starknet_crypto/
ecdsa.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
use starknet_curve::curve_params::{ALPHA, BETA, EC_ORDER, GENERATOR};

use crate::{
    fe_utils::{add_unbounded, bigint_mul_mod_floor, mod_inverse, mul_mod_floor},
    RecoverError, SignError, VerifyError,
};
use starknet_types_core::curve::{AffinePoint, ProjectivePoint};
use starknet_types_core::felt::Felt;

/// The (exclusive) upper bound on many ECDSA-related elements based on the original C++
/// implementation from [`crypto-cpp`](https://github.com/starkware-libs/crypto-cpp).
///
/// The C++ implementation [imposes](https://github.com/starkware-libs/crypto-cpp/blob/78e3ed8dc7a0901fe6d62f4e99becc6e7936adfd/src/starkware/crypto/ecdsa.cc#L23)
/// an upper bound of `0x0800000000000000000000000000000000000000000000000000000000000000`.
///
/// When a compuated value is greater than or equal to this bound, the modulus is taken to ensure
/// the resulting value falls under the bound.
const ELEMENT_UPPER_BOUND: Felt = Felt::from_raw([
    576459263475450960,
    18446744073709255680,
    160989183,
    18446743986131435553,
]);

/// Stark ECDSA signature.
#[derive(Debug)]
pub struct Signature {
    /// The `r` value of a signature
    pub r: Felt,
    /// The `s` value of a signature
    pub s: Felt,
}

/// Stark ECDSA signature with `v`, useful for recovering the public key.
#[derive(Debug)]
pub struct ExtendedSignature {
    /// The `r` value of a signature
    pub r: Felt,
    /// The `s` value of a signature
    pub s: Felt,
    /// The `v` value of a signature
    pub v: Felt,
}

impl From<ExtendedSignature> for Signature {
    fn from(value: ExtendedSignature) -> Self {
        Self {
            r: value.r,
            s: value.s,
        }
    }
}

#[cfg(feature = "signature-display")]
impl core::fmt::Display for Signature {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        write!(
            f,
            "{}{}",
            hex::encode(self.r.to_bytes_be()),
            hex::encode(self.s.to_bytes_be()),
        )
    }
}

#[cfg(feature = "signature-display")]
impl core::fmt::Display for ExtendedSignature {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        write!(
            f,
            "{}{}{:02x}",
            hex::encode(self.r.to_bytes_be()),
            hex::encode(self.s.to_bytes_be()),
            self.v
        )
    }
}

/// Computes the public key given a Stark private key.
///
/// ### Parameters
///
/// - `private_key`: The private key.
pub fn get_public_key(private_key: &Felt) -> Felt {
    mul_by_bits(&GENERATOR, private_key)
        .to_affine()
        .unwrap()
        .x()
}

/// Computes ECDSA signature given a Stark private key and message hash.
///
/// ### Parameters
///
/// - `private_key`: The private key.
/// - `message`: The message hash.
/// - `k`: A random `k` value. You **MUST NOT** use the same `k` on different signatures.
pub fn sign(private_key: &Felt, message: &Felt, k: &Felt) -> Result<ExtendedSignature, SignError> {
    if message >= &ELEMENT_UPPER_BOUND {
        return Err(SignError::InvalidMessageHash);
    }
    if k == &Felt::ZERO {
        return Err(SignError::InvalidK);
    }

    let full_r = mul_by_bits(&GENERATOR, k).to_affine().unwrap();
    let r = full_r.x();
    if r == Felt::ZERO || r >= ELEMENT_UPPER_BOUND {
        return Err(SignError::InvalidK);
    }

    let k_inv = mod_inverse(k, &EC_ORDER);

    let s = mul_mod_floor(&r, private_key, &EC_ORDER);
    let s = add_unbounded(&s, message);
    let s = bigint_mul_mod_floor(s, &k_inv, &EC_ORDER);
    if s == Felt::ZERO || s >= ELEMENT_UPPER_BOUND {
        return Err(SignError::InvalidK);
    }

