ssh_key/private.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
//! SSH private key support.
//!
//! Support for decoding SSH private keys (i.e. digital signature keys)
//! from the OpenSSH file format:
//!
//! <https://cvsweb.openbsd.org/src/usr.bin/ssh/PROTOCOL.key?annotate=HEAD>
//!
//! ## Decrypting encrypted private keys
//!
//! When the `encryption` feature of this crate is enabled, it's possible to
//! decrypt keys which have been encrypted under a password:
//!
#![cfg_attr(all(feature = "encryption", feature = "std"), doc = " ```")]
#![cfg_attr(not(all(feature = "encryption", feature = "std")), doc = " ```ignore")]
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! use ssh_key::PrivateKey;
//!
//! // WARNING: don't actually hardcode private keys in source code!!!
//! let encoded_key = r#"
//! -----BEGIN OPENSSH PRIVATE KEY-----
//! b3BlbnNzaC1rZXktdjEAAAAACmFlczI1Ni1jdHIAAAAGYmNyeXB0AAAAGAAAABBKH96ujW
//! umB6/WnTNPjTeaAAAAEAAAAAEAAAAzAAAAC3NzaC1lZDI1NTE5AAAAILM+rvN+ot98qgEN
//! 796jTiQfZfG1KaT0PtFDJ/XFSqtiAAAAoFzvbvyFMhAiwBOXF0mhUUacPUCMZXivG2up2c
//! hEnAw1b6BLRPyWbY5cC2n9ggD4ivJ1zSts6sBgjyiXQAReyrP35myYvT/OIB/NpwZM/xIJ
//! N7MHSUzlkX4adBrga3f7GS4uv4ChOoxC4XsE5HsxtGsq1X8jzqLlZTmOcxkcEneYQexrUc
//! bQP0o+gL5aKK8cQgiIlXeDbRjqhc4+h4EF6lY=
//! -----END OPENSSH PRIVATE KEY-----
//! "#;
//!
//! let encrypted_key = PrivateKey::from_openssh(encoded_key)?;
//! assert!(encrypted_key.is_encrypted());
//!
//! // WARNING: don't hardcode passwords, and this one's bad anyway
//! let password = "hunter42";
//!
//! let decrypted_key = encrypted_key.decrypt(password)?;
//! assert!(!decrypted_key.is_encrypted());
//! # Ok(())
//! # }
//! ```
//!
//! ## Encrypting plaintext private keys
//!
//! When the `encryption` feature of this crate is enabled, it's possible to
//! encrypt plaintext private keys under a provided password.
//!
//! The example below also requires enabling this crate's `getrandom` feature.
//!
#![cfg_attr(
all(
feature = "ed25519",
feature = "encryption",
feature = "getrandom",
feature = "std"
),
doc = " ```"
)]
#![cfg_attr(
not(all(
feature = "ed25519",
feature = "encryption",
feature = "getrandom",
feature = "std"
)),
doc = " ```ignore"
)]
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! use ssh_key::{Algorithm, PrivateKey, rand_core::OsRng};
//!
//! // Generate a random key
//! let unencrypted_key = PrivateKey::random(&mut OsRng, Algorithm::Ed25519)?;
//!
//! // WARNING: don't hardcode passwords, and this one's bad anyway
//! let password = "hunter42";
//!
//! let encrypted_key = unencrypted_key.encrypt(&mut OsRng, password)?;
//! assert!(encrypted_key.is_encrypted());
//! # Ok(())
//! # }
//! ```
//!
//! ## Generating random keys
//!
//! This crate supports generation of random keys using algorithm-specific
//! backends gated on cargo features.
//!
//! The examples below require enabling this crate's `getrandom` feature as
//! well as the crate feature identified in backticks in the title of each
//! example.
//!
#![cfg_attr(
all(feature = "ed25519", feature = "getrandom", feature = "std"),
doc = " ```"
)]
#![cfg_attr(
not(all(feature = "ed25519", feature = "getrandom", feature = "std")),
doc = " ```ignore"
)]
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! use ssh_key::{Algorithm, PrivateKey, rand_core::OsRng};
//!
