ssh_key/
private.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
//! SSH private key support.
//!
//! Support for decoding SSH private keys (i.e. digital signature keys)
//! from the OpenSSH file format:
//!
//! <https://cvsweb.openbsd.org/src/usr.bin/ssh/PROTOCOL.key?annotate=HEAD>
//!
//! ## Decrypting encrypted private keys
//!
//! When the `encryption` feature of this crate is enabled, it's possible to
//! decrypt keys which have been encrypted under a password:
//!
#![cfg_attr(all(feature = "encryption", feature = "std"), doc = " ```")]
#![cfg_attr(not(all(feature = "encryption", feature = "std")), doc = " ```ignore")]
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! use ssh_key::PrivateKey;
//!
//! // WARNING: don't actually hardcode private keys in source code!!!
//! let encoded_key = r#"
//! -----BEGIN OPENSSH PRIVATE KEY-----
//! b3BlbnNzaC1rZXktdjEAAAAACmFlczI1Ni1jdHIAAAAGYmNyeXB0AAAAGAAAABBKH96ujW
//! umB6/WnTNPjTeaAAAAEAAAAAEAAAAzAAAAC3NzaC1lZDI1NTE5AAAAILM+rvN+ot98qgEN
//! 796jTiQfZfG1KaT0PtFDJ/XFSqtiAAAAoFzvbvyFMhAiwBOXF0mhUUacPUCMZXivG2up2c
//! hEnAw1b6BLRPyWbY5cC2n9ggD4ivJ1zSts6sBgjyiXQAReyrP35myYvT/OIB/NpwZM/xIJ
//! N7MHSUzlkX4adBrga3f7GS4uv4ChOoxC4XsE5HsxtGsq1X8jzqLlZTmOcxkcEneYQexrUc
//! bQP0o+gL5aKK8cQgiIlXeDbRjqhc4+h4EF6lY=
//! -----END OPENSSH PRIVATE KEY-----
//! "#;
//!
//! let encrypted_key = PrivateKey::from_openssh(encoded_key)?;
//! assert!(encrypted_key.is_encrypted());
//!
//! // WARNING: don't hardcode passwords, and this one's bad anyway
//! let password = "hunter42";
//!
//! let decrypted_key = encrypted_key.decrypt(password)?;
//! assert!(!decrypted_key.is_encrypted());
//! # Ok(())
//! # }
//! ```
//!
//! ## Encrypting plaintext private keys
//!
//! When the `encryption` feature of this crate is enabled, it's possible to
//! encrypt plaintext private keys under a provided password.
//!
//! The example below also requires enabling this crate's `getrandom` feature.
//!
#![cfg_attr(
    all(
        feature = "ed25519",
        feature = "encryption",
        feature = "getrandom",
        feature = "std"
    ),
    doc = " ```"
)]
#![cfg_attr(
    not(all(
        feature = "ed25519",
        feature = "encryption",
        feature = "getrandom",
        feature = "std"
    )),
    doc = " ```ignore"
)]
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! use ssh_key::{Algorithm, PrivateKey, rand_core::OsRng};
//!
//! // Generate a random key
//! let unencrypted_key = PrivateKey::random(&mut OsRng, Algorithm::Ed25519)?;
//!
//! // WARNING: don't hardcode passwords, and this one's bad anyway
//! let password = "hunter42";
//!
//! let encrypted_key = unencrypted_key.encrypt(&mut OsRng, password)?;
//! assert!(encrypted_key.is_encrypted());
//! # Ok(())
//! # }
//! ```
//!
//! ## Generating random keys
//!
//! This crate supports generation of random keys using algorithm-specific
//! backends gated on cargo features.
//!
//! The examples below require enabling this crate's `getrandom` feature as
//! well as the crate feature identified in backticks in the title of each
//! example.
//!
#![cfg_attr(
    all(feature = "ed25519", feature = "getrandom", feature = "std"),
    doc = " ```"
)]
#![cfg_attr(
    not(all(feature = "ed25519", feature = "getrandom", feature = "std")),
    doc = " ```ignore"
)]
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! use ssh_key::{Algorithm, PrivateKey, rand_core::OsRng};
//!
//! let private_key = PrivateKey::random(&mut OsRng, Algorithm::Ed25519)?;
//! # Ok(())
//! # }
//! ```