    Ok(ExtendedSignature {
        r,
        s,
        v: (full_r.y().to_bigint() & Felt::ONE.to_bigint()).into(),
    })
}

/// Verifies if a signature is valid over a message hash given a public key. Returns an error
/// instead of `false` if the public key is invalid.
///
/// ### Parameters
///
/// - `public_key`: The public key.
/// - `message`: The message hash.
/// - `r`: The `r` value of the signature.
/// - `s`: The `s` value of the signature.
pub fn verify(public_key: &Felt, message: &Felt, r: &Felt, s: &Felt) -> Result<bool, VerifyError> {
    if message >= &ELEMENT_UPPER_BOUND {
        return Err(VerifyError::InvalidMessageHash);
    }
    if r == &Felt::ZERO || r >= &ELEMENT_UPPER_BOUND {
        return Err(VerifyError::InvalidR);
    }
    if s == &Felt::ZERO || s >= &ELEMENT_UPPER_BOUND {
        return Err(VerifyError::InvalidS);
    }

    let full_public_key = AffinePoint::new(
        *public_key,
        (public_key.square() * public_key + ALPHA * public_key + BETA)
            .sqrt()
            .ok_or(VerifyError::InvalidPublicKey)?,
    )
    .unwrap();

    let w = mod_inverse(s, &EC_ORDER);
    if w == Felt::ZERO || w >= ELEMENT_UPPER_BOUND {
        return Err(VerifyError::InvalidS);
    }

    let zw = mul_mod_floor(message, &w, &EC_ORDER);
    let zw_g = mul_by_bits(&GENERATOR, &zw);

    let rw = mul_mod_floor(r, &w, &EC_ORDER);
    let rw_q = mul_by_bits(&full_public_key, &rw);

    Ok((&zw_g + &rw_q).to_affine().unwrap().x() == *r
        || (&zw_g - &rw_q).to_affine().unwrap().x() == *r)
}

/// Recovers the public key from a message and (r, s, v) signature parameters
///
/// ### Parameters
///
/// - `msg_hash`: The message hash.
/// - `r_bytes`: The `r` value of the signature.
/// - `s_bytes`: The `s` value of the signature.
/// - `v_bytes`: The `v` value of the signature.
pub fn recover(message: &Felt, r: &Felt, s: &Felt, v: &Felt) -> Result<Felt, RecoverError> {
    if message >= &ELEMENT_UPPER_BOUND {
        return Err(RecoverError::InvalidMessageHash);
    }
    if r == &Felt::ZERO || r >= &ELEMENT_UPPER_BOUND {
        return Err(RecoverError::InvalidR);
    }
    if s == &Felt::ZERO || s >= &EC_ORDER {
        return Err(RecoverError::InvalidS);
    }
    if v > &Felt::ONE {
        return Err(RecoverError::InvalidV);
    }

    let full_r = AffinePoint::new(
        *r,
        (r * r * r + ALPHA * r + BETA)
            .sqrt()
            .ok_or(RecoverError::InvalidR)?,
    )
    .unwrap();

    let mut full_r_y = full_r.y();

    let mut bits = [false; 256];

    for (i, (&a, &b)) in full_r
        .y()
        .to_bits_le()
        .iter()
        .zip(Felt::ONE.to_bits_le().iter())
        .enumerate()
    {
        bits[i] = a && b;
    }

    if bits != v.to_bits_le() {
        full_r_y = -full_r.y();
    }

    let full_rs = mul_by_bits(&AffinePoint::new(full_r.x(), full_r_y).unwrap(), s);
    let zg = mul_by_bits(&GENERATOR, message);

    let r_inv = mod_inverse(r, &EC_ORDER);

    let rs_zg = &full_rs - &zg;

    let k = mul_by_bits(&rs_zg.to_affine().unwrap(), &r_inv);

    Ok(k.to_affine().unwrap().x())
}

#[inline(always)]
fn mul_by_bits(x: &AffinePoint, y: &Felt) -> ProjectivePoint {
    &ProjectivePoint::from_affine(x.x(), x.y()).unwrap() * *y
}

