ssh_key/
signature.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
//! Signatures (e.g. CA signatures over SSH certificates)

use crate::{private, public, Algorithm, EcdsaCurve, Error, Mpint, PrivateKey, PublicKey, Result};
use alloc::vec::Vec;
use core::fmt;
use encoding::{CheckedSum, Decode, Encode, Reader, Writer};
use signature::{SignatureEncoding, Signer, Verifier};

#[cfg(feature = "ed25519")]
use crate::{private::Ed25519Keypair, public::Ed25519PublicKey};

#[cfg(feature = "dsa")]
use {
    crate::{private::DsaKeypair, public::DsaPublicKey},
    bigint::BigUint,
    sha1::Sha1,
    signature::{DigestSigner, DigestVerifier},
};

#[cfg(any(feature = "p256", feature = "p384", feature = "p521"))]
use crate::{
    private::{EcdsaKeypair, EcdsaPrivateKey},
    public::EcdsaPublicKey,
};

#[cfg(any(feature = "dsa", feature = "p256", feature = "p384", feature = "p521"))]
use core::iter;

#[cfg(feature = "rsa")]
use {
    crate::{private::RsaKeypair, public::RsaPublicKey, HashAlg},
    sha2::Sha512,
};

#[cfg(any(feature = "ed25519", feature = "rsa", feature = "p256"))]
use sha2::Sha256;

#[cfg(any(feature = "dsa", feature = "ed25519", feature = "p256"))]
use sha2::Digest;

const DSA_SIGNATURE_SIZE: usize = 40;
const ED25519_SIGNATURE_SIZE: usize = 64;
const SK_SIGNATURE_TRAILER_SIZE: usize = 5; // flags(u8), counter(u32)
const SK_ED25519_SIGNATURE_SIZE: usize = ED25519_SIGNATURE_SIZE + SK_SIGNATURE_TRAILER_SIZE;

/// Trait for signing keys which produce a [`Signature`].
///
/// This trait is automatically impl'd for any types which impl the
/// [`Signer`] trait for the SSH [`Signature`] type and also support a [`From`]
/// conversion for [`public::KeyData`].
pub trait SigningKey: Signer<Signature> {
    /// Get the [`public::KeyData`] for this signing key.
    fn public_key(&self) -> public::KeyData;
}

impl<T> SigningKey for T
where
    T: Signer<Signature>,
    public::KeyData: for<'a> From<&'a T>,
{
    fn public_key(&self) -> public::KeyData {
        self.into()
    }
}

/// Low-level digital signature (e.g. DSA, ECDSA, Ed25519).
///
/// These are low-level signatures used as part of the OpenSSH certificate
/// format to represent signatures by certificate authorities (CAs), as well
/// as the higher-level [`SshSig`][`crate::SshSig`] format, which provides
/// general-purpose signing functionality using SSH keys.
///
/// From OpenSSH's [PROTOCOL.certkeys] specification:
///
/// > Signatures are computed and encoded according to the rules defined for
/// > the CA's public key algorithm ([RFC4253 section 6.6] for ssh-rsa and
/// > ssh-dss, [RFC5656] for the ECDSA types, and [RFC8032] for Ed25519).
///
/// RSA signature support is implemented using the SHA2 family extensions as
/// described in [RFC8332].
///
/// [PROTOCOL.certkeys]: https://cvsweb.openbsd.org/src/usr.bin/ssh/PROTOCOL.certkeys?annotate=HEAD
/// [RFC4253 section 6.6]: https://datatracker.ietf.org/doc/html/rfc4253#section-6.6
/// [RFC5656]: https://datatracker.ietf.org/doc/html/rfc5656
/// [RFC8032]: https://datatracker.ietf.org/doc/html/rfc8032
/// [RFC8332]: https://datatracker.ietf.org/doc/html/rfc8332
#[derive(Clone, Eq, PartialEq, PartialOrd, Ord)]
pub struct Signature {
    /// Signature algorithm.
    algorithm: Algorithm,

    /// Raw signature serialized as algorithm-specific byte encoding.
    data: Vec<u8>,
}

impl Signature {
    /// Create a new signature with the given algorithm and raw signature data.
    ///
    /// See specifications in toplevel [`Signature`] documentation for how to
    /// format the raw signature data for a given algorithm.
    ///
    /// # Returns
    /// - [`Error::Encoding`] if the signature is not the correct length.
    pub fn new(algorithm: Algorithm, data: impl Into<Vec<u8>>) -> Result<Self> {
        let data = data.into();

        // Validate signature is well-formed per OpensSH encoding
        match algorithm {
            Algorithm::Dsa if data.len() == DSA_SIGNATURE_SIZE => (),
            Algorithm::Ecdsa { curve } => ecdsa_sig_size(&data, curve, false)?,
            Algorithm::Ed25519 if data.len() == ED25519_SIGNATURE_SIZE => (),
            Algorithm::SkEd25519 if data.len() == SK_ED25519_SIGNATURE_SIZE => (),
            Algorithm::SkEcdsaSha2NistP256 => ecdsa_sig_size(&data, EcdsaCurve::NistP256, true)?,
            Algorithm::Rsa { hash: Some(_) } => (),
            Algorithm::Other(_) if !data.is_empty() => (),
            _ => return Err(encoding::Error::Length.into()),
        }