#[cfg(feature = "alloc")]
mod dsa;
#[cfg(feature = "ecdsa")]
mod ecdsa;
mod ed25519;
mod keypair;
#[cfg(feature = "alloc")]
mod opaque;
#[cfg(feature = "alloc")]
mod rsa;
#[cfg(feature = "alloc")]
mod sk;

pub use self::{
    ed25519::{Ed25519Keypair, Ed25519PrivateKey},
    keypair::KeypairData,
};

#[cfg(feature = "alloc")]
pub use crate::{
    private::{
        dsa::{DsaKeypair, DsaPrivateKey},
        opaque::{OpaqueKeypair, OpaqueKeypairBytes, OpaquePrivateKeyBytes},
        rsa::{RsaKeypair, RsaPrivateKey},
        sk::SkEd25519,
    },
    SshSig,
};

#[cfg(feature = "ecdsa")]
pub use self::ecdsa::{EcdsaKeypair, EcdsaPrivateKey};

#[cfg(all(feature = "alloc", feature = "ecdsa"))]
pub use self::sk::SkEcdsaSha2NistP256;

use crate::{public, Algorithm, Cipher, Error, Fingerprint, HashAlg, Kdf, PublicKey, Result};
use cipher::Tag;
use core::str;
use encoding::{
    pem::{LineEnding, PemLabel},
    CheckedSum, Decode, DecodePem, Encode, EncodePem, Reader, Writer,
};
use subtle::{Choice, ConstantTimeEq};

#[cfg(feature = "alloc")]
use {
    alloc::{string::String, vec::Vec},
    zeroize::Zeroizing,
};

#[cfg(feature = "rand_core")]
use rand_core::CryptoRngCore;

#[cfg(feature = "std")]
use std::{fs, path::Path};

#[cfg(all(unix, feature = "std"))]
use std::{io::Write, os::unix::fs::OpenOptionsExt};

/// Error message for infallible conversions (used by `expect`)
const CONVERSION_ERROR_MSG: &str = "SSH private key conversion error";

/// Default key size to use for RSA keys in bits.
#[cfg(all(feature = "rand_core", feature = "rsa"))]
const DEFAULT_RSA_KEY_SIZE: usize = 4096;

/// Maximum supported block size.
///
/// This is the block size used by e.g. AES.
const MAX_BLOCK_SIZE: usize = 16;

/// Padding bytes to use.
const PADDING_BYTES: [u8; MAX_BLOCK_SIZE - 1] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15];

/// Unix file permissions for SSH private keys.
#[cfg(all(unix, feature = "std"))]
const UNIX_FILE_PERMISSIONS: u32 = 0o600;

/// SSH private key.
#[derive(Clone, Debug)]
pub struct PrivateKey {
    /// Cipher algorithm.
    cipher: Cipher,

    /// KDF options.
    kdf: Kdf,

    /// "Checkint" value used to verify successful decryption.
    checkint: Option<u32>,

    /// Public key.
    public_key: PublicKey,

    /// Private keypair data.
    key_data: KeypairData,

    /// Authentication tag for authenticated encryption modes.
    auth_tag: Option<Tag>,
}

impl PrivateKey {
    /// Magic string used to identify keys in this format.
    const AUTH_MAGIC: &'static [u8] = b"openssh-key-v1\0";

