1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
//! This module contains an owning wrapper of a leaked struct.
//!
//! FIXME(breaking): Naming. `leaking` implies the `Drop` of the value as well but we do the
//! precise opposite.
use core::pin::Pin;
use alloc_traits::AllocTime;

use core::{
    alloc::Layout,
    fmt,
    hash,
    marker::PhantomData,
    mem::{ManuallyDrop, MaybeUninit},
    ops::{Deref, DerefMut},
    ptr::{self, NonNull},
};

/// Zero-sized marker struct that allows running one or several methods.
///
/// This ensures that allocation does not exceed certain limits that would likely blow the stack
/// and run into Rust's canary, this aborting the process.
pub struct Alloca<T> {
    marker: PhantomData<[T]>,
    len: usize,
}

impl<T> Alloca<T> {
    /// Try to create a representation, that allows functions with dynamically stack-allocated
    /// slices.
    pub fn new(len: usize) -> Option<Self> {
        // Check that it's okay to create the padded layout. This is pure so it will again work
        // when we try during `run`.
        let _padded_layout = Layout::array::<T>(len + 1).ok()?;
        Some(Alloca {
            marker: PhantomData,
            len,
        })
    }

    fn padded_layout(&self) -> Layout {
        Layout::array::<T>(self.len + 1).expect("Checked this in the constructor")
    }

    /// Allocate a slice of elements.
    ///
    /// Please note that instantiating this method relies on the optimizer, to an extent. In
    /// particular we will create stack slots of differing sizes depending on the internal size.
    /// This shouldn't have an effect other than moving the stack pointer for various amounts and
    /// should never have more than one `T` in overhead. However, we can't enforce this. In theory
    /// llvm might still reserve stack space for all variants including a probe and thus
    /// prematurely assume we have hit the bottom of the available stack space. This is not very
    /// likely to occur in practice.
    pub fn run<R>(
        &self,
        run: impl FnOnce(&mut [MaybeUninit<T>]) -> R
    ) -> R {
        // Required size to surely have enough space for an aligned allocation.
        let required_size = self.padded_layout().size();

        if required_size <= 8 {
            self.run_with::<[u64; 1], _, _>(run)
        } else if required_size <= 16 {
            self.run_with::<[u64; 2], _, _>(run)
        } else if required_size <= 32 {
            self.run_with::<[u64; 4], _, _>(run)
        } else if required_size <= 64 {
            self.run_with::<[u64; 8], _, _>(run)
        } else if required_size <= 128 {
            self.run_with::<[u64; 16], _, _>(run)
        } else if required_size <= 256 {
            self.run_with::<[u64; 32], _, _>(run)
        } else if required_size <= 512 {
            self.run_with::<[u64; 64], _, _>(run)
        } else if required_size <= 1024 {
            self.run_with::<[u64; 128], _, _>(run)
        } else if required_size <= 2048 {
            self.run_with::<[u64; 256], _, _>(run)
        } else if required_size <= (1 << 12) {
            self.run_with::<[u64; 512], _, _>(run)
        } else if required_size <= (1 << 13) {
            self.run_with::<[u64; 1 << 10], _, _>(run)
        } else if required_size <= (1 << 14) {
            self.run_with::<[u64; 1 << 11], _, _>(run)
        } else if required_size <= (1 << 15) {
            self.run_with::<[u64; 1 << 12], _, _>(run)
        } else if required_size <= (1 << 16) {
            self.run_with::<[u64; 1 << 13], _, _>(run)
        } else if required_size <= (1 << 17) {
            self.run_with::<[u64; 1 << 14], _, _>(run)
        } else if required_size <= (1 << 18) {
            self.run_with::<[u64; 1 << 15], _, _>(run)
        } else if required_size <= (1 << 19) {
            self.run_with::<[u64; 1 << 16], _, _>(run)
        } else if required_size <= (1 << 20) {
            self.run_with::<[u64; 1 << 17], _, _>(run)
        } else {
            panic!("Stack allocation is too big");
        }
    }

    fn run_with<I, R, F:FnOnce(&mut [MaybeUninit<T>]) -> R>(
        &self,
        run: F
    ) -> R {
        use crate::unsync::Bump;
        let mem = Bump::<I>::uninit();
        let slot = mem.bump_array::<T>(self.len).unwrap();
        run(LeakBox::leak(slot))
    }
}