        Ok(Self { algorithm, data })
    }

    /// Get the [`Algorithm`] associated with this signature.
    pub fn algorithm(&self) -> Algorithm {
        self.algorithm.clone()
    }

    /// Get the raw signature as bytes.
    pub fn as_bytes(&self) -> &[u8] {
        &self.data
    }

    /// Placeholder signature used by the certificate builder.
    ///
    /// This is guaranteed generate an error if anything attempts to encode it.
    pub(crate) fn placeholder() -> Self {
        Self {
            algorithm: Algorithm::default(),
            data: Vec::new(),
        }
    }

    /// Check if this signature is the placeholder signature.
    pub(crate) fn is_placeholder(&self) -> bool {
        self.algorithm == Algorithm::default() && self.data.is_empty()
    }
}

/// Returns Ok() if data holds an ecdsa signature with components of appropriate size
/// according to curve.
fn ecdsa_sig_size(data: &Vec<u8>, curve: EcdsaCurve, sk_trailer: bool) -> Result<()> {
    let reader = &mut data.as_slice();

    for _ in 0..2 {
        let component = Mpint::decode(reader)?;

        if component.as_positive_bytes().ok_or(Error::Crypto)?.len() > curve.field_size() {
            return Err(encoding::Error::Length.into());
        }
    }
    if sk_trailer {
        reader.drain(SK_SIGNATURE_TRAILER_SIZE)?;
    }
    reader
        .finish(())
        .map_err(|_| encoding::Error::Length.into())
}

impl AsRef<[u8]> for Signature {
    fn as_ref(&self) -> &[u8] {
        self.as_bytes()
    }
}

impl Decode for Signature {
    type Error = Error;

    fn decode(reader: &mut impl Reader) -> Result<Self> {
        let algorithm = Algorithm::decode(reader)?;
        let mut data = Vec::decode(reader)?;

        if algorithm == Algorithm::SkEd25519 || algorithm == Algorithm::SkEcdsaSha2NistP256 {
            let flags = u8::decode(reader)?;
            let counter = u32::decode(reader)?;

            data.push(flags);
            data.extend(counter.to_be_bytes());
        }
        Self::new(algorithm, data)
    }
}

impl Encode for Signature {
    fn encoded_len(&self) -> encoding::Result<usize> {
        [
            self.algorithm().encoded_len()?,
            self.as_bytes().encoded_len()?,
        ]
        .checked_sum()
    }

    fn encode(&self, writer: &mut impl Writer) -> encoding::Result<()> {
        if self.is_placeholder() {
            return Err(encoding::Error::Length);
        }

        self.algorithm().encode(writer)?;

        if self.algorithm == Algorithm::SkEd25519 {
            let signature_length = self
                .as_bytes()
                .len()
                .checked_sub(SK_SIGNATURE_TRAILER_SIZE)
                .ok_or(encoding::Error::Length)?;
            self.as_bytes()[..signature_length].encode(writer)?;
            writer.write(&self.as_bytes()[signature_length..])?;
        } else {
            self.as_bytes().encode(writer)?;
        }

        Ok(())
    }
}

impl SignatureEncoding for Signature {
    type Repr = Vec<u8>;
}

/// Decode [`Signature`] from an [`Algorithm`]-prefixed OpenSSH-encoded bytestring.
impl TryFrom<&[u8]> for Signature {
    type Error = Error;

    fn try_from(mut bytes: &[u8]) -> Result<Self> {
        Self::decode(&mut bytes)
    }
}

impl TryFrom<Signature> for Vec<u8> {
    type Error = Error;

    fn try_from(signature: Signature) -> Result<Vec<u8>> {
        let mut ret = Vec::<u8>::new();
        signature.encode(&mut ret)?;
        Ok(ret)
    }
}

impl fmt::Debug for Signature {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(
            f,
            "Signature {{ algorithm: {:?}, data: {:X} }}",
            self.algorithm, self
        )
    }
}

impl fmt::LowerHex for Signature {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        for byte in self.as_ref() {
            write!(f, "{byte:02x}")?;
        }
        Ok(())
    }
}

impl fmt::UpperHex for Signature {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        for byte in self.as_ref() {
            write!(f, "{byte:02X}")?;
        }
        Ok(())
    }
}

impl Signer<Signature> for PrivateKey {
    fn try_sign(&self, message: &[u8]) -> signature::Result<Signature> {
        self.key_data().try_sign(message)
    }
}

impl Signer<Signature> for private::KeypairData {
    #[allow(unused_variables)]
    fn try_sign(&self, message: &[u8]) -> signature::Result<Signature> {
        match self {
            #[cfg(feature = "dsa")]
            Self::Dsa(keypair) => keypair.try_sign(message),
            #[cfg(any(feature = "p256", feature = "p384", feature = "p521"))]
            Self::Ecdsa(keypair) => keypair.try_sign(message),
            #[cfg(feature = "ed25519")]
            Self::Ed25519(keypair) => keypair.try_sign(message),
            #[cfg(feature = "rsa")]
            Self::Rsa(keypair) => keypair.try_sign(message),
            _ => Err(self.algorithm()?.unsupported_error().into()),
        }
    }
}