    /// Create a new unencrypted private key with the given keypair data and comment.
    ///
    /// On `no_std` platforms, use `PrivateKey::from(key_data)` instead.
    #[cfg(feature = "alloc")]
    pub fn new(key_data: KeypairData, comment: impl Into<String>) -> Result<Self> {
        if key_data.is_encrypted() {
            return Err(Error::Encrypted);
        }

        let mut private_key = Self::try_from(key_data)?;
        private_key.public_key.comment = comment.into();
        Ok(private_key)
    }

    /// Parse an OpenSSH-formatted PEM private key.
    ///
    /// OpenSSH-formatted private keys begin with the following:
    ///
    /// ```text
    /// -----BEGIN OPENSSH PRIVATE KEY-----
    /// ```
    pub fn from_openssh(pem: impl AsRef<[u8]>) -> Result<Self> {
        Self::decode_pem(pem)
    }

    /// Parse a raw binary SSH private key.
    pub fn from_bytes(mut bytes: &[u8]) -> Result<Self> {
        let reader = &mut bytes;
        let private_key = Self::decode(reader)?;
        Ok(reader.finish(private_key)?)
    }

    /// Encode OpenSSH-formatted (PEM) private key.
    pub fn encode_openssh<'o>(
        &self,
        line_ending: LineEnding,
        out: &'o mut [u8],
    ) -> Result<&'o str> {
        Ok(self.encode_pem(line_ending, out)?)
    }

    /// Encode an OpenSSH-formatted PEM private key, allocating a
    /// self-zeroizing [`String`] for the result.
    #[cfg(feature = "alloc")]
    pub fn to_openssh(&self, line_ending: LineEnding) -> Result<Zeroizing<String>> {
        Ok(self.encode_pem_string(line_ending).map(Zeroizing::new)?)
    }

    /// Serialize SSH private key as raw bytes.
    #[cfg(feature = "alloc")]
    pub fn to_bytes(&self) -> Result<Zeroizing<Vec<u8>>> {
        let mut private_key_bytes = Vec::with_capacity(self.encoded_len()?);
        self.encode(&mut private_key_bytes)?;
        Ok(Zeroizing::new(private_key_bytes))
    }

    /// Sign the given message using this private key, returning an [`SshSig`].
    ///
    /// These signatures can be produced using `ssh-keygen -Y sign`. They're
    /// encoded as PEM and begin with the following:
    ///
    /// ```text
    /// -----BEGIN SSH SIGNATURE-----
    /// ```
    ///
    /// See [PROTOCOL.sshsig] for more information.
    ///
    /// # Usage
    ///
    /// See also: [`PublicKey::verify`].
    ///
    #[cfg_attr(feature = "ed25519", doc = "```")]
    #[cfg_attr(not(feature = "ed25519"), doc = "```ignore")]
    /// # fn main() -> Result<(), ssh_key::Error> {
    /// use ssh_key::{PrivateKey, HashAlg, SshSig};
    ///
    /// // Message to be signed.
    /// let message = b"testing";
    ///
    /// // Example domain/namespace used for the message.
    /// let namespace = "example";
    ///
    /// // Private key to use when computing the signature.
    /// // WARNING: don't actually hardcode private keys in source code!!!
    /// let encoded_private_key = r#"
    /// -----BEGIN OPENSSH PRIVATE KEY-----
    /// b3BlbnNzaC1rZXktdjEAAAAABG5vbmUAAAAEbm9uZQAAAAAAAAABAAAAMwAAAAtzc2gtZW
    /// QyNTUxOQAAACCzPq7zfqLffKoBDe/eo04kH2XxtSmk9D7RQyf1xUqrYgAAAJgAIAxdACAM
    /// XQAAAAtzc2gtZWQyNTUxOQAAACCzPq7zfqLffKoBDe/eo04kH2XxtSmk9D7RQyf1xUqrYg
    /// AAAEC2BsIi0QwW2uFscKTUUXNHLsYX4FxlaSDSblbAj7WR7bM+rvN+ot98qgEN796jTiQf
    /// ZfG1KaT0PtFDJ/XFSqtiAAAAEHVzZXJAZXhhbXBsZS5jb20BAgMEBQ==
    /// -----END OPENSSH PRIVATE KEY-----
    /// "#;
    ///
    /// let private_key = encoded_private_key.parse::<PrivateKey>()?;
    /// let signature = private_key.sign(namespace, HashAlg::default(), message)?;
    /// // assert!(private_key.public_key().verify(namespace, message, &signature).is_ok());
    /// # Ok(())
    /// # }
    /// ```
    ///
    /// [PROTOCOL.sshsig]: https://cvsweb.openbsd.org/src/usr.bin/ssh/PROTOCOL.sshsig?annotate=HEAD
    #[cfg(feature = "alloc")]
    pub fn sign(&self, namespace: &str, hash_alg: HashAlg, msg: &[u8]) -> Result<SshSig> {
        SshSig::sign(self, namespace, hash_alg, msg)
    }