//! let private_key = PrivateKey::random(&mut OsRng, Algorithm::Ed25519)?;
//! # Ok(())
//! # }
//! ```
#[cfg(feature = "alloc")]
mod dsa;
#[cfg(feature = "ecdsa")]
mod ecdsa;
mod ed25519;
mod keypair;
#[cfg(feature = "alloc")]
mod opaque;
#[cfg(feature = "alloc")]
mod rsa;
#[cfg(feature = "alloc")]
mod sk;
pub use self::{
ed25519::{Ed25519Keypair, Ed25519PrivateKey},
keypair::KeypairData,
};
#[cfg(feature = "alloc")]
pub use crate::{
private::{
dsa::{DsaKeypair, DsaPrivateKey},
opaque::{OpaqueKeypair, OpaqueKeypairBytes, OpaquePrivateKeyBytes},
rsa::{RsaKeypair, RsaPrivateKey},
sk::SkEd25519,
},
SshSig,
};
#[cfg(feature = "ecdsa")]
pub use self::ecdsa::{EcdsaKeypair, EcdsaPrivateKey};
#[cfg(all(feature = "alloc", feature = "ecdsa"))]
pub use self::sk::SkEcdsaSha2NistP256;
use crate::{public, Algorithm, Cipher, Error, Fingerprint, HashAlg, Kdf, PublicKey, Result};
use cipher::Tag;
use core::str;
use encoding::{
pem::{LineEnding, PemLabel},
CheckedSum, Decode, DecodePem, Encode, EncodePem, Reader, Writer,
};
use subtle::{Choice, ConstantTimeEq};
#[cfg(feature = "alloc")]
use {
alloc::{string::String, vec::Vec},
zeroize::Zeroizing,
};
#[cfg(feature = "rand_core")]
use rand_core::CryptoRngCore;
#[cfg(feature = "std")]
use std::{fs, path::Path};
#[cfg(all(unix, feature = "std"))]
use std::{io::Write, os::unix::fs::OpenOptionsExt};
/// Error message for infallible conversions (used by `expect`)
const CONVERSION_ERROR_MSG: &str = "SSH private key conversion error";
/// Default key size to use for RSA keys in bits.
#[cfg(all(feature = "rand_core", feature = "rsa"))]
const DEFAULT_RSA_KEY_SIZE: usize = 4096;
/// Maximum supported block size.
///
/// This is the block size used by e.g. AES.
const MAX_BLOCK_SIZE: usize = 16;
/// Padding bytes to use.
const PADDING_BYTES: [u8; MAX_BLOCK_SIZE - 1] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15];
/// Unix file permissions for SSH private keys.
#[cfg(all(unix, feature = "std"))]
const UNIX_FILE_PERMISSIONS: u32 = 0o600;
/// SSH private key.
#[derive(Clone, Debug)]
pub struct PrivateKey {
/// Cipher algorithm.
cipher: Cipher,
/// KDF options.
kdf: Kdf,
/// "Checkint" value used to verify successful decryption.
checkint: Option<u32>,
/// Public key.
public_key: PublicKey,
/// Private keypair data.
key_data: KeypairData,
/// Authentication tag for authenticated encryption modes.
auth_tag: Option<Tag>,
}
impl PrivateKey {
/// Magic string used to identify keys in this format.
const AUTH_MAGIC: &'static [u8] = b"openssh-key-v1\0";
/// Create a new unencrypted private key with the given keypair data and comment.
///
/// On `no_std` platforms, use `PrivateKey::from(key_data)` instead.
#[cfg(feature = "alloc")]
pub fn new(key_data: KeypairData, comment: impl Into<String>) -> Result<Self> {
if key_data.is_encrypted() {
return Err(Error::Encrypted);
}
let mut private_key = Self::try_from(key_data)?;
private_key.public_key.comment = comment.into();
Ok(private_key)
}
/// Parse an OpenSSH-formatted PEM private key.
///
/// OpenSSH-formatted private keys begin with the following:
///
/// ```text
/// -----BEGIN OPENSSH PRIVATE KEY-----
/// ```
pub fn from_openssh(pem: impl AsRef<[u8]>) -> Result<Self> {
Self::decode_pem(pem)
}
/// Parse a raw binary SSH private key.
pub fn from_bytes(mut bytes: &[u8]) -> Result<Self> {
let reader = &mut bytes;
let private_key = Self::decode(reader)?;
Ok(reader.finish(private_key)?)
