ssh_key/public/
ecdsa.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
//! Elliptic Curve Digital Signature Algorithm (ECDSA) public keys.

use crate::{Algorithm, EcdsaCurve, Error, Result};
use core::fmt;
use encoding::{CheckedSum, Decode, Encode, Reader, Writer};
use sec1::consts::{U32, U48, U66};

/// ECDSA/NIST P-256 public key.
pub type EcdsaNistP256PublicKey = sec1::EncodedPoint<U32>;

/// ECDSA/NIST P-384 public key.
pub type EcdsaNistP384PublicKey = sec1::EncodedPoint<U48>;

/// ECDSA/NIST P-521 public key.
pub type EcdsaNistP521PublicKey = sec1::EncodedPoint<U66>;

/// Elliptic Curve Digital Signature Algorithm (ECDSA) public key.
///
/// Public keys are represented as [`sec1::EncodedPoint`] and require the
/// `sec1` feature of this crate is enabled (which it is by default).
///
/// Described in [FIPS 186-4](https://csrc.nist.gov/publications/detail/fips/186/4/final).
#[derive(Copy, Clone, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub enum EcdsaPublicKey {
    /// NIST P-256 ECDSA public key.
    NistP256(EcdsaNistP256PublicKey),

    /// NIST P-384 ECDSA public key.
    NistP384(EcdsaNistP384PublicKey),

    /// NIST P-521 ECDSA public key.
    NistP521(EcdsaNistP521PublicKey),
}

impl EcdsaPublicKey {
    /// Maximum size of a SEC1-encoded ECDSA public key (i.e. curve point).
    ///
    /// This is the size of 2 * P-521 field elements (2 * 66 = 132) which
    /// represent the affine coordinates of a curve point plus one additional
    /// byte for the SEC1 "tag" identifying the curve point encoding.
    const MAX_SIZE: usize = 133;

    /// Parse an ECDSA public key from a SEC1-encoded point.
    ///
    /// Determines the key type from the SEC1 tag byte and length.
    pub fn from_sec1_bytes(bytes: &[u8]) -> Result<Self> {
        match bytes {
            [tag, rest @ ..] => {
                let point_size = match sec1::point::Tag::from_u8(*tag)? {
                    sec1::point::Tag::CompressedEvenY | sec1::point::Tag::CompressedOddY => {
                        rest.len()
                    }
                    sec1::point::Tag::Uncompressed => rest.len() / 2,
                    _ => return Err(Error::AlgorithmUnknown),
                };

                match point_size {
                    32 => Ok(Self::NistP256(EcdsaNistP256PublicKey::from_bytes(bytes)?)),
                    48 => Ok(Self::NistP384(EcdsaNistP384PublicKey::from_bytes(bytes)?)),
                    66 => Ok(Self::NistP521(EcdsaNistP521PublicKey::from_bytes(bytes)?)),
                    _ => Err(encoding::Error::Length.into()),
                }
            }
            _ => Err(encoding::Error::Length.into()),
        }
    }

    /// Borrow the SEC1-encoded key data as bytes.
    pub fn as_sec1_bytes(&self) -> &[u8] {
        match self {
            EcdsaPublicKey::NistP256(point) => point.as_bytes(),
            EcdsaPublicKey::NistP384(point) => point.as_bytes(),
            EcdsaPublicKey::NistP521(point) => point.as_bytes(),
        }
    }

    /// Get the [`Algorithm`] for this public key type.
    pub fn algorithm(&self) -> Algorithm {
        Algorithm::Ecdsa {
            curve: self.curve(),
        }
    }

    /// Get the [`EcdsaCurve`] for this key.
    pub fn curve(&self) -> EcdsaCurve {
        match self {
            EcdsaPublicKey::NistP256(_) => EcdsaCurve::NistP256,
            EcdsaPublicKey::NistP384(_) => EcdsaCurve::NistP384,
            EcdsaPublicKey::NistP521(_) => EcdsaCurve::NistP521,
        }
    }
}

impl AsRef<[u8]> for EcdsaPublicKey {
    fn as_ref(&self) -> &[u8] {
        self.as_sec1_bytes()
    }
}

impl Decode for EcdsaPublicKey {
    type Error = Error;

    fn decode(reader: &mut impl Reader) -> Result<Self> {
        let curve = EcdsaCurve::decode(reader)?;

        let mut buf = [0u8; Self::MAX_SIZE];
        let key = Self::from_sec1_bytes(reader.read_byten(&mut buf)?)?;

        if key.curve() == curve {
            Ok(key)
        } else {
            Err(Error::AlgorithmUnknown)
        }
    }
}

impl Encode for EcdsaPublicKey {
    fn encoded_len(&self) -> encoding::Result<usize> {
        [
            self.curve().encoded_len()?,
            4, // uint32 length prefix
            self.as_ref().len(),
        ]
        .checked_sum()
    }

    fn encode(&self, writer: &mut impl Writer) -> encoding::Result<()> {
        self.curve().encode(writer)?;
        self.as_ref().encode(writer)?;
        Ok(())
    }
}

impl fmt::Display for EcdsaPublicKey {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{self:X}")
    }
}

impl fmt::LowerHex for EcdsaPublicKey {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        for byte in self.as_sec1_bytes() {
            write!(f, "{byte:02x}")?;
        }
        Ok(())
    }
}

impl fmt::UpperHex for EcdsaPublicKey {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        for byte in self.as_sec1_bytes() {
            write!(f, "{byte:02X}")?;
        }
        Ok(())
    }
}

macro_rules! impl_ecdsa_for_curve {
    ($krate:ident, $feature:expr, $curve:ident) => {
        #[cfg(feature = $feature)]
        impl TryFrom<EcdsaPublicKey> for $krate::ecdsa::VerifyingKey {
            type Error = Error;

            fn try_from(key: EcdsaPublicKey) -> Result<$krate::ecdsa::VerifyingKey> {
                $krate::ecdsa::VerifyingKey::try_from(&key)
            }
        }

        #[cfg(feature = $feature)]
        impl TryFrom<&EcdsaPublicKey> for $krate::ecdsa::VerifyingKey {
            type Error = Error;

            fn try_from(public_key: &EcdsaPublicKey) -> Result<$krate::ecdsa::VerifyingKey> {
                match public_key {
                    EcdsaPublicKey::$curve(key) => {
                        $krate::ecdsa::VerifyingKey::from_encoded_point(key)
                            .map_err(|_| Error::Crypto)
                    }
                    _ => Err(Error::AlgorithmUnknown),
                }
            }
        }

        #[cfg(feature = $feature)]
        impl From<$krate::ecdsa::VerifyingKey> for EcdsaPublicKey {
            fn from(key: $krate::ecdsa::VerifyingKey) -> EcdsaPublicKey {
                EcdsaPublicKey::from(&key)
            }
        }

        #[cfg(feature = $feature)]
        impl From<&$krate::ecdsa::VerifyingKey> for EcdsaPublicKey {
            fn from(key: &$krate::ecdsa::VerifyingKey) -> EcdsaPublicKey {
                EcdsaPublicKey::$curve(key.to_encoded_point(false))
            }
        }
    };
}

impl_ecdsa_for_curve!(p256, "p256", NistP256);
impl_ecdsa_for_curve!(p384, "p384", NistP384);
impl_ecdsa_for_curve!(p521, "p521", NistP521);