ssh_key/sshsig.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
//! `sshsig` implementation.
use crate::{public, Algorithm, Error, HashAlg, Result, Signature, SigningKey};
use alloc::{string::String, string::ToString, vec::Vec};
use core::str::FromStr;
use encoding::{
pem::{LineEnding, PemLabel},
CheckedSum, Decode, DecodePem, Encode, EncodePem, Reader, Writer,
};
use signature::Verifier;
#[cfg(doc)]
use crate::{PrivateKey, PublicKey};
type Version = u32;
/// `sshsig` provides a general-purpose signature format based on SSH keys and
/// wire formats.
///
/// These signatures can be produced using `ssh-keygen -Y sign`. They're
/// encoded as PEM and begin with the following:
///
/// ```text
/// -----BEGIN SSH SIGNATURE-----
/// ```
///
/// See [PROTOCOL.sshsig] for more information.
///
/// # Usage
///
/// See [`PrivateKey::sign`] and [`PublicKey::verify`] for usage information.
///
/// [PROTOCOL.sshsig]: https://cvsweb.openbsd.org/src/usr.bin/ssh/PROTOCOL.sshsig?annotate=HEAD
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct SshSig {
version: Version,
public_key: public::KeyData,
namespace: String,
reserved: Vec<u8>,
hash_alg: HashAlg,
signature: Signature,
}
impl SshSig {
/// Supported version.
pub const VERSION: Version = 1;
/// The preamble is the six-byte sequence "SSHSIG".
///
/// It is included to ensure that manual signatures can never be confused
/// with any message signed during SSH user or host authentication.
const MAGIC_PREAMBLE: &'static [u8] = b"SSHSIG";
/// Create a new signature with the given public key, namespace, hash
/// algorithm, and signature.
pub fn new(
public_key: public::KeyData,
namespace: impl Into<String>,
hash_alg: HashAlg,
signature: Signature,
) -> Result<Self> {
let version = Self::VERSION;
let namespace = namespace.into();
let reserved = Vec::new();
if namespace.is_empty() {
return Err(Error::Namespace);
}
Ok(Self {
version,
public_key,
namespace,
reserved,
hash_alg,
signature,
})
}
/// Decode signature from PEM which begins with the following:
///
/// ```text
/// -----BEGIN SSH SIGNATURE-----
/// ```
pub fn from_pem(pem: impl AsRef<[u8]>) -> Result<Self> {
Self::decode_pem(pem)
}
/// Encode signature as PEM which begins with the following:
///
/// ```text
/// -----BEGIN SSH SIGNATURE-----
/// ```
pub fn to_pem(&self, line_ending: LineEnding) -> Result<String> {
Ok(self.encode_pem_string(line_ending)?)
}
/// Sign the given message with the provided signing key.
///
/// See also: [`PrivateKey::sign`].
pub fn sign<S: SigningKey>(
signing_key: &S,
namespace: &str,
hash_alg: HashAlg,
msg: &[u8],
) -> Result<Self> {
if namespace.is_empty() {
return Err(Error::Namespace);
}
if signing_key.public_key().is_sk_ed25519() {
return Err(Algorithm::SkEd25519.unsupported_error());
}
#[cfg(feature = "ecdsa")]
if signing_key.public_key().is_sk_ecdsa_p256() {
return Err(Algorithm::SkEcdsaSha2NistP256.unsupported_error());
}
let signed_data = Self::signed_data(namespace, hash_alg, msg)?;
let signature = signing_key.try_sign(&signed_data)?;
Self::new(signing_key.public_key(), namespace, hash_alg, signature)
}
/// Get the raw message over which the signature for a given message
/// needs to be computed.
///
/// This is a low-level function intended for uses cases which can't be
/// expressed using [`SshSig::sign`], such as if the [`SigningKey`] trait
/// can't be used for some reason.
///
/// Once a [`Signature`] has been computed over the returned byte vector,
/// [`SshSig::new`] can be used to construct the final signature.
pub fn signed_data(namespace: &str, hash_alg: HashAlg, msg: &[u8]) -> Result<Vec<u8>> {
if namespace.is_empty() {
return Err(Error::Namespace);
}
SignedData {
namespace,
reserved: &[],
hash_alg,
hash: hash_alg.digest(msg).as_slice(),
}
.to_bytes()
}
/// Verify the given message against this signature.
///
/// Note that this method does not verify the public key or namespace
/// are correct and thus is crate-private so as to ensure these parameters
/// are always authenticated by users of the public API.
pub(crate) fn verify(&self, msg: &[u8]) -> Result<()> {
let signed_data = SignedData {
namespace: self.namespace.as_str(),
reserved: self.reserved.as_slice(),
hash_alg: self.hash_alg,
hash: self.hash_alg.digest(msg).as_slice(),
}
.to_bytes()?;
Ok(self.public_key.verify(&signed_data, &self.signature)?)
}
/// Get the signature algorithm.
pub fn algorithm(&self) -> Algorithm {
self.signature.algorithm()
}
/// Get version number for this signature.