}
/// Encode OpenSSH-formatted (PEM) private key.
pub fn encode_openssh<'o>(
&self,
line_ending: LineEnding,
out: &'o mut [u8],
) -> Result<&'o str> {
Ok(self.encode_pem(line_ending, out)?)
}
/// Encode an OpenSSH-formatted PEM private key, allocating a
/// self-zeroizing [`String`] for the result.
#[cfg(feature = "alloc")]
pub fn to_openssh(&self, line_ending: LineEnding) -> Result<Zeroizing<String>> {
Ok(self.encode_pem_string(line_ending).map(Zeroizing::new)?)
}
/// Serialize SSH private key as raw bytes.
#[cfg(feature = "alloc")]
pub fn to_bytes(&self) -> Result<Zeroizing<Vec<u8>>> {
let mut private_key_bytes = Vec::with_capacity(self.encoded_len()?);
self.encode(&mut private_key_bytes)?;
Ok(Zeroizing::new(private_key_bytes))
}
/// Sign the given message using this private key, returning an [`SshSig`].
///
/// These signatures can be produced using `ssh-keygen -Y sign`. They're
/// encoded as PEM and begin with the following:
///
/// ```text
/// -----BEGIN SSH SIGNATURE-----
/// ```
///
/// See [PROTOCOL.sshsig] for more information.
///
/// # Usage
///
/// See also: [`PublicKey::verify`].
///
#[cfg_attr(feature = "ed25519", doc = "```")]
#[cfg_attr(not(feature = "ed25519"), doc = "```ignore")]
/// # fn main() -> Result<(), ssh_key::Error> {
/// use ssh_key::{PrivateKey, HashAlg, SshSig};
///
/// // Message to be signed.
/// let message = b"testing";
///
/// // Example domain/namespace used for the message.
/// let namespace = "example";
///
/// // Private key to use when computing the signature.
/// // WARNING: don't actually hardcode private keys in source code!!!
/// let encoded_private_key = r#"
/// -----BEGIN OPENSSH PRIVATE KEY-----
/// b3BlbnNzaC1rZXktdjEAAAAABG5vbmUAAAAEbm9uZQAAAAAAAAABAAAAMwAAAAtzc2gtZW
/// QyNTUxOQAAACCzPq7zfqLffKoBDe/eo04kH2XxtSmk9D7RQyf1xUqrYgAAAJgAIAxdACAM
/// XQAAAAtzc2gtZWQyNTUxOQAAACCzPq7zfqLffKoBDe/eo04kH2XxtSmk9D7RQyf1xUqrYg
/// AAAEC2BsIi0QwW2uFscKTUUXNHLsYX4FxlaSDSblbAj7WR7bM+rvN+ot98qgEN796jTiQf
/// ZfG1KaT0PtFDJ/XFSqtiAAAAEHVzZXJAZXhhbXBsZS5jb20BAgMEBQ==
/// -----END OPENSSH PRIVATE KEY-----
/// "#;
///
/// let private_key = encoded_private_key.parse::<PrivateKey>()?;
/// let signature = private_key.sign(namespace, HashAlg::default(), message)?;
/// // assert!(private_key.public_key().verify(namespace, message, &signature).is_ok());
/// # Ok(())
/// # }
/// ```
///
/// [PROTOCOL.sshsig]: https://cvsweb.openbsd.org/src/usr.bin/ssh/PROTOCOL.sshsig?annotate=HEAD
#[cfg(feature = "alloc")]
pub fn sign(&self, namespace: &str, hash_alg: HashAlg, msg: &[u8]) -> Result<SshSig> {
SshSig::sign(self, namespace, hash_alg, msg)
}
/// Read private key from an OpenSSH-formatted PEM file.
#[cfg(feature = "std")]
pub fn read_openssh_file(path: &Path) -> Result<Self> {
// TODO(tarcieri): verify file permissions match `UNIX_FILE_PERMISSIONS`
let pem = Zeroizing::new(fs::read_to_string(path)?);
Self::from_openssh(&*pem)
}
/// Write private key as an OpenSSH-formatted PEM file.