    /// Read private key from an OpenSSH-formatted PEM file.
    #[cfg(feature = "std")]
    pub fn read_openssh_file(path: &Path) -> Result<Self> {
        // TODO(tarcieri): verify file permissions match `UNIX_FILE_PERMISSIONS`
        let pem = Zeroizing::new(fs::read_to_string(path)?);
        Self::from_openssh(&*pem)
    }

    /// Write private key as an OpenSSH-formatted PEM file.
    #[cfg(feature = "std")]
    pub fn write_openssh_file(&self, path: &Path, line_ending: LineEnding) -> Result<()> {
        let pem = self.to_openssh(line_ending)?;

        #[cfg(not(unix))]
        fs::write(path, pem.as_bytes())?;
        #[cfg(unix)]
        fs::OpenOptions::new()
            .create(true)
            .write(true)
            .truncate(true)
            .mode(UNIX_FILE_PERMISSIONS)
            .open(path)
            .and_then(|mut file| file.write_all(pem.as_bytes()))?;

        Ok(())
    }

    /// Attempt to decrypt an encrypted private key using the provided
    /// password to derive an encryption key.
    ///
    /// Returns [`Error::Decrypted`] if the private key is already decrypted.
    #[cfg(feature = "encryption")]
    pub fn decrypt(&self, password: impl AsRef<[u8]>) -> Result<Self> {
        let (key, iv) = self.kdf.derive_key_and_iv(self.cipher, password)?;

        let ciphertext = self.key_data.encrypted().ok_or(Error::Decrypted)?;
        let mut buffer = Zeroizing::new(ciphertext.to_vec());
        self.cipher.decrypt(&key, &iv, &mut buffer, self.auth_tag)?;

        Self::decode_privatekey_comment_pair(
            &mut &**buffer,
            self.public_key.key_data.clone(),
            self.cipher.block_size(),
        )
    }

    /// Encrypt an unencrypted private key using the provided password to
    /// derive an encryption key.
    ///
    /// Uses the following algorithms:
    /// - Cipher: [`Cipher::Aes256Ctr`]
    /// - KDF: [`Kdf::Bcrypt`] (i.e. `bcrypt-pbkdf`)
    ///
    /// Returns [`Error::Encrypted`] if the private key is already encrypted.
    #[cfg(feature = "encryption")]
    pub fn encrypt(
        &self,
        rng: &mut impl CryptoRngCore,
        password: impl AsRef<[u8]>,
    ) -> Result<Self> {
        self.encrypt_with_cipher(rng, Cipher::Aes256Ctr, password)
    }

    /// Encrypt an unencrypted private key using the provided password to
    /// derive an encryption key for the provided [`Cipher`].
    ///
    /// Returns [`Error::Encrypted`] if the private key is already encrypted.
    #[cfg(feature = "encryption")]
    pub fn encrypt_with_cipher(
        &self,
        rng: &mut impl CryptoRngCore,
        cipher: Cipher,
        password: impl AsRef<[u8]>,
    ) -> Result<Self> {
        let checkint = rng.next_u32();

        self.encrypt_with(
            cipher,
            Kdf::new(Default::default(), rng)?,
            checkint,
            password,
        )
    }