impl Verifier<Signature> for PublicKey {
    fn verify(&self, message: &[u8], signature: &Signature) -> signature::Result<()> {
        self.key_data().verify(message, signature)
    }
}

impl Verifier<Signature> for public::KeyData {
    #[allow(unused_variables)]
    fn verify(&self, message: &[u8], signature: &Signature) -> signature::Result<()> {
        match self {
            #[cfg(feature = "dsa")]
            Self::Dsa(pk) => pk.verify(message, signature),
            #[cfg(any(feature = "p256", feature = "p384", feature = "p521"))]
            Self::Ecdsa(pk) => pk.verify(message, signature),
            #[cfg(feature = "ed25519")]
            Self::Ed25519(pk) => pk.verify(message, signature),
            #[cfg(feature = "ed25519")]
            Self::SkEd25519(pk) => pk.verify(message, signature),
            #[cfg(feature = "p256")]
            Self::SkEcdsaSha2NistP256(pk) => pk.verify(message, signature),
            #[cfg(feature = "rsa")]
            Self::Rsa(pk) => pk.verify(message, signature),
            #[allow(unreachable_patterns)]
            _ => Err(self.algorithm().unsupported_error().into()),
        }
    }
}

#[cfg(feature = "dsa")]
impl Signer<Signature> for DsaKeypair {
    fn try_sign(&self, message: &[u8]) -> signature::Result<Signature> {
        let signature = dsa::SigningKey::try_from(self)?
            .try_sign_digest(Sha1::new_with_prefix(message))
            .map_err(|_| signature::Error::new())?;

        // Encode the format specified in RFC4253 section 6.6: two raw 80-bit integers concatenated
        let mut data = Vec::new();

        for component in [signature.r(), signature.s()] {
            let mut bytes = component.to_bytes_be();
            let pad_len = (DSA_SIGNATURE_SIZE / 2).saturating_sub(bytes.len());
            data.extend(iter::repeat(0).take(pad_len));
            data.append(&mut bytes);
        }

        debug_assert_eq!(data.len(), DSA_SIGNATURE_SIZE);

        Ok(Signature {
            algorithm: Algorithm::Dsa,
            data,
        })
    }
}

#[cfg(feature = "dsa")]
impl Verifier<Signature> for DsaPublicKey {
    fn verify(&self, message: &[u8], signature: &Signature) -> signature::Result<()> {
        match signature.algorithm {
            Algorithm::Dsa => {
                let data = signature.data.as_slice();
                if data.len() != DSA_SIGNATURE_SIZE {
                    return Err(signature::Error::new());
                }
                let (r, s) = data.split_at(DSA_SIGNATURE_SIZE / 2);
                let signature = dsa::Signature::from_components(
                    BigUint::from_bytes_be(r),
                    BigUint::from_bytes_be(s),
                )?;
                dsa::VerifyingKey::try_from(self)?
                    .verify_digest(Sha1::new_with_prefix(message), &signature)
                    .map_err(|_| signature::Error::new())
            }
            _ => Err(signature.algorithm().unsupported_error().into()),
        }
    }
}

#[cfg(feature = "ed25519")]
impl TryFrom<Signature> for ed25519_dalek::Signature {
    type Error = Error;

    fn try_from(signature: Signature) -> Result<ed25519_dalek::Signature> {
        ed25519_dalek::Signature::try_from(&signature)
    }
}

#[cfg(feature = "ed25519")]
impl TryFrom<&Signature> for ed25519_dalek::Signature {
    type Error = Error;

    fn try_from(signature: &Signature) -> Result<ed25519_dalek::Signature> {
        match signature.algorithm {
            Algorithm::Ed25519 | Algorithm::SkEd25519 => {
                Ok(ed25519_dalek::Signature::try_from(signature.as_bytes())?)
            }
            _ => Err(Error::AlgorithmUnknown),
        }
    }
}

#[cfg(feature = "ed25519")]
impl Signer<Signature> for Ed25519Keypair {
    fn try_sign(&self, message: &[u8]) -> signature::Result<Signature> {
        let signature = ed25519_dalek::SigningKey::try_from(self)?.sign(message);

        Ok(Signature {
            algorithm: Algorithm::Ed25519,
            data: signature.to_vec(),
        })
    }
}

#[cfg(feature = "ed25519")]
impl Verifier<Signature> for Ed25519PublicKey {
    fn verify(&self, message: &[u8], signature: &Signature) -> signature::Result<()> {
        let signature = ed25519_dalek::Signature::try_from(signature)?;
        ed25519_dalek::VerifyingKey::try_from(self)?.verify(message, &signature)
    }
}

#[cfg(feature = "ed25519")]
impl Verifier<Signature> for public::SkEd25519 {
    fn verify(&self, message: &[u8], signature: &Signature) -> signature::Result<()> {
        let (signature, flags_and_counter) = split_sk_signature(signature)?;
        let signature = ed25519_dalek::Signature::try_from(signature)?;
        ed25519_dalek::VerifyingKey::try_from(self.public_key())?.verify(
            &make_sk_signed_data(self.application(), flags_and_counter, message),
            &signature,
        )
    }
}