#[cfg(feature = "std")]
pub fn write_openssh_file(&self, path: &Path, line_ending: LineEnding) -> Result<()> {
let pem = self.to_openssh(line_ending)?;
#[cfg(not(unix))]
fs::write(path, pem.as_bytes())?;
#[cfg(unix)]
fs::OpenOptions::new()
.create(true)
.write(true)
.truncate(true)
.mode(UNIX_FILE_PERMISSIONS)
.open(path)
.and_then(|mut file| file.write_all(pem.as_bytes()))?;
Ok(())
}
/// Attempt to decrypt an encrypted private key using the provided
/// password to derive an encryption key.
///
/// Returns [`Error::Decrypted`] if the private key is already decrypted.
#[cfg(feature = "encryption")]
pub fn decrypt(&self, password: impl AsRef<[u8]>) -> Result<Self> {
let (key, iv) = self.kdf.derive_key_and_iv(self.cipher, password)?;
let ciphertext = self.key_data.encrypted().ok_or(Error::Decrypted)?;
let mut buffer = Zeroizing::new(ciphertext.to_vec());
self.cipher.decrypt(&key, &iv, &mut buffer, self.auth_tag)?;
Self::decode_privatekey_comment_pair(
&mut &**buffer,
self.public_key.key_data.clone(),
self.cipher.block_size(),
)
}
/// Encrypt an unencrypted private key using the provided password to
/// derive an encryption key.
///
/// Uses the following algorithms:
/// - Cipher: [`Cipher::Aes256Ctr`]
/// - KDF: [`Kdf::Bcrypt`] (i.e. `bcrypt-pbkdf`)
///
/// Returns [`Error::Encrypted`] if the private key is already encrypted.
#[cfg(feature = "encryption")]
pub fn encrypt(
&self,
rng: &mut impl CryptoRngCore,
password: impl AsRef<[u8]>,
) -> Result<Self> {
self.encrypt_with_cipher(rng, Cipher::Aes256Ctr, password)
}
/// Encrypt an unencrypted private key using the provided password to
/// derive an encryption key for the provided [`Cipher`].
///
/// Returns [`Error::Encrypted`] if the private key is already encrypted.
#[cfg(feature = "encryption")]
pub fn encrypt_with_cipher(
&self,
rng: &mut impl CryptoRngCore,
cipher: Cipher,
password: impl AsRef<[u8]>,
) -> Result<Self> {
let checkint = rng.next_u32();
self.encrypt_with(
cipher,
Kdf::new(Default::default(), rng)?,
checkint,
password,
)
}
/// Encrypt an unencrypted private key using the provided cipher and KDF
/// configuration.
///
/// Returns [`Error::Encrypted`] if the private key is already encrypted.
#[cfg(feature = "encryption")]
pub fn encrypt_with(
&self,
cipher: Cipher,
kdf: Kdf,
checkint: u32,
password: impl AsRef<[u8]>,
) -> Result<Self> {
if self.is_encrypted() {
return Err(Error::Encrypted);
}
let (key_bytes, iv_bytes) = kdf.derive_key_and_iv(cipher, password)?;
let msg_len = self.encoded_privatekey_comment_pair_len(cipher)?;
let mut out = Vec::with_capacity(msg_len);
// Encode and encrypt private key
self.encode_privatekey_comment_pair(&mut out, cipher, checkint)?;
let auth_tag = cipher.encrypt(&key_bytes, &iv_bytes, out.as_mut_slice())?;
Ok(Self {
cipher,
kdf,
checkint: None,
public_key: self.public_key.key_data.clone().into(),
key_data: KeypairData::Encrypted(out),
auth_tag,
})
}
/// Get the digital signature [`Algorithm`] used by this key.
pub fn algorithm(&self) -> Algorithm {
self.public_key.algorithm()
}
/// Comment on the key (e.g. email address).
pub fn comment(&self) -> &str {
self.public_key.comment()
}
/// Cipher algorithm (a.k.a. `ciphername`).
pub fn cipher(&self) -> Cipher {
self.cipher
}
/// Compute key fingerprint.