    /// Encrypt an unencrypted private key using the provided cipher and KDF
    /// configuration.
    ///
    /// Returns [`Error::Encrypted`] if the private key is already encrypted.
    #[cfg(feature = "encryption")]
    pub fn encrypt_with(
        &self,
        cipher: Cipher,
        kdf: Kdf,
        checkint: u32,
        password: impl AsRef<[u8]>,
    ) -> Result<Self> {
        if self.is_encrypted() {
            return Err(Error::Encrypted);
        }

        let (key_bytes, iv_bytes) = kdf.derive_key_and_iv(cipher, password)?;
        let msg_len = self.encoded_privatekey_comment_pair_len(cipher)?;
        let mut out = Vec::with_capacity(msg_len);

        // Encode and encrypt private key
        self.encode_privatekey_comment_pair(&mut out, cipher, checkint)?;
        let auth_tag = cipher.encrypt(&key_bytes, &iv_bytes, out.as_mut_slice())?;

        Ok(Self {
            cipher,
            kdf,
            checkint: None,
            public_key: self.public_key.key_data.clone().into(),
            key_data: KeypairData::Encrypted(out),
            auth_tag,
        })
    }

    /// Get the digital signature [`Algorithm`] used by this key.
    pub fn algorithm(&self) -> Algorithm {
        self.public_key.algorithm()
    }

    /// Comment on the key (e.g. email address).
    pub fn comment(&self) -> &str {
        self.public_key.comment()
    }

    /// Cipher algorithm (a.k.a. `ciphername`).
    pub fn cipher(&self) -> Cipher {
        self.cipher
    }

    /// Compute key fingerprint.
    ///
    /// Use [`Default::default()`] to use the default hash function (SHA-256).
    pub fn fingerprint(&self, hash_alg: HashAlg) -> Fingerprint {
        self.public_key.fingerprint(hash_alg)
    }

    /// Is this key encrypted?
    pub fn is_encrypted(&self) -> bool {
        let ret = self.key_data.is_encrypted();
        debug_assert_eq!(ret, self.cipher.is_some());
        ret
    }

    /// Key Derivation Function (KDF) used to encrypt this key.
    ///
    /// Returns [`Kdf::None`] if this key is not encrypted.
    pub fn kdf(&self) -> &Kdf {
        &self.kdf
    }

    /// Keypair data.
    pub fn key_data(&self) -> &KeypairData {
        &self.key_data
    }

    /// Get the [`PublicKey`] which corresponds to this private key.
    pub fn public_key(&self) -> &PublicKey {
        &self.public_key
    }

    /// Generate a random key which uses the given algorithm.
    ///
    /// # Returns
    /// - `Error::AlgorithmUnknown` if the algorithm is unsupported.
    #[cfg(feature = "rand_core")]
    #[allow(unreachable_code, unused_variables)]
    pub fn random(rng: &mut impl CryptoRngCore, algorithm: Algorithm) -> Result<Self> {
        let checkint = rng.next_u32();
        let key_data = match algorithm {
            #[cfg(feature = "dsa")]
            Algorithm::Dsa => KeypairData::from(DsaKeypair::random(rng)?),
            #[cfg(any(feature = "p256", feature = "p384", feature = "p521"))]
            Algorithm::Ecdsa { curve } => KeypairData::from(EcdsaKeypair::random(rng, curve)?),
            #[cfg(feature = "ed25519")]
            Algorithm::Ed25519 => KeypairData::from(Ed25519Keypair::random(rng)),
            #[cfg(feature = "rsa")]
            Algorithm::Rsa { .. } => {
                KeypairData::from(RsaKeypair::random(rng, DEFAULT_RSA_KEY_SIZE)?)
            }
            _ => return Err(Error::AlgorithmUnknown),
        };
        let public_key = public::KeyData::try_from(&key_data)?;

