_eq!(maybe_charlie, None);
///
/// // Get all rows in result (Beware of the size of the result set! Consider using `LIMIT`)
/// let users: Vec<(i64, String, time::OffsetDateTime)> = sqlx::query_as(
/// "SELECT id, username, created_at FROM users ORDER BY id"
/// )
/// .fetch_all(&mut conn)
/// .await?;
///
/// println!("{users:?}");
/// # Ok(())
/// # }
/// ```
///
/// <sup>1</sup>: It's impossible in Rust to implement a trait for tuples of arbitrary size.
/// For larger result sets, either use an explicit struct (see below) or use [`query()`][crate::query::query]
/// instead and extract columns dynamically.
///
/// ### Example: Map Rows using `#[derive(FromRow)]`
/// Using `#[derive(FromRow)]`, we can create a Rust struct to represent our row type
/// so we can look up fields by name instead of tuple index.
///
/// When querying this way, columns will be matched up to the corresponding fields by name, so `SELECT *` is safe to use.
/// However, you will still want to be aware of duplicate column names in your query when using joins.
///
/// The derived `FromRow` implementation will check [`Type::compatible()`] for each column to ensure a compatible type
/// mapping is used. If an incompatible mapping is detected, an error is returned.
/// To statically assert compatible types at compile time, see the `query!()` family of macros.
///
/// An error will also be returned if an expected column is missing from the result set.
///
/// `#[derive(FromRow)]` supports several control attributes which can be used to change how column names and types
/// are mapped. See [`FromRow`] for details.
///
/// Using our previous table definition, we can convert our queries like so:
/// ```rust,no_run
/// # async fn example2() -> sqlx::Result<()> {
/// use sqlx::Connection;
/// use sqlx::PgConnection;
///
/// use time::OffsetDateTime;
///
/// #[derive(sqlx::FromRow, Debug, PartialEq, Eq)]
/// struct User {
/// id: i64,
/// username: String,
/// // Note: the derive won't compile if the `time` feature of SQLx is not enabled.
/// created_at: OffsetDateTime,
/// }
///
/// let mut conn: PgConnection = PgConnection::connect("<Database URL>").await?;
///
/// // Get the first row of the result (note the `LIMIT 1` for efficiency)
/// let oldest_user: User = sqlx::query_as(
/// "SELECT id, username, created_at FROM users ORDER BY created_at LIMIT 1"
/// )
/// .fetch_one(&mut conn)
/// .await?;
///
/// assert_eq!(oldest_user.id, 1);
/// assert_eq!(oldest_user.username, "alice");
///
/// // Get at most one row
/// let maybe_charlie: Option<User> = sqlx::query_as(
/// "SELECT id, username, created_at FROM users WHERE username = 'charlie'"
/// )
/// .fetch_optional(&mut conn)
/// .await?;
///
/// assert_eq!(maybe_charlie, None);
///
/// // Get all rows in result (Beware of the size of the result set! Consider using `LIMIT`)
/// let users: Vec<User> = sqlx::query_as(
/// "SELECT id, username, created_at FROM users ORDER BY id"
/// )
/// .fetch_all(&mut conn)
/// .await?;
///
/// assert_eq!(users[1].id, 2);
/// assert_eq!(users[1].username, "bob");
/// # Ok(())
/// # }
///
/// ```
#[inline]
pub fn query_as<'q, DB, O>(sql: &'q str) -> QueryAs<'q, DB, O, <DB as HasArguments<'q>>::Arguments>
where
DB: Database,
O: for<'r> FromRow<'r, DB::Row>,
{
QueryAs {
inner: query(sql),
output: PhantomData,
}
}
/// Execute a single SQL query, with the given arguments as a prepared statement (transparently cached).
/// Maps rows to Rust types using [`FromRow`].
///
/// For details about prepared statements and allowed SQL syntax, see [`query()`][crate::query::query].
///
/// For details about type mapping from [`FromRow`], see [`query_as()`].
#[inline]
pub fn query_as_with<'q, DB, O, A>(sql: &'q str, arguments: A) -> QueryAs<'q, DB, O, A>
where
DB: Database,
A: IntoArguments<'q, DB>,
O: for<'r> FromRow<'r, DB::Row>,
{
QueryAs {
inner: query_with(sql, arguments),
output: PhantomData,
}
}
// Make a SQL query from a statement, that is mapped to a concrete type.
pub fn query_statement_as<'q, DB, O>(
statement: &'q <DB as HasStatement<'q>>::Statement,
) -> QueryAs<'q, DB, O, <DB as HasArguments<'_>>::Arguments>
where
DB: Database,
O: for<'r> FromRow<'r, DB::Row>,
{
QueryAs {
inner: query_statement(statement),
output: PhantomData,
}
}
// Make a SQL query from a statement, with the given arguments, that is mapped to a concrete type.
pub fn query_statement_as_with<'q, DB, O, A>(
statement: &'q <DB as HasStatement<'q>>::Statement,
arguments: A,
) -> QueryAs<'q, DB, O, A>
where
DB: Database,
A: IntoArguments<'q, DB>,
O: for<'r> FromRow<'r, DB::Row>,
{
QueryAs {
inner: query_statement_with(statement, arguments),
output: PhantomData,
}
}