///
/// Use [`Default::default()`] to use the default hash function (SHA-256).
pub fn fingerprint(&self, hash_alg: HashAlg) -> Fingerprint {
self.public_key.fingerprint(hash_alg)
}
/// Is this key encrypted?
pub fn is_encrypted(&self) -> bool {
let ret = self.key_data.is_encrypted();
debug_assert_eq!(ret, self.cipher.is_some());
ret
}
/// Key Derivation Function (KDF) used to encrypt this key.
///
/// Returns [`Kdf::None`] if this key is not encrypted.
pub fn kdf(&self) -> &Kdf {
&self.kdf
}
/// Keypair data.
pub fn key_data(&self) -> &KeypairData {
&self.key_data
}
/// Get the [`PublicKey`] which corresponds to this private key.
pub fn public_key(&self) -> &PublicKey {
&self.public_key
}
/// Generate a random key which uses the given algorithm.
///
/// # Returns
/// - `Error::AlgorithmUnknown` if the algorithm is unsupported.
#[cfg(feature = "rand_core")]
#[allow(unreachable_code, unused_variables)]
pub fn random(rng: &mut impl CryptoRngCore, algorithm: Algorithm) -> Result<Self> {
let checkint = rng.next_u32();
let key_data = match algorithm {
#[cfg(feature = "dsa")]
Algorithm::Dsa => KeypairData::from(DsaKeypair::random(rng)?),
#[cfg(any(feature = "p256", feature = "p384", feature = "p521"))]
Algorithm::Ecdsa { curve } => KeypairData::from(EcdsaKeypair::random(rng, curve)?),
#[cfg(feature = "ed25519")]
Algorithm::Ed25519 => KeypairData::from(Ed25519Keypair::random(rng)),
#[cfg(feature = "rsa")]
Algorithm::Rsa { .. } => {
KeypairData::from(RsaKeypair::random(rng, DEFAULT_RSA_KEY_SIZE)?)
}
_ => return Err(Error::AlgorithmUnknown),
};
let public_key = public::KeyData::try_from(&key_data)?;
Ok(Self {
cipher: Cipher::None,
kdf: Kdf::None,
checkint: Some(checkint),
public_key: public_key.into(),
key_data,
auth_tag: None,
})
}
/// Set the comment on the key.
#[cfg(feature = "alloc")]
pub fn set_comment(&mut self, comment: impl Into<String>) {
self.public_key.set_comment(comment);
}
/// Decode [`KeypairData`] along with its associated checkints and comment,
/// storing the comment in the provided public key on success.
///
/// This method also checks padding for validity and ensures that the
/// decoded private key matches the provided public key.
///
/// For private key format specification, see OpenSSH [PROTOCOL.key] ยง 3:
///
/// ```text
/// uint32 checkint
/// uint32 checkint
/// byte[] privatekey1
/// string comment1
/// byte[] privatekey2
/// string comment2
/// ...
/// string privatekeyN
/// string commentN
/// char 1
/// char 2
/// char 3
/// ...
/// char padlen % 255
/// ```
///
/// [PROTOCOL.key]: https://cvsweb.openbsd.org/src/usr.bin/ssh/PROTOCOL.key?annotate=HEAD
fn decode_privatekey_comment_pair(
reader: &mut impl Reader,
public_key: public::KeyData,
block_size: usize,
) -> Result<Self> {
debug_assert!(block_size <= MAX_BLOCK_SIZE);
// Ensure input data is padding-aligned
if reader.remaining_len().checked_rem(block_size) != Some(0) {
return Err(encoding::Error::Length.into());
}
let checkint1 = u32::decode(reader)?;
let checkint2 = u32::decode(reader)?;
if checkint1 != checkint2 {
return Err(Error::Crypto);
}
let key_data = KeypairData::decode(reader)?;
// Ensure public key matches private key
if public_key != public::KeyData::try_from(&key_data)? {
return Err(Error::PublicKey);
}
let mut public_key = PublicKey::from(public_key);
public_key.decode_comment(reader)?;
let padding_len = reader.remaining_len();
if padding_len >= block_size {
return Err(encoding::Error::Length.into());
}
if padding_len != 0 {
let mut padding = [0u8; MAX_BLOCK_SIZE];
reader.read(&mut padding[..padding_len])?;
if PADDING_BYTES[..padding_len] != padding[..padding_len] {
return Err(Error::FormatEncoding);
}
}
if !reader.is_finished() {
return Err(Error::TrailingData {
remaining: reader.remaining_len(),
});
}
Ok(Self {
cipher: Cipher::None,
kdf: Kdf::None,
checkint: Some(checkint1),
public_key,
key_data,
auth_tag: None,
})
}
/// Encode [`KeypairData`] along with its associated checkints, comment,
/// and padding.