        Ok(Self {
            cipher: Cipher::None,
            kdf: Kdf::None,
            checkint: Some(checkint),
            public_key: public_key.into(),
            key_data,
            auth_tag: None,
        })
    }

    /// Set the comment on the key.
    #[cfg(feature = "alloc")]
    pub fn set_comment(&mut self, comment: impl Into<String>) {
        self.public_key.set_comment(comment);
    }

    /// Decode [`KeypairData`] along with its associated checkints and comment,
    /// storing the comment in the provided public key on success.
    ///
    /// This method also checks padding for validity and ensures that the
    /// decoded private key matches the provided public key.
    ///
    /// For private key format specification, see OpenSSH [PROTOCOL.key] ยง 3:
    ///
    /// ```text
    /// uint32  checkint
    /// uint32  checkint
    /// byte[]  privatekey1
    /// string  comment1
    /// byte[]  privatekey2
    /// string  comment2
    /// ...
    /// string  privatekeyN
    /// string  commentN
    /// char    1
    /// char    2
    /// char    3
    /// ...
    /// char    padlen % 255
    /// ```
    ///
    /// [PROTOCOL.key]: https://cvsweb.openbsd.org/src/usr.bin/ssh/PROTOCOL.key?annotate=HEAD
    fn decode_privatekey_comment_pair(
        reader: &mut impl Reader,
        public_key: public::KeyData,
        block_size: usize,
    ) -> Result<Self> {
        debug_assert!(block_size <= MAX_BLOCK_SIZE);

        // Ensure input data is padding-aligned
        if reader.remaining_len().checked_rem(block_size) != Some(0) {
            return Err(encoding::Error::Length.into());
        }

        let checkint1 = u32::decode(reader)?;
        let checkint2 = u32::decode(reader)?;

        if checkint1 != checkint2 {
            return Err(Error::Crypto);
        }

        let key_data = KeypairData::decode(reader)?;

        // Ensure public key matches private key
        if public_key != public::KeyData::try_from(&key_data)? {
            return Err(Error::PublicKey);
        }

        let mut public_key = PublicKey::from(public_key);
        public_key.decode_comment(reader)?;

        let padding_len = reader.remaining_len();

        if padding_len >= block_size {
            return Err(encoding::Error::Length.into());
        }

        if padding_len != 0 {
            let mut padding = [0u8; MAX_BLOCK_SIZE];
            reader.read(&mut padding[..padding_len])?;

            if PADDING_BYTES[..padding_len] != padding[..padding_len] {
                return Err(Error::FormatEncoding);
            }
        }

        if !reader.is_finished() {
            return Err(Error::TrailingData {
                remaining: reader.remaining_len(),
            });
        }

        Ok(Self {
            cipher: Cipher::None,
            kdf: Kdf::None,
            checkint: Some(checkint1),
            public_key,
            key_data,
            auth_tag: None,
        })
    }

    /// Encode [`KeypairData`] along with its associated checkints, comment,
    /// and padding.
    fn encode_privatekey_comment_pair(
        &self,
        writer: &mut impl Writer,
        cipher: Cipher,
        checkint: u32,
    ) -> encoding::Result<()> {
        let unpadded_len = self.unpadded_privatekey_comment_pair_len()?;
        let padding_len = cipher.padding_len(unpadded_len);

        checkint.encode(writer)?;
        checkint.encode(writer)?;
        self.key_data.encode(writer)?;
        self.comment().encode(writer)?;
        writer.write(&PADDING_BYTES[..padding_len])?;
        Ok(())
    }

    /// Get the length of this private key when encoded with the given comment
    /// and padded using the padding size for the given cipher.
    fn encoded_privatekey_comment_pair_len(&self, cipher: Cipher) -> encoding::Result<usize> {
        let len = self.unpadded_privatekey_comment_pair_len()?;
        [len, cipher.padding_len(len)].checked_sum()
    }