#[cfg(test)]
mod tests {
    #[cfg(not(feature = "std"))]
    use alloc::collections::BTreeMap;
    #[cfg(feature = "std")]
    use std::collections::BTreeMap;

    use super::*;
    use crate::test_utils::field_element_from_be_hex;

    // Test cases ported from:
    //   https://github.com/starkware-libs/crypto-cpp/blob/95864fbe11d5287e345432dbe1e80dea3c35fc58/src/starkware/crypto/ffi/crypto_lib_test.go

    #[test]
    #[cfg_attr(target_arch = "wasm32", wasm_bindgen_test::wasm_bindgen_test)]
    fn test_get_public_key_1() {
        let private_key = field_element_from_be_hex(
            "03c1e9550e66958296d11b60f8e8e7a7ad990d07fa65d5f7652c4a6c87d4e3cc",
        );
        let expected_public_key = field_element_from_be_hex(
            "077a3b314db07c45076d11f62b6f9e748a39790441823307743cf00d6597ea43",
        );

        assert_eq!(get_public_key(&private_key), expected_public_key);
    }

    #[test]
    #[cfg_attr(target_arch = "wasm32", wasm_bindgen_test::wasm_bindgen_test)]
    fn test_get_public_key_2() {
        let private_key = field_element_from_be_hex(
            "0000000000000000000000000000000000000000000000000000000000000012",
        );
        let expected_public_key = field_element_from_be_hex(
            "019661066e96a8b9f06a1d136881ee924dfb6a885239caa5fd3f87a54c6b25c4",
        );

        assert_eq!(get_public_key(&private_key), expected_public_key);
    }

    #[test]
    #[cfg_attr(target_arch = "wasm32", wasm_bindgen_test::wasm_bindgen_test)]
    fn test_get_public_keys_from_json() {
        // Precomputed keys can be found here:
        // https://github.com/starkware-libs/starkex-for-spot-trading/blob/607f0b4ce507e1d95cd018d206a2797f6ba4aab4/src/starkware/crypto/starkware/crypto/signature/src/config/keys_precomputed.json

        // Reading the JSON file
        let json_data = include_str!("../test-data/keys_precomputed.json");

        // Parsing the JSON
        let key_map: BTreeMap<String, String> =
            serde_json::from_str(json_data).expect("Unable to parse the JSON");

        // Iterating over each element in the JSON
        for (private_key, expected_public_key) in key_map {
            let private_key = if private_key.len() % 2 != 0 {
                format!("0{}", private_key.trim_start_matches("0x"))
            } else {
                private_key.trim_start_matches("0x").to_owned()
            };

            let expected_public_key = if expected_public_key.len() % 2 != 0 {
                format!("0{}", expected_public_key.trim_start_matches("0x"))
            } else {
                expected_public_key.trim_start_matches("0x").to_owned()
            };

            // Assertion
            assert_eq!(
                get_public_key(&field_element_from_be_hex(
                    private_key.trim_start_matches("0x")
                )),
                field_element_from_be_hex(expected_public_key.trim_start_matches("0x"))
            );
        }
    }

    #[test]
    #[cfg_attr(target_arch = "wasm32", wasm_bindgen_test::wasm_bindgen_test)]
    fn test_verify_valid_message() {
        let stark_key = field_element_from_be_hex(
            "01ef15c18599971b7beced415a40f0c7deacfd9b0d1819e03d723d8bc943cfca",
        );
        let msg_hash = field_element_from_be_hex(
            "0000000000000000000000000000000000000000000000000000000000000002",
        );
        let r_bytes = field_element_from_be_hex(
            "0411494b501a98abd8262b0da1351e17899a0c4ef23dd2f96fec5ba847310b20",
        );
        let s_bytes = field_element_from_be_hex(
            "0405c3191ab3883ef2b763af35bc5f5d15b3b4e99461d70e84c654a351a7c81b",
        );