#[cfg(feature = "p256")]
impl Verifier<Signature> for public::SkEcdsaSha2NistP256 {
    fn verify(&self, message: &[u8], signature: &Signature) -> signature::Result<()> {
        let (signature_bytes, flags_and_counter) = split_sk_signature(signature)?;
        let signature = p256_signature_from_openssh_bytes(signature_bytes)?;
        p256::ecdsa::VerifyingKey::from_encoded_point(self.ec_point())?.verify(
            &make_sk_signed_data(self.application(), flags_and_counter, message),
            &signature,
        )
    }
}

#[cfg(any(feature = "p256", feature = "ed25519"))]
fn make_sk_signed_data(application: &str, flags_and_counter: &[u8], message: &[u8]) -> Vec<u8> {
    const SHA256_OUTPUT_LENGTH: usize = 32;
    const SIGNED_SK_DATA_LENGTH: usize = 2 * SHA256_OUTPUT_LENGTH + SK_SIGNATURE_TRAILER_SIZE;

    let mut signed_data = Vec::with_capacity(SIGNED_SK_DATA_LENGTH);
    signed_data.extend(Sha256::digest(application));
    signed_data.extend(flags_and_counter);
    signed_data.extend(Sha256::digest(message));
    signed_data
}

#[cfg(any(feature = "p256", feature = "ed25519"))]
fn split_sk_signature(signature: &Signature) -> Result<(&[u8], &[u8])> {
    let signature_bytes = signature.as_bytes();
    let signature_len = signature_bytes
        .len()
        .checked_sub(SK_SIGNATURE_TRAILER_SIZE)
        .ok_or(Error::Encoding(encoding::Error::Length))?;
    Ok((
        &signature_bytes[..signature_len],
        &signature_bytes[signature_len..],
    ))
}

macro_rules! impl_signature_for_curve {
    ($krate:ident, $feature:expr, $curve:ident, $size:expr) => {
        #[cfg(feature = $feature)]
        impl TryFrom<$krate::ecdsa::Signature> for Signature {
            type Error = Error;

            fn try_from(signature: $krate::ecdsa::Signature) -> Result<Signature> {
                Signature::try_from(&signature)
            }
        }

        #[cfg(feature = $feature)]
        impl TryFrom<&$krate::ecdsa::Signature> for Signature {
            type Error = Error;

            fn try_from(signature: &$krate::ecdsa::Signature) -> Result<Signature> {
                let (r, s) = signature.split_bytes();

                #[allow(clippy::arithmetic_side_effects)]
                let mut data = Vec::with_capacity($size * 2 + 4 * 2 + 2);

                Mpint::from_positive_bytes(&r)?.encode(&mut data)?;
                Mpint::from_positive_bytes(&s)?.encode(&mut data)?;

                Ok(Signature {
                    algorithm: Algorithm::Ecdsa {
                        curve: EcdsaCurve::$curve,
                    },
                    data,
                })
            }
        }

        #[cfg(feature = $feature)]
        impl TryFrom<Signature> for $krate::ecdsa::Signature {
            type Error = Error;

            fn try_from(signature: Signature) -> Result<$krate::ecdsa::Signature> {
                $krate::ecdsa::Signature::try_from(&signature)
            }
        }

        #[cfg(feature = $feature)]
        impl Signer<Signature> for EcdsaPrivateKey<$size> {
            fn try_sign(&self, message: &[u8]) -> signature::Result<Signature> {
                let signing_key = $krate::ecdsa::SigningKey::from_slice(self.as_ref())?;
                let signature: $krate::ecdsa::Signature = signing_key.try_sign(message)?;
                Ok(signature.try_into()?)
            }
        }
    };
}

impl_signature_for_curve!(p256, "p256", NistP256, 32);
impl_signature_for_curve!(p384, "p384", NistP384, 48);
impl_signature_for_curve!(p521, "p521", NistP521, 66);

/// Build a generic sized object from a `u8` iterator, with leading zero padding
#[cfg(any(feature = "p256", feature = "p384", feature = "p521"))]
fn zero_pad_field_bytes<B: FromIterator<u8> + Copy>(m: Mpint) -> Option<B> {
    use core::mem::size_of;

    let bytes = m.as_positive_bytes()?;
    size_of::<B>()
        .checked_sub(bytes.len())
        .map(|i| B::from_iter(iter::repeat(0u8).take(i).chain(bytes.iter().cloned())))
}

#[cfg(feature = "p256")]
impl TryFrom<&Signature> for p256::ecdsa::Signature {
    type Error = Error;

    fn try_from(signature: &Signature) -> Result<p256::ecdsa::Signature> {
        match signature.algorithm {
            Algorithm::Ecdsa {
                curve: EcdsaCurve::NistP256,
            } => p256_signature_from_openssh_bytes(signature.as_bytes()),
            _ => Err(signature.algorithm.clone().unsupported_error()),
        }
    }
}
#[cfg(feature = "p256")]
fn p256_signature_from_openssh_bytes(mut signature_bytes: &[u8]) -> Result<p256::ecdsa::Signature> {
    let reader = &mut signature_bytes;
    let r = Mpint::decode(reader)?;
    let s = Mpint::decode(reader)?;

    match (
        zero_pad_field_bytes::<p256::FieldBytes>(r),
        zero_pad_field_bytes::<p256::FieldBytes>(s),
    ) {
        (Some(r), Some(s)) => Ok(p256::ecdsa::Signature::from_scalars(r, s)?),
        _ => Err(Error::Crypto),
    }
}