///
/// Verifiers MUST reject signatures with versions greater than those
/// they support.
pub fn version(&self) -> Version {
self.version
}
/// Get public key which corresponds to the signing key that produced
/// this signature.
pub fn public_key(&self) -> &public::KeyData {
&self.public_key
}
/// Get the namespace (i.e. domain identifier) for this signature.
///
/// The purpose of the namespace value is to specify a unambiguous
/// interpretation domain for the signature, e.g. file signing.
/// This prevents cross-protocol attacks caused by signatures
/// intended for one intended domain being accepted in another.
/// The namespace value MUST NOT be the empty string.
pub fn namespace(&self) -> &str {
&self.namespace
}
/// Get reserved data associated with this signature. Typically empty.
///
/// The reserved value is present to encode future information
/// (e.g. tags) into the signature. Implementations should ignore
/// the reserved field if it is not empty.
pub fn reserved(&self) -> &[u8] {
&self.reserved
}
/// Get the hash algorithm used to produce this signature.
///
/// Data to be signed is first hashed with the specified `hash_alg`.
/// This is done to limit the amount of data presented to the signature
/// operation, which may be of concern if the signing key is held in limited
/// or slow hardware or on a remote ssh-agent. The supported hash algorithms
/// are "sha256" and "sha512".
pub fn hash_alg(&self) -> HashAlg {
self.hash_alg
}
/// Get the structured signature over the given message.
pub fn signature(&self) -> &Signature {
&self.signature
}
/// Get the bytes which comprise the serialized signature.
pub fn signature_bytes(&self) -> &[u8] {
self.signature.as_bytes()
}
}
impl Decode for SshSig {
type Error = Error;
fn decode(reader: &mut impl Reader) -> Result<Self> {
let mut magic_preamble = [0u8; Self::MAGIC_PREAMBLE.len()];
reader.read(&mut magic_preamble)?;
if magic_preamble != Self::MAGIC_PREAMBLE {
return Err(Error::FormatEncoding);
}
let version = Version::decode(reader)?;
if version > Self::VERSION {
return Err(Error::Version { number: version });
}
let public_key = reader.read_prefixed(public::KeyData::decode)?;
let namespace = String::decode(reader)?;
if namespace.is_empty() {
return Err(Error::Namespace);
}
let reserved = Vec::decode(reader)?;
let hash_alg = HashAlg::decode(reader)?;
let signature = reader.read_prefixed(Signature::decode)?;
Ok(Self {
version,
public_key,
namespace,
reserved,
hash_alg,
signature,
})
}
}
impl Encode for SshSig {
fn encoded_len(&self) -> encoding::Result<usize> {
[
Self::MAGIC_PREAMBLE.len(),
self.version.encoded_len()?,
self.public_key.encoded_len_prefixed()?,
self.namespace.encoded_len()?,
self.reserved.encoded_len()?,
self.hash_alg.encoded_len()?,
self.signature.encoded_len_prefixed()?,
]
.checked_sum()
}
fn encode(&self, writer: &mut impl Writer) -> encoding::Result<()> {
writer.write(Self::MAGIC_PREAMBLE)?;
self.version.encode(writer)?;
self.public_key.encode_prefixed(writer)?;
self.namespace.encode(writer)?;
self.reserved.encode(writer)?;
self.hash_alg.encode(writer)?;
self.signature.encode_prefixed(writer)?;
Ok(())
}
}
impl FromStr for SshSig {
type Err = Error;
fn from_str(s: &str) -> Result<Self> {
Self::from_pem(s)
}
}
impl PemLabel for SshSig {
const PEM_LABEL: &'static str = "SSH SIGNATURE";
}
impl ToString for SshSig {
fn to_string(&self) -> String {
self.to_pem(LineEnding::default())
.expect("SSH signature encoding error")
}
}
/// Data to be signed.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
struct SignedData<'a> {
namespace: &'a str,
reserved: &'a [u8],
hash_alg: HashAlg,
hash: &'a [u8],
}
impl<'a> SignedData<'a> {
fn to_bytes(self) -> Result<Vec<u8>> {
let mut signed_bytes = Vec::with_capacity(self.encoded_len()?);
self.encode(&mut signed_bytes)?;
Ok(signed_bytes)
}
}
impl Encode for SignedData<'_> {
fn encoded_len(&self) -> encoding::Result<usize> {
[
SshSig::MAGIC_PREAMBLE.len(),
self.namespace.encoded_len()?,
self.reserved.encoded_len()?,
self.hash_alg.encoded_len()?,
self.hash.encoded_len()?,
]
.checked_sum()
}
fn encode(&self, writer: &mut impl Writer) -> encoding::Result<()> {
writer.write(SshSig::MAGIC_PREAMBLE)?;
self.namespace.encode(writer)?;
self.reserved.encode(writer)?;
self.hash_alg.encode(writer)?;
self.hash.encode(writer)?;
Ok(())
}
}