ssh_key/
mpint.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
//! Multiple precision integer

use crate::{Error, Result};
use alloc::{boxed::Box, vec::Vec};
use core::fmt;
use encoding::{CheckedSum, Decode, Encode, Reader, Writer};
use subtle::{Choice, ConstantTimeEq};
use zeroize::Zeroize;

#[cfg(any(feature = "dsa", feature = "rsa"))]
use zeroize::Zeroizing;

/// Multiple precision integer, a.k.a. "mpint".
///
/// This type is used for representing the big integer components of
/// DSA and RSA keys.
///
/// Described in [RFC4251 ยง 5](https://datatracker.ietf.org/doc/html/rfc4251#section-5):
///
/// > Represents multiple precision integers in two's complement format,
/// > stored as a string, 8 bits per byte, MSB first.  Negative numbers
/// > have the value 1 as the most significant bit of the first byte of
/// > the data partition.  If the most significant bit would be set for
/// > a positive number, the number MUST be preceded by a zero byte.
/// > Unnecessary leading bytes with the value 0 or 255 MUST NOT be
/// > included.  The value zero MUST be stored as a string with zero
/// > bytes of data.
/// >
/// > By convention, a number that is used in modular computations in
/// > Z_n SHOULD be represented in the range 0 <= x < n.
///
/// ## Examples
///
/// | value (hex)     | representation (hex) |
/// |-----------------|----------------------|
/// | 0               | `00 00 00 00`
/// | 9a378f9b2e332a7 | `00 00 00 08 09 a3 78 f9 b2 e3 32 a7`
/// | 80              | `00 00 00 02 00 80`
/// |-1234            | `00 00 00 02 ed cc`
/// | -deadbeef       | `00 00 00 05 ff 21 52 41 11`
#[derive(Clone, PartialOrd, Ord)]
pub struct Mpint {
    /// Inner big endian-serialized integer value
    inner: Box<[u8]>,
}

impl Mpint {
    /// Create a new multiple precision integer from the given
    /// big endian-encoded byte slice.
    ///
    /// Note that this method expects a leading zero on positive integers whose
    /// MSB is set, but does *NOT* expect a 4-byte length prefix.
    pub fn from_bytes(bytes: &[u8]) -> Result<Self> {
        bytes.try_into()
    }

    /// Create a new multiple precision integer from the given big endian
    /// encoded byte slice representing a positive integer.
    ///
    /// The input may begin with leading zeros, which will be stripped when
    /// converted to [`Mpint`] encoding.
    pub fn from_positive_bytes(mut bytes: &[u8]) -> Result<Self> {
        let mut inner = Vec::with_capacity(bytes.len());

        while bytes.first().copied() == Some(0) {
            bytes = &bytes[1..];
        }

        match bytes.first().copied() {
            Some(n) if n >= 0x80 => inner.push(0),
            _ => (),
        }

        inner.extend_from_slice(bytes);
        inner.into_boxed_slice().try_into()
    }

    /// Get the big integer data encoded as big endian bytes.
    ///
    /// This slice will contain a leading zero if the value is positive but the
    /// MSB is also set. Use [`Mpint::as_positive_bytes`] to ensure the number
    /// is positive and strip the leading zero byte if it exists.
    pub fn as_bytes(&self) -> &[u8] {
        &self.inner
    }

    /// Get the bytes of a positive integer.
    ///
    /// # Returns
    /// - `Some(bytes)` if the number is positive. The leading zero byte will be stripped.
    /// - `None` if the value is negative
    pub fn as_positive_bytes(&self) -> Option<&[u8]> {
        match self.as_bytes() {
            [0x00, rest @ ..] => Some(rest),
            [byte, ..] if *byte < 0x80 => Some(self.as_bytes()),
            _ => None,
        }
    }
}

impl AsRef<[u8]> for Mpint {
    fn as_ref(&self) -> &[u8] {
        self.as_bytes()
    }
}

impl ConstantTimeEq for Mpint {
    fn ct_eq(&self, other: &Self) -> Choice {
        self.as_ref().ct_eq(other.as_ref())
    }
}

impl Eq for Mpint {}

impl PartialEq for Mpint {
    fn eq(&self, other: &Self) -> bool {
        self.ct_eq(other).into()
    }
}

impl Decode for Mpint {
    type Error = Error;

    fn decode(reader: &mut impl Reader) -> Result<Self> {
        Vec::decode(reader)?.into_boxed_slice().try_into()
    }
}

impl Encode for Mpint {
    fn encoded_len(&self) -> encoding::Result<usize> {
        [4, self.as_bytes().len()].checked_sum()
    }

    fn encode(&self, writer: &mut impl Writer) -> encoding::Result<()> {
        self.as_bytes().encode(writer)?;
        Ok(())
    }
}