#[cfg(feature = "p384")]
impl TryFrom<&Signature> for p384::ecdsa::Signature {
    type Error = Error;

    fn try_from(signature: &Signature) -> Result<p384::ecdsa::Signature> {
        match signature.algorithm {
            Algorithm::Ecdsa {
                curve: EcdsaCurve::NistP384,
            } => {
                let reader = &mut signature.as_bytes();
                let r = Mpint::decode(reader)?;
                let s = Mpint::decode(reader)?;

                match (
                    zero_pad_field_bytes::<p384::FieldBytes>(r),
                    zero_pad_field_bytes::<p384::FieldBytes>(s),
                ) {
                    (Some(r), Some(s)) => Ok(p384::ecdsa::Signature::from_scalars(r, s)?),
                    _ => Err(Error::Crypto),
                }
            }
            _ => Err(signature.algorithm.clone().unsupported_error()),
        }
    }
}

#[cfg(feature = "p521")]
impl TryFrom<&Signature> for p521::ecdsa::Signature {
    type Error = Error;

    fn try_from(signature: &Signature) -> Result<p521::ecdsa::Signature> {
        match signature.algorithm {
            Algorithm::Ecdsa {
                curve: EcdsaCurve::NistP521,
            } => {
                let reader = &mut signature.as_bytes();
                let r = Mpint::decode(reader)?;
                let s = Mpint::decode(reader)?;

                match (
                    zero_pad_field_bytes::<p521::FieldBytes>(r),
                    zero_pad_field_bytes::<p521::FieldBytes>(s),
                ) {
                    (Some(r), Some(s)) => Ok(p521::ecdsa::Signature::from_scalars(r, s)?),
                    _ => Err(Error::Crypto),
                }
            }
            _ => Err(signature.algorithm.clone().unsupported_error()),
        }
    }
}

#[cfg(any(feature = "p256", feature = "p384", feature = "p521"))]
impl Signer<Signature> for EcdsaKeypair {
    fn try_sign(&self, message: &[u8]) -> signature::Result<Signature> {
        match self {
            #[cfg(feature = "p256")]
            Self::NistP256 { private, .. } => private.try_sign(message),
            #[cfg(feature = "p384")]
            Self::NistP384 { private, .. } => private.try_sign(message),
            #[cfg(feature = "p521")]
            Self::NistP521 { private, .. } => private.try_sign(message),
            #[cfg(not(all(feature = "p256", feature = "p384", feature = "p521")))]
            _ => Err(self.algorithm().unsupported_error().into()),
        }
    }
}

#[cfg(any(feature = "p256", feature = "p384", feature = "p521"))]
impl Verifier<Signature> for EcdsaPublicKey {
    fn verify(&self, message: &[u8], signature: &Signature) -> signature::Result<()> {
        match signature.algorithm {
            Algorithm::Ecdsa { curve } => match curve {
                #[cfg(feature = "p256")]
                EcdsaCurve::NistP256 => {
                    let verifying_key = p256::ecdsa::VerifyingKey::try_from(self)?;
                    let signature = p256::ecdsa::Signature::try_from(signature)?;
                    verifying_key.verify(message, &signature)
                }

                #[cfg(feature = "p384")]
                EcdsaCurve::NistP384 => {
                    let verifying_key = p384::ecdsa::VerifyingKey::try_from(self)?;
                    let signature = p384::ecdsa::Signature::try_from(signature)?;
                    verifying_key.verify(message, &signature)
                }

                #[cfg(feature = "p521")]
                EcdsaCurve::NistP521 => {
                    let verifying_key = p521::ecdsa::VerifyingKey::try_from(self)?;
                    let signature = p521::ecdsa::Signature::try_from(signature)?;
                    verifying_key.verify(message, &signature)
                }

                #[cfg(not(all(feature = "p256", feature = "p384", feature = "p521")))]
                _ => Err(signature.algorithm().unsupported_error().into()),
            },
            _ => Err(signature.algorithm().unsupported_error().into()),
        }
    }
}

#[cfg(feature = "rsa")]
impl Signer<Signature> for RsaKeypair {
    fn try_sign(&self, message: &[u8]) -> signature::Result<Signature> {
        let data = rsa::pkcs1v15::SigningKey::<Sha512>::try_from(self)?
            .try_sign(message)
            .map_err(|_| signature::Error::new())?;

        Ok(Signature {
            algorithm: Algorithm::Rsa {
                hash: Some(HashAlg::Sha512),
            },
            data: data.to_vec(),
        })
    }
}