    /// Get the length of this private key when encoded with the given comment.
    ///
    /// This length is just the checkints, private key data, and comment sans
    /// any padding.
    fn unpadded_privatekey_comment_pair_len(&self) -> encoding::Result<usize> {
        // This method is intended for use with unencrypted keys only
        debug_assert!(!self.is_encrypted(), "called on encrypted key");

        [
            8, // 2 x uint32 checkints,
            self.key_data.encoded_len()?,
            self.comment().encoded_len()?,
        ]
        .checked_sum()
    }
}

impl ConstantTimeEq for PrivateKey {
    fn ct_eq(&self, other: &Self) -> Choice {
        // Constant-time with respect to private key data
        self.key_data.ct_eq(&other.key_data)
            & Choice::from(
                (self.cipher == other.cipher
                    && self.kdf == other.kdf
                    && self.public_key == other.public_key) as u8,
            )
    }
}

impl Eq for PrivateKey {}

impl PartialEq for PrivateKey {
    fn eq(&self, other: &Self) -> bool {
        self.ct_eq(other).into()
    }
}

impl Decode for PrivateKey {
    type Error = Error;

    fn decode(reader: &mut impl Reader) -> Result<Self> {
        let mut auth_magic = [0u8; Self::AUTH_MAGIC.len()];
        reader.read(&mut auth_magic)?;

        if auth_magic != Self::AUTH_MAGIC {
            return Err(Error::FormatEncoding);
        }

        let cipher = Cipher::decode(reader)?;
        let kdf = Kdf::decode(reader)?;
        let nkeys = usize::decode(reader)?;

        // TODO(tarcieri): support more than one key?
        if nkeys != 1 {
            return Err(encoding::Error::Length.into());
        }

        let public_key = reader.read_prefixed(public::KeyData::decode)?;

        // Handle encrypted private key
        #[cfg(not(feature = "alloc"))]
        if cipher.is_some() {
            return Err(Error::Encrypted);
        }
        #[cfg(feature = "alloc")]
        if cipher.is_some() {
            let ciphertext = Vec::decode(reader)?;

            // Ensure ciphertext is padded to the expected length
            if ciphertext.len().checked_rem(cipher.block_size()) != Some(0) {
                return Err(Error::Crypto);
            }

            let auth_tag = if cipher.has_tag() {
                let mut tag = Tag::default();
                reader.read(&mut tag)?;
                Some(tag)
            } else {
                None
            };

            if !reader.is_finished() {
                return Err(Error::TrailingData {
                    remaining: reader.remaining_len(),
                });
            }

            return Ok(Self {
                cipher,
                kdf,
                checkint: None,
                public_key: public_key.into(),
                key_data: KeypairData::Encrypted(ciphertext),
                auth_tag,
            });
        }

        // Processing unencrypted key. No KDF should be set.
        if kdf.is_some() {
            return Err(Error::Crypto);
        }

        reader.read_prefixed(|reader| {
            Self::decode_privatekey_comment_pair(reader, public_key, cipher.block_size())
        })
    }
}

impl Encode for PrivateKey {
    fn encoded_len(&self) -> encoding::Result<usize> {
        let private_key_len = if self.is_encrypted() {
            self.key_data.encoded_len_prefixed()?
        } else {
            [4, self.encoded_privatekey_comment_pair_len(Cipher::None)?].checked_sum()?
        };

        [
            Self::AUTH_MAGIC.len(),
            self.cipher.encoded_len()?,
            self.kdf.encoded_len()?,
            4, // number of keys (uint32)
            self.public_key.key_data().encoded_len_prefixed()?,
            private_key_len,
            self.auth_tag.map(|tag| tag.len()).unwrap_or(0),
        ]
        .checked_sum()
    }

    fn encode(&self, writer: &mut impl Writer) -> encoding::Result<()> {
        writer.write(Self::AUTH_MAGIC)?;
        self.cipher.encode(writer)?;
        self.kdf.encode(writer)?;