fn encode_privatekey_comment_pair(
&self,
writer: &mut impl Writer,
cipher: Cipher,
checkint: u32,
) -> encoding::Result<()> {
let unpadded_len = self.unpadded_privatekey_comment_pair_len()?;
let padding_len = cipher.padding_len(unpadded_len);
checkint.encode(writer)?;
checkint.encode(writer)?;
self.key_data.encode(writer)?;
self.comment().encode(writer)?;
writer.write(&PADDING_BYTES[..padding_len])?;
Ok(())
}
/// Get the length of this private key when encoded with the given comment
/// and padded using the padding size for the given cipher.
fn encoded_privatekey_comment_pair_len(&self, cipher: Cipher) -> encoding::Result<usize> {
let len = self.unpadded_privatekey_comment_pair_len()?;
[len, cipher.padding_len(len)].checked_sum()
}
/// Get the length of this private key when encoded with the given comment.
///
/// This length is just the checkints, private key data, and comment sans
/// any padding.
fn unpadded_privatekey_comment_pair_len(&self) -> encoding::Result<usize> {
// This method is intended for use with unencrypted keys only
debug_assert!(!self.is_encrypted(), "called on encrypted key");
[
8, // 2 x uint32 checkints,
self.key_data.encoded_len()?,
self.comment().encoded_len()?,
]
.checked_sum()
}
}
impl ConstantTimeEq for PrivateKey {
fn ct_eq(&self, other: &Self) -> Choice {
// Constant-time with respect to private key data
self.key_data.ct_eq(&other.key_data)
& Choice::from(
(self.cipher == other.cipher
&& self.kdf == other.kdf
&& self.public_key == other.public_key) as u8,
)
}
}
impl Eq for PrivateKey {}
impl PartialEq for PrivateKey {
fn eq(&self, other: &Self) -> bool {
self.ct_eq(other).into()
}
}
impl Decode for PrivateKey {
type Error = Error;
fn decode(reader: &mut impl Reader) -> Result<Self> {
let mut auth_magic = [0u8; Self::AUTH_MAGIC.len()];
reader.read(&mut auth_magic)?;
if auth_magic != Self::AUTH_MAGIC {
return Err(Error::FormatEncoding);
}
let cipher = Cipher::decode(reader)?;
let kdf = Kdf::decode(reader)?;
let nkeys = usize::decode(reader)?;
// TODO(tarcieri): support more than one key?
if nkeys != 1 {
return Err(encoding::Error::Length.into());
}
let public_key = reader.read_prefixed(public::KeyData::decode)?;
// Handle encrypted private key
#[cfg(not(feature = "alloc"))]
if cipher.is_some() {
return Err(Error::Encrypted);
}
#[cfg(feature = "alloc")]
if cipher.is_some() {
let ciphertext = Vec::decode(reader)?;
// Ensure ciphertext is padded to the expected length
if ciphertext.len().checked_rem(cipher.block_size()) != Some(0) {
return Err(Error::Crypto);
}
let auth_tag = if cipher.has_tag() {
let mut tag = Tag::default();
reader.read(&mut tag)?;
Some(tag)
} else {
None
};
if !reader.is_finished() {
return Err(Error::TrailingData {
remaining: reader.remaining_len(),
});
}
return Ok(Self {
cipher,
kdf,
checkint: None,
public_key: public_key.into(),
key_data: KeypairData::Encrypted(ciphertext),
auth_tag,
});
}
// Processing unencrypted key. No KDF should be set.
if kdf.is_some() {
return Err(Error::Crypto);
}
reader.read_prefixed(|reader| {
Self::decode_privatekey_comment_pair(reader, public_key, cipher.block_size())
})
}
}
impl Encode for PrivateKey {
fn encoded_len(&self) -> encoding::Result<usize> {
let private_key_len = if self.is_encrypted() {
self.key_data.encoded_len_prefixed()?