        assert!(verify(&stark_key, &msg_hash, &r_bytes, &s_bytes).unwrap());
    }

    #[test]
    #[cfg_attr(target_arch = "wasm32", wasm_bindgen_test::wasm_bindgen_test)]
    fn test_verify_invalid_message() {
        let stark_key = field_element_from_be_hex(
            "077a4b314db07c45076d11f62b6f9e748a39790441823307743cf00d6597ea43",
        );
        let msg_hash = field_element_from_be_hex(
            "0397e76d1667c4454bfb83514e120583af836f8e32a516765497823eabe16a3f",
        );
        let r_bytes = field_element_from_be_hex(
            "0173fd03d8b008ee7432977ac27d1e9d1a1f6c98b1a2f05fa84a21c84c44e882",
        );
        let s_bytes = field_element_from_be_hex(
            "01f2c44a7798f55192f153b4c48ea5c1241fbb69e6132cc8a0da9c5b62a4286e",
        );

        assert!(!verify(&stark_key, &msg_hash, &r_bytes, &s_bytes).unwrap());
    }

    #[test]
    #[cfg_attr(target_arch = "wasm32", wasm_bindgen_test::wasm_bindgen_test)]
    fn test_verify_invalid_public_key() {
        let stark_key = field_element_from_be_hex(
            "03ee9bffffffffff26ffffffff60ffffffffffffffffffffffffffff004accff",
        );
        let msg_hash = field_element_from_be_hex(
            "0000000000000000000000000000000000000000000000000000000000000002",
        );
        let r_bytes = field_element_from_be_hex(
            "0411494b501a98abd8262b0da1351e17899a0c4ef23dd2f96fec5ba847310b20",
        );
        let s_bytes = field_element_from_be_hex(
            "0405c3191ab3883ef2b763af35bc5f5d15b3b4e99461d70e84c654a351a7c81b",
        );

        match verify(&stark_key, &msg_hash, &r_bytes, &s_bytes) {
            Err(VerifyError::InvalidPublicKey) => {}
            _ => panic!("unexpected result"),
        }
    }

    #[test]
    #[cfg_attr(target_arch = "wasm32", wasm_bindgen_test::wasm_bindgen_test)]
    fn test_sign() {
        let private_key = field_element_from_be_hex(
            "0000000000000000000000000000000000000000000000000000000000000001",
        );
        let message = field_element_from_be_hex(
            "0000000000000000000000000000000000000000000000000000000000000002",
        );
        let k = field_element_from_be_hex(
            "0000000000000000000000000000000000000000000000000000000000000003",
        );

        let signature = sign(&private_key, &message, &k).unwrap();
        let public_key = get_public_key(&private_key);

        assert!(verify(&public_key, &message, &signature.r, &signature.s).unwrap());
    }

    #[test]
    #[cfg_attr(target_arch = "wasm32", wasm_bindgen_test::wasm_bindgen_test)]
    fn test_recover() {
        let private_key = field_element_from_be_hex(
            "0000000000000000000000000000000000000000000000000000000000000001",
        );
        let message = field_element_from_be_hex(
            "0000000000000000000000000000000000000000000000000000000000000002",
        );
        let k = field_element_from_be_hex(
            "0000000000000000000000000000000000000000000000000000000000000003",
        );

        let signature = sign(&private_key, &message, &k).unwrap();
        let public_key = recover(&message, &signature.r, &signature.s, &signature.v).unwrap();

        assert_eq!(get_public_key(&private_key), public_key);
    }

    #[test]
    #[cfg_attr(target_arch = "wasm32", wasm_bindgen_test::wasm_bindgen_test)]
    fn test_recover_invalid_r() {
        let message = field_element_from_be_hex(
            "0000000000000000000000000000000000000000000000000000000000000002",
        );
        let r = field_element_from_be_hex(
            "03ee9bffffffffff26ffffffff60ffffffffffffffffffffffffffff004accff",
        );
        let s = field_element_from_be_hex(
            "0405c3191ab3883ef2b763af35bc5f5d15b3b4e99461d70e84c654a351a7c81b",
        );
        let v = field_element_from_be_hex(
            "0000000000000000000000000000000000000000000000000000000000000000",
        );

        match recover(&message, &r, &s, &v) {
            Err(RecoverError::InvalidR) => {}
            _ => panic!("unexpected result"),
        }
    }
}