#[cfg(feature = "rsa")]
impl Verifier<Signature> for RsaPublicKey {
    fn verify(&self, message: &[u8], signature: &Signature) -> signature::Result<()> {
        match signature.algorithm {
            Algorithm::Rsa { hash: Some(hash) } => {
                let signature = rsa::pkcs1v15::Signature::try_from(signature.data.as_ref())?;

                match hash {
                    HashAlg::Sha256 => rsa::pkcs1v15::VerifyingKey::<Sha256>::try_from(self)?
                        .verify(message, &signature)
                        .map_err(|_| signature::Error::new()),
                    HashAlg::Sha512 => rsa::pkcs1v15::VerifyingKey::<Sha512>::try_from(self)?
                        .verify(message, &signature)
                        .map_err(|_| signature::Error::new()),
                }
            }
            _ => Err(signature.algorithm().unsupported_error().into()),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::Signature;
    use crate::{Algorithm, EcdsaCurve, HashAlg};
    use alloc::vec::Vec;
    use encoding::Encode;
    use hex_literal::hex;

    #[cfg(feature = "ed25519")]
    use {
        super::Ed25519Keypair,
        signature::{Signer, Verifier},
    };

    #[cfg(feature = "p256")]
    use super::{zero_pad_field_bytes, Mpint};

    const DSA_SIGNATURE: &[u8] = &hex!("000000077373682d6473730000002866725bf3c56100e975e21fff28a60f73717534d285ea3e1beefc2891f7189d00bd4d94627e84c55c");
    const ECDSA_SHA2_P256_SIGNATURE: &[u8] = &hex!("0000001365636473612d736861322d6e6973747032353600000048000000201298ab320720a32139cda8a40c97a13dc54ce032ea3c6f09ea9e87501e48fa1d0000002046e4ac697a6424a9870b9ef04ca1182cd741965f989bd1f1f4a26fd83cf70348");
    const ED25519_SIGNATURE: &[u8] = &hex!("0000000b7373682d65643235353139000000403d6b9906b76875aef1e7b2f1e02078a94f439aebb9a4734da1a851a81e22ce0199bbf820387a8de9c834c9c3cc778d9972dcbe70f68d53cc6bc9e26b02b46d04");
    const SK_ED25519_SIGNATURE: &[u8] = &hex!("0000001a736b2d7373682d65643235353139406f70656e7373682e636f6d000000402f5670b6f93465d17423878a74084bf331767031ed240c627c8eb79ab8fa1b935a1fd993f52f5a13fec1797f8a434f943a6096246aea8dd5c8aa922cba3d95060100000009");
    const RSA_SHA512_SIGNATURE: &[u8] = &hex!("0000000c7273612d736861322d3531320000018085a4ad1a91a62c00c85de7bb511f38088ff2bce763d76f4786febbe55d47624f9e2cffce58a680183b9ad162c7f0191ea26cab001ac5f5055743eced58e9981789305c208fc98d2657954e38eb28c7e7f3fbe92393a14324ed77aebb772a41aa7a107b38cb9bd1d9ad79b275135d1d7e019bb1d56d74f2450be6db0771f48f6707d3fcf9789592ca2e55595acc16b6e8d0139b56c5d1360b3a1e060f4151a3d7841df2c2a8c94d6f8a1bf633165ee0bcadac5642763df0dd79d3235ae5506595145f199d8abe8f9980411bf70a16e30f273736324d047043317044c36374d6a5ed34cac251e01c6795e4578393f9090bf4ae3e74a0009275a197315fc9c62f1c9aec1ba3b2d37c3b207e5500df19e090e7097ebc038fb9c9e35aea9161479ba6b5190f48e89e1abe51e8ec0e120ef89776e129687ca52d1892c8e88e6ef062a7d96b8a87682ca6a42ff1df0cdf5815c3645aeed7267ca7093043db0565e0f109b796bf117b9d2bb6d6debc0c67a4c9fb3aae3e29b00c7bd70f6c11cf53c295ff");

    /// Example test vector for signing.
    #[cfg(feature = "ed25519")]
    const EXAMPLE_MSG: &[u8] = b"Hello, world!";

    #[cfg(feature = "p256")]
    #[test]
    fn convert_ecdsa_sha2_p256() {
        let p256_signature = p256::ecdsa::Signature::try_from(hex!("00000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000001").as_ref()).unwrap();
        let _ssh_signature = Signature::try_from(p256_signature).unwrap();
    }

    #[cfg(feature = "p256")]
    #[test]
    fn zero_pad_field_bytes_p256() {
        let i = Mpint::from_bytes(&hex!(
            "1122334455667788112233445566778811223344556677881122334455667788"
        ))
        .unwrap();
        let fb = zero_pad_field_bytes::<p256::FieldBytes>(i);
        assert!(fb.is_some());

        // too long
        let i = Mpint::from_bytes(&hex!(
            "991122334455667788112233445566778811223344556677881122334455667788"
        ))
        .unwrap();
        let fb = zero_pad_field_bytes::<p256::FieldBytes>(i);
        assert!(fb.is_none());

        // short is okay
        let i = Mpint::from_bytes(&hex!(
            "22334455667788112233445566778811223344556677881122334455667788"
        ))
        .unwrap();
        let fb = zero_pad_field_bytes::<p256::FieldBytes>(i)
            .expect("failed to build FieldBytes from short hex string");
        assert_eq!(fb[0], 0x00);
        assert_eq!(fb[1], 0x22);
    }