        // TODO(tarcieri): support for encoding more than one private key
        1usize.encode(writer)?;

        // Encode public key
        self.public_key.key_data().encode_prefixed(writer)?;

        // Encode private key
        if self.is_encrypted() {
            self.key_data.encode_prefixed(writer)?;

            if let Some(tag) = &self.auth_tag {
                writer.write(tag)?;
            }
        } else {
            self.encoded_privatekey_comment_pair_len(Cipher::None)?
                .encode(writer)?;

            let checkint = self.checkint.unwrap_or_else(|| self.key_data.checkint());
            self.encode_privatekey_comment_pair(writer, Cipher::None, checkint)?;
        }

        Ok(())
    }
}

impl From<PrivateKey> for PublicKey {
    fn from(private_key: PrivateKey) -> PublicKey {
        private_key.public_key
    }
}

impl From<&PrivateKey> for PublicKey {
    fn from(private_key: &PrivateKey) -> PublicKey {
        private_key.public_key.clone()
    }
}

impl From<PrivateKey> for public::KeyData {
    fn from(private_key: PrivateKey) -> public::KeyData {
        private_key.public_key.key_data
    }
}

impl From<&PrivateKey> for public::KeyData {
    fn from(private_key: &PrivateKey) -> public::KeyData {
        private_key.public_key.key_data.clone()
    }
}

#[cfg(feature = "alloc")]
impl From<DsaKeypair> for PrivateKey {
    fn from(keypair: DsaKeypair) -> PrivateKey {
        KeypairData::from(keypair)
            .try_into()
            .expect(CONVERSION_ERROR_MSG)
    }
}

#[cfg(feature = "ecdsa")]
impl From<EcdsaKeypair> for PrivateKey {
    fn from(keypair: EcdsaKeypair) -> PrivateKey {
        KeypairData::from(keypair)
            .try_into()
            .expect(CONVERSION_ERROR_MSG)
    }
}

impl From<Ed25519Keypair> for PrivateKey {
    fn from(keypair: Ed25519Keypair) -> PrivateKey {
        KeypairData::from(keypair)
            .try_into()
            .expect(CONVERSION_ERROR_MSG)
    }
}

#[cfg(feature = "alloc")]
impl From<RsaKeypair> for PrivateKey {
    fn from(keypair: RsaKeypair) -> PrivateKey {
        KeypairData::from(keypair)
            .try_into()
            .expect(CONVERSION_ERROR_MSG)
    }
}

#[cfg(all(feature = "alloc", feature = "ecdsa"))]
impl From<SkEcdsaSha2NistP256> for PrivateKey {
    fn from(keypair: SkEcdsaSha2NistP256) -> PrivateKey {
        KeypairData::from(keypair)
            .try_into()
            .expect(CONVERSION_ERROR_MSG)
    }
}

#[cfg(feature = "alloc")]
impl From<SkEd25519> for PrivateKey {
    fn from(keypair: SkEd25519) -> PrivateKey {
        KeypairData::from(keypair)
            .try_into()
            .expect(CONVERSION_ERROR_MSG)
    }
}

impl TryFrom<KeypairData> for PrivateKey {
    type Error = Error;

    fn try_from(key_data: KeypairData) -> Result<PrivateKey> {
        let public_key = public::KeyData::try_from(&key_data)?;

        Ok(Self {
            cipher: Cipher::None,
            kdf: Kdf::None,
            checkint: None,
            public_key: public_key.into(),
            key_data,
            auth_tag: None,
        })
    }
}

impl PemLabel for PrivateKey {
    const PEM_LABEL: &'static str = "OPENSSH PRIVATE KEY";
}

impl str::FromStr for PrivateKey {
    type Err = Error;

    fn from_str(s: &str) -> Result<Self> {
        Self::from_openssh(s)
    }
}