impl TryFrom<&[u8]> for Mpint {
    type Error = Error;

    fn try_from(bytes: &[u8]) -> Result<Self> {
        Vec::from(bytes).into_boxed_slice().try_into()
    }
}

impl TryFrom<Box<[u8]>> for Mpint {
    type Error = Error;

    fn try_from(bytes: Box<[u8]>) -> Result<Self> {
        match &*bytes {
            // Unnecessary leading 0
            [0x00] => Err(Error::FormatEncoding),
            // Unnecessary leading 0
            [0x00, n, ..] if *n < 0x80 => Err(Error::FormatEncoding),
            _ => Ok(Self { inner: bytes }),
        }
    }
}

impl Zeroize for Mpint {
    fn zeroize(&mut self) {
        self.inner.zeroize();
    }
}

impl fmt::Debug for Mpint {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "Mpint({self:X})")
    }
}

impl fmt::Display for Mpint {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{self:X}")
    }
}

impl fmt::LowerHex for Mpint {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        for byte in self.as_bytes() {
            write!(f, "{byte:02x}")?;
        }
        Ok(())
    }
}

impl fmt::UpperHex for Mpint {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        for byte in self.as_bytes() {
            write!(f, "{byte:02X}")?;
        }
        Ok(())
    }
}

#[cfg(any(feature = "dsa", feature = "rsa"))]
impl TryFrom<bigint::BigUint> for Mpint {
    type Error = Error;

    fn try_from(uint: bigint::BigUint) -> Result<Mpint> {
        Mpint::try_from(&uint)
    }
}

#[cfg(any(feature = "dsa", feature = "rsa"))]
impl TryFrom<&bigint::BigUint> for Mpint {
    type Error = Error;

    fn try_from(uint: &bigint::BigUint) -> Result<Mpint> {
        let bytes = Zeroizing::new(uint.to_bytes_be());
        Mpint::from_positive_bytes(bytes.as_slice())
    }
}

#[cfg(any(feature = "dsa", feature = "rsa"))]
impl TryFrom<Mpint> for bigint::BigUint {
    type Error = Error;

    fn try_from(mpint: Mpint) -> Result<bigint::BigUint> {
        bigint::BigUint::try_from(&mpint)
    }
}

#[cfg(any(feature = "dsa", feature = "rsa"))]
impl TryFrom<&Mpint> for bigint::BigUint {
    type Error = Error;

    fn try_from(mpint: &Mpint) -> Result<bigint::BigUint> {
        mpint
            .as_positive_bytes()
            .map(bigint::BigUint::from_bytes_be)
            .ok_or(Error::Crypto)
    }
}

#[cfg(test)]
mod tests {
    use super::Mpint;
    use hex_literal::hex;

    #[test]
    fn decode_0() {
        let n = Mpint::from_bytes(b"").unwrap();
        assert_eq!(b"", n.as_bytes())
    }

    #[test]
    fn reject_extra_leading_zeroes() {
        assert!(Mpint::from_bytes(&hex!("00")).is_err());
        assert!(Mpint::from_bytes(&hex!("00 00")).is_err());
        assert!(Mpint::from_bytes(&hex!("00 01")).is_err());
    }

    #[test]
    fn decode_9a378f9b2e332a7() {
        assert!(Mpint::from_bytes(&hex!("09 a3 78 f9 b2 e3 32 a7")).is_ok());
    }

    #[test]
    fn decode_80() {
        let n = Mpint::from_bytes(&hex!("00 80")).unwrap();

        // Leading zero stripped
        assert_eq!(&hex!("80"), n.as_positive_bytes().unwrap())
    }
    #[test]
    fn from_positive_bytes_strips_leading_zeroes() {
        assert_eq!(
            Mpint::from_positive_bytes(&hex!("00")).unwrap().as_ref(),
            b""
        );
        assert_eq!(
            Mpint::from_positive_bytes(&hex!("00 00")).unwrap().as_ref(),
            b""
        );
        assert_eq!(
            Mpint::from_positive_bytes(&hex!("00 01")).unwrap().as_ref(),
            b"\x01"
        );
    }

    // TODO(tarcieri): drop support for negative numbers?
    #[test]
    fn decode_neg_1234() {
        let n = Mpint::from_bytes(&hex!("ed cc")).unwrap();
        assert!(n.as_positive_bytes().is_none());
    }

    // TODO(tarcieri): drop support for negative numbers?
    #[test]
    fn decode_neg_deadbeef() {
        let n = Mpint::from_bytes(&hex!("ff 21 52 41 11")).unwrap();
        assert!(n.as_positive_bytes().is_none());
    }
}