    #[test]
    fn decode_dsa() {
        let signature = Signature::try_from(DSA_SIGNATURE).unwrap();
        assert_eq!(Algorithm::Dsa, signature.algorithm());
    }

    #[test]
    fn decode_ecdsa_sha2_p256() {
        let signature = Signature::try_from(ECDSA_SHA2_P256_SIGNATURE).unwrap();
        assert_eq!(
            Algorithm::Ecdsa {
                curve: EcdsaCurve::NistP256
            },
            signature.algorithm()
        );
    }

    #[test]
    fn decode_ed25519() {
        let signature = Signature::try_from(ED25519_SIGNATURE).unwrap();
        assert_eq!(Algorithm::Ed25519, signature.algorithm());
    }

    #[test]
    fn decode_sk_ed25519() {
        let signature = Signature::try_from(SK_ED25519_SIGNATURE).unwrap();
        assert_eq!(Algorithm::SkEd25519, signature.algorithm());
    }

    #[test]
    fn decode_rsa() {
        let signature = Signature::try_from(RSA_SHA512_SIGNATURE).unwrap();
        assert_eq!(
            Algorithm::Rsa {
                hash: Some(HashAlg::Sha512)
            },
            signature.algorithm()
        );
    }

    #[test]
    fn encode_dsa() {
        let signature = Signature::try_from(DSA_SIGNATURE).unwrap();

        let mut result = Vec::new();
        signature.encode(&mut result).unwrap();
        assert_eq!(DSA_SIGNATURE, &result);
    }

    #[test]
    fn encode_ecdsa_sha2_p256() {
        let signature = Signature::try_from(ECDSA_SHA2_P256_SIGNATURE).unwrap();

        let mut result = Vec::new();
        signature.encode(&mut result).unwrap();
        assert_eq!(ECDSA_SHA2_P256_SIGNATURE, &result);
    }

    #[test]
    fn encode_ed25519() {
        let signature = Signature::try_from(ED25519_SIGNATURE).unwrap();

        let mut result = Vec::new();
        signature.encode(&mut result).unwrap();
        assert_eq!(ED25519_SIGNATURE, &result);
    }

    #[test]
    fn encode_sk_ed25519() {
        let signature = Signature::try_from(SK_ED25519_SIGNATURE).unwrap();

        let mut result = Vec::new();
        signature.encode(&mut result).unwrap();
        assert_eq!(SK_ED25519_SIGNATURE, &result);
    }

    #[cfg(feature = "dsa")]
    #[test]
    fn try_sign_and_verify_dsa() {
        use super::{DsaKeypair, DSA_SIGNATURE_SIZE};
        use encoding::Decode as _;
        use signature::{Signer as _, Verifier as _};

        fn check_signature_component_lens(
            keypair: &DsaKeypair,
            data: &[u8],
            r_len: usize,
            s_len: usize,
        ) {
            use sha1::{Digest as _, Sha1};
            use signature::DigestSigner as _;

            let signature = dsa::SigningKey::try_from(keypair)
                .expect("valid DSA signing key")
                .try_sign_digest(Sha1::new_with_prefix(data))
                .expect("valid DSA signature");

            let r = signature.r().to_bytes_be();
            assert_eq!(
                r.len(),
                r_len,
                "dsa signature component `r` has len {} != {}",
                r.len(),
                r_len
            );
            let s = signature.s().to_bytes_be();
            assert_eq!(
                s.len(),
                s_len,
                "dsa signature component `s` has len {} != {}",
                s.len(),
                s_len
            );
        }

        let keypair = hex!("0000008100c161fb30c9e4e3602c8510f93bbd48d813da845dfcc75f3696e440cd019d609809608cd592b8430db901d7b43740740045b547c60fb035d69f9c64d3dfbfb13bb3edd8ccfdd44705739a639eb70f4aed16b0b8355de1b21cd9d442eff250895573a8af7ce2fb71fb062e887482dab5c68139845fb8afafc5f3819dc782920d510000001500f3fb6762430332bd5950edc5cd1ae6f17b88514f0000008061ef1394d864905e8efec3b610b7288a6522893af2a475f910796e0de47c8b065d365e942e80e471d1e6d4abdee1d3d3ede7103c6996432f1a9f9a671a31388672d63555077911fc69e641a997087260d22cdbf4965aa64bb382204f88987890ec225a5a7723a977dc1ecc5e04cf678f994692b20470adbf697489f800817b920000008100a9a6f1b65fc724d65df7441908b34af66489a4a3872cbbba25ea1bcfc83f25c4af1a62e339eefc814907cfaf0cb6d2d16996212a32a27a63013f01c57d0630f0be16c8c69d16fc25438e613b904b98aeb3e7c356fa8e75ee1d474c9f82f1280c5a6c18e9e607fcf7586eefb75ea9399da893b807375ac1396fd586bf277161980000001500ced95f1c7bbb39be4987837ad1f71be31bb7b0d9");
        let keypair = DsaKeypair::decode(&mut &keypair[..]).expect("properly encoded DSA keypair");