/// Represents an allocation within a Bump.
///
/// This is an owning pointer comparable to `Box`. It drops the contained value when it is dropped
/// itself. The difference is that no deallocation logic is ever executed.
///
/// FIXME(non-breaking): the name is rather confusing. Maybe it should be `BumpBox` or `RefBox`?
/// Not `StackBox` because the value's location in memory is not the defining feature.
///
/// # Usage
///
/// This box can be used to manage one valid instance constructed within the memory provided by a
/// `MaybeUninit` instance.
///
/// ```
/// use core::mem::MaybeUninit;
/// use static_alloc::leaked::LeakBox;
///
/// let mut storage = MaybeUninit::uninit();
/// let leak_box = LeakBox::from(&mut storage);
/// // The string itself is not managed by `static_alloc`.
/// let mut instance = LeakBox::write(leak_box, String::new());
///
/// instance.push_str("Hello world!");
/// ```
///
/// This box is the result of allocating from one of the `Bump` allocators using its explicit API.
///
/// Being a box-like type, an `Option` has the same size.
///
/// ```
/// use core::mem::size_of;
/// use static_alloc::leaked::LeakBox;
///
/// type Boxed = LeakBox<'static, usize>;
/// type Optional = Option<Boxed>;
///
/// assert_eq!(size_of::<Boxed>(), size_of::<Optional>());
/// ```
///
/// TODO: On nightly the inner type should be [unsizable][unsize-coercion].
///
/// [unsize-coercion]: https://doc.rust-lang.org/reference/type-coercions.html#coercion-types
pub struct LeakBox<'ctx, T: ?Sized> {
    #[allow(unused)]
    lifetime: AllocTime<'ctx>,
    // Covariance should be OK.
    pointer: NonNull<T>,
}

impl<'ctx, T> LeakBox<'ctx, T> {
    /// Construct from a raw pointer.
    ///
    /// # Safety
    ///
    /// The allocation must be valid for a write of the value. The memory must also outlive the
    /// lifetime `'ctx` and pointer must not be aliased by any other reference for that scope.
    pub(crate) unsafe fn new_from_raw_non_null(
        pointer: NonNull<T>,
        val: T,
        lifetime: AllocTime<'ctx>,
    ) -> Self {
        // SAFETY:
        // * `ptr` points to an allocation with correct layout for `V`.
        // * It is valid for write as it is the only pointer to it.
        // * The allocation lives for at least `'ctx`.
        core::ptr::write(pointer.as_ptr(), val);
        Self { pointer, lifetime, }
    }
}

impl<'ctx, T: ?Sized> LeakBox<'ctx, T> {
    /// Retrieve the raw pointer wrapped by this box.
    ///
    /// After this method the caller is responsible for managing the value in the place behind the
    /// pointer. It will need to be dropped manually.
    ///
    /// # Usage
    ///
    /// You might manually drop the contained instance at a later point.
    ///
    /// ```
    /// use static_alloc::{Bump, leaked::LeakBox};
    ///
    /// # fn fake() -> Option<()> {
    /// let bump: Bump<[usize; 128]> = Bump::uninit();
    /// let leak_box = bump.leak_box(String::from("Hello"))?;
    /// let ptr = LeakBox::into_raw(leak_box);
    ///
    /// unsafe {
    ///     core::ptr::drop_in_place(ptr);
    /// }
    /// # Some(()) }
    /// ```
    ///
    /// An alternative is to later re-wrap the pointer
    ///
    /// ```
    /// use static_alloc::{Bump, leaked::LeakBox};
    ///
    /// # fn fake() -> Option<()> {
    /// let bump: Bump<[usize; 128]> = Bump::uninit();
    /// let leak_box = bump.leak_box(String::from("Hello"))?;
    /// let ptr = LeakBox::into_raw(leak_box);
    ///
    /// unsafe {
    ///     let _ = LeakBox::from_raw(ptr);
    /// };
    /// # Some(()) }
    /// ```
    pub fn into_raw(this: Self) -> *mut T {
        let this = ManuallyDrop::new(this);
        this.pointer.as_ptr()
    }

    /// Wrap a raw pointer.
    ///
    /// The most immediate use is to rewrap a pointer returned from [`into_raw`].
    ///
    /// [`into_raw`]: #method.into_raw
    ///
    /// # Safety
    ///
    /// The pointer must point to a valid instance of `T` that is not aliased by any other
    /// reference for the lifetime `'ctx`. In particular it must be valid aligned and initialized.
    /// Dropping this `LeakBox` will drop the instance, which the caller must also guarantee to be
    /// sound.
    pub unsafe fn from_raw(pointer: *mut T) -> Self {
        debug_assert!(!pointer.is_null(), "Null pointer passed to LeakBox::from_raw");
        LeakBox {
            lifetime: AllocTime::default(),
            pointer: NonNull::new_unchecked(pointer),
        }
    }