} else {
[4, self.encoded_privatekey_comment_pair_len(Cipher::None)?].checked_sum()?
};
[
Self::AUTH_MAGIC.len(),
self.cipher.encoded_len()?,
self.kdf.encoded_len()?,
4, // number of keys (uint32)
self.public_key.key_data().encoded_len_prefixed()?,
private_key_len,
self.auth_tag.map(|tag| tag.len()).unwrap_or(0),
]
.checked_sum()
}
fn encode(&self, writer: &mut impl Writer) -> encoding::Result<()> {
writer.write(Self::AUTH_MAGIC)?;
self.cipher.encode(writer)?;
self.kdf.encode(writer)?;
// TODO(tarcieri): support for encoding more than one private key
1usize.encode(writer)?;
// Encode public key
self.public_key.key_data().encode_prefixed(writer)?;
// Encode private key
if self.is_encrypted() {
self.key_data.encode_prefixed(writer)?;
if let Some(tag) = &self.auth_tag {
writer.write(tag)?;
}
} else {
self.encoded_privatekey_comment_pair_len(Cipher::None)?
.encode(writer)?;
let checkint = self.checkint.unwrap_or_else(|| self.key_data.checkint());
self.encode_privatekey_comment_pair(writer, Cipher::None, checkint)?;
}
Ok(())
}
}
impl From<PrivateKey> for PublicKey {
fn from(private_key: PrivateKey) -> PublicKey {
private_key.public_key
}
}
impl From<&PrivateKey> for PublicKey {
fn from(private_key: &PrivateKey) -> PublicKey {
private_key.public_key.clone()
}
}
impl From<PrivateKey> for public::KeyData {
fn from(private_key: PrivateKey) -> public::KeyData {
private_key.public_key.key_data
}
}
impl From<&PrivateKey> for public::KeyData {
fn from(private_key: &PrivateKey) -> public::KeyData {
private_key.public_key.key_data.clone()
}
}
#[cfg(feature = "alloc")]
impl From<DsaKeypair> for PrivateKey {
fn from(keypair: DsaKeypair) -> PrivateKey {
KeypairData::from(keypair)
.try_into()
.expect(CONVERSION_ERROR_MSG)
}
}
#[cfg(feature = "ecdsa")]
impl From<EcdsaKeypair> for PrivateKey {
fn from(keypair: EcdsaKeypair) -> PrivateKey {
KeypairData::from(keypair)
.try_into()
.expect(CONVERSION_ERROR_MSG)
}
}
impl From<Ed25519Keypair> for PrivateKey {
fn from(keypair: Ed25519Keypair) -> PrivateKey {
KeypairData::from(keypair)
.try_into()
.expect(CONVERSION_ERROR_MSG)
}
}
#[cfg(feature = "alloc")]
impl From<RsaKeypair> for PrivateKey {
fn from(keypair: RsaKeypair) -> PrivateKey {
KeypairData::from(keypair)
.try_into()
.expect(CONVERSION_ERROR_MSG)
}
}
#[cfg(all(feature = "alloc", feature = "ecdsa"))]
impl From<SkEcdsaSha2NistP256> for PrivateKey {
fn from(keypair: SkEcdsaSha2NistP256) -> PrivateKey {
KeypairData::from(keypair)
.try_into()
.expect(CONVERSION_ERROR_MSG)
}
}
#[cfg(feature = "alloc")]
impl From<SkEd25519> for PrivateKey {
fn from(keypair: SkEd25519) -> PrivateKey {
KeypairData::from(keypair)
.try_into()
.expect(CONVERSION_ERROR_MSG)
}
}
impl TryFrom<KeypairData> for PrivateKey {
type Error = Error;
fn try_from(key_data: KeypairData) -> Result<PrivateKey> {
let public_key = public::KeyData::try_from(&key_data)?;
Ok(Self {
cipher: Cipher::None,
kdf: Kdf::None,
checkint: None,
public_key: public_key.into(),
key_data,
auth_tag: None,
})
}
}
impl PemLabel for PrivateKey {
const PEM_LABEL: &'static str = "OPENSSH PRIVATE KEY";
}
impl str::FromStr for PrivateKey {
type Err = Error;
fn from_str(s: &str) -> Result<Self> {
Self::from_openssh(s)
}
}