        let data = hex!("F0000040713d5f6fffe0000e6421ab0b3a69774d3da02fd72b107d6b32b6dad7c1660bbf507bf3eac3304cc5058f7e6f81b04239b8471459b1f3b387e2626f7eb8f6bcdd3200000006626c616465320000000e7373682d636f6e6e656374696f6e00000009686f73746261736564000000077373682d647373000001b2000000077373682d6473730000008100c161fb30c9e4e3602c8510f93bbd48d813da845dfcc75f3696e440cd019d609809608cd592b8430db901d7b43740740045b547c60fb035d69f9c64d3dfbfb13bb3edd8ccfdd44705739a639eb70f4aed16b0b8355de1b21cd9d442eff250895573a8af7ce2fb71fb062e887482dab5c68139845fb8afafc5f3819dc782920d510000001500f3fb6762430332bd5950edc5cd1ae6f17b88514f0000008061ef1394d864905e8efec3b610b7288a6522893af2a475f910796e0de47c8b065d365e942e80e471d1e6d4abdee1d3d3ede7103c6996432f1a9f9a671a31388672d63555077911fc69e641a997087260d22cdbf4965aa64bb382204f88987890ec225a5a7723a977dc1ecc5e04cf678f994692b20470adbf697489f800817b920000008100a9a6f1b65fc724d65df7441908b34af66489a4a3872cbbba25ea1bcfc83f25c4af1a62e339eefc814907cfaf0cb6d2d16996212a32a27a63013f01c57d0630f0be16c8c69d16fc25438e613b904b98aeb3e7c356fa8e75ee1d474c9f82f1280c5a6c18e9e607fcf7586eefb75ea9399da893b807375ac1396fd586bf2771619800000015746f6d61746f7373682e6c6f63616c646f6d61696e00000009746f6d61746f737368");
        check_signature_component_lens(
            &keypair,
            &data,
            DSA_SIGNATURE_SIZE / 2,
            DSA_SIGNATURE_SIZE / 2,
        );
        let signature = keypair.try_sign(&data[..]).expect("dsa try_sign is ok");
        keypair
            .public
            .verify(&data[..], &signature)
            .expect("dsa verify is ok");

        let data = hex!("00000040713d5f6fffe0000e6421ab0b3a69774d3da02fd72b107d6b32b6dad7c1660bbf507bf3eac3304cc5058f7e6f81b04239b8471459b1f3b387e2626f7eb8f6bcdd3200000006626c616465320000000e7373682d636f6e6e656374696f6e00000009686f73746261736564000000077373682d647373000001b2000000077373682d6473730000008100c161fb30c9e4e3602c8510f93bbd48d813da845dfcc75f3696e440cd019d609809608cd592b8430db901d7b43740740045b547c60fb035d69f9c64d3dfbfb13bb3edd8ccfdd44705739a639eb70f4aed16b0b8355de1b21cd9d442eff250895573a8af7ce2fb71fb062e887482dab5c68139845fb8afafc5f3819dc782920d510000001500f3fb6762430332bd5950edc5cd1ae6f17b88514f0000008061ef1394d864905e8efec3b610b7288a6522893af2a475f910796e0de47c8b065d365e942e80e471d1e6d4abdee1d3d3ede7103c6996432f1a9f9a671a31388672d63555077911fc69e641a997087260d22cdbf4965aa64bb382204f88987890ec225a5a7723a977dc1ecc5e04cf678f994692b20470adbf697489f800817b920000008100a9a6f1b65fc724d65df7441908b34af66489a4a3872cbbba25ea1bcfc83f25c4af1a62e339eefc814907cfaf0cb6d2d16996212a32a27a63013f01c57d0630f0be16c8c69d16fc25438e613b904b98aeb3e7c356fa8e75ee1d474c9f82f1280c5a6c18e9e607fcf7586eefb75ea9399da893b807375ac1396fd586bf2771619800000015746f6d61746f7373682e6c6f63616c646f6d61696e00000009746f6d61746f737368");
        // verify that this data produces signature with `r` integer component that is less than 160 bits/20 bytes.
        check_signature_component_lens(
            &keypair,
            &data,
            DSA_SIGNATURE_SIZE / 2 - 1,
            DSA_SIGNATURE_SIZE / 2,
        );
        let signature = keypair
            .try_sign(&data[..])
            .expect("dsa try_sign for r.len() == 19 is ok");
        keypair
            .public
            .verify(&data[..], &signature)
            .expect("dsa verify is ok");
    }

    #[cfg(feature = "ed25519")]
    #[test]
    fn sign_and_verify_ed25519() {
        let keypair = Ed25519Keypair::from_seed(&[42; 32]);
        let signature = keypair.sign(EXAMPLE_MSG);
        assert!(keypair.public.verify(EXAMPLE_MSG, &signature).is_ok());
    }

    #[test]
    fn placeholder() {
        assert!(!Signature::try_from(ED25519_SIGNATURE)
            .unwrap()
            .is_placeholder());

        let placeholder = Signature::placeholder();
        assert!(placeholder.is_placeholder());

        let mut writer = Vec::new();
        assert_eq!(
            placeholder.encode(&mut writer),
            Err(encoding::Error::Length)
        );
    }
}