    /// Wrap a mutable reference to a complex value as if it were owned.
    ///
    /// # Safety
    ///
    /// The value must be owned by the caller. That is, the mutable reference must not be used
    /// after the `LeakBox` is dropped. In particular the value must not be dropped by the caller.
    ///
    /// # Example
    ///
    /// ```rust
    /// use core::mem::ManuallyDrop;
    /// use static_alloc::leaked::LeakBox;
    ///
    /// fn with_stack_drop<T>(val: T) {
    ///     let mut val = ManuallyDrop::new(val);
    ///     // Safety:
    ///     // - Shadows the variable, rendering the prior inaccessible.
    ///     // - Dropping is now the responsibility of `LeakBox`.
    ///     let val = unsafe { LeakBox::from_mut_unchecked(&mut *val) };
    /// }
    ///
    /// // Demonstrate that it is correctly dropped.
    /// let variable = core::cell::RefCell::new(0);
    /// with_stack_drop(variable.borrow_mut());
    /// assert!(variable.try_borrow_mut().is_ok());
    /// ```
    #[allow(unused_unsafe)]
    pub unsafe fn from_mut_unchecked(val: &'ctx mut T) -> Self {
        // SAFETY:
        // * Is valid instance
        // * Not aliased as by mut reference
        // * Dropping soundness is guaranteed by the caller.
        // * We don't invalidate any value, nor can the caller.
        unsafe { LeakBox::from_raw(val) }
    }

    /// Leak the instances as a mutable reference.
    ///
    /// After calling this method the value is no longer managed by `LeakBox`. Its Drop impl will
    /// not be automatically called.
    ///
    /// # Usage
    ///
    /// ```
    /// use static_alloc::{Bump, leaked::LeakBox};
    ///
    /// # fn fake() -> Option<()> {
    /// let bump: Bump<[usize; 128]> = Bump::uninit();
    /// let leak_box = bump.leak_box(String::from("Hello"))?;
    ///
    /// let st: &mut String = LeakBox::leak(leak_box);
    /// # Some(()) }
    /// ```
    ///
    /// You can't leak past the lifetime of the allocator.
    ///
    /// ```compile_fail
    /// # use static_alloc::{Bump, leaked::LeakBox};
    /// # fn fake() -> Option<()> {
    /// let bump: Bump<[usize; 128]> = Bump::uninit();
    /// let leak_box = bump.leak_box(String::from("Hello"))?;
    /// let st: &mut String = LeakBox::leak(leak_box);
    ///
    /// drop(bump);
    /// // error[E0505]: cannot move out of `bump` because it is borrowed
    /// st.to_lowercase();
    /// //-- borrow later used here
    /// # Some(()) }
    /// ```
    pub fn leak<'a>(this: Self) -> &'a mut T
        where 'ctx: 'a
    {
        let pointer = LeakBox::into_raw(this);
        // SAFETY:
        // * The LeakBox type guarantees this is initialized and not mutably aliased.
        // * For the lifetime 'a which is at most 'ctx.
        unsafe { &mut *pointer }
    }
}

impl<T: 'static> LeakBox<'static, T> {
    /// Pin an instance that's leaked for the remaining program runtime.
    ///
    /// After calling this method the value can only safely be referenced mutably if it is `Unpin`,
    /// otherwise it is only accessible behind a `Pin`. Note that this does _not_ imply that the
    /// `Drop` glue, or explicit `Drop`-impl, is guaranteed to run.
    ///
    /// # Usage
    ///
    /// A decent portion of futures must be _pinned_ before the can be awaited inside another
    /// future. In particular this is required for self-referential futures that store pointers
    /// into their own object's memory. This is the case for the future type of an `asnyc fn` if
    /// there are potentially any stack references when it is suspended/waiting on another future.
    /// Consider this example:
    ///
    /// ```compile_fail
    /// use static_alloc::{Bump, leaked::LeakBox}; 
    ///
    /// async fn example(x: usize) -> usize {
    ///     // Holding reference across yield point.
    ///     // This requires pinning to run this future.
    ///     let y = &x;
    ///     core::future::ready(()).await;
    ///     *y
    /// }
    ///
    /// static POOL: Bump<[usize; 128]> = Bump::uninit();
    /// let mut future = POOL.leak_box(example(0))
    ///     .expect("Enough space for small async fn");
    ///
    /// let usage = async move {
    /// // error[E0277]: `GenFuture<[static generator@src/leaked.rs …]>` cannot be unpinned
    ///     let _ = (&mut *future).await;
    /// };
    /// ```
    ///
    /// This method can be used to pin instances allocated from a global pool without requiring the
    /// use of a macro or unsafe on the caller's part. Now, with the correct usage of `into_pin`:
    ///
    /// ```
    /// use static_alloc::{Bump, leaked::LeakBox}; 
    ///
    /// async fn example(x: usize) -> usize {
    ///     // Holding reference across yield point.
    ///     // This requires pinning to run this future.
    ///     let y = &x;
    ///     core::future::ready(()).await;
    ///     *y
    /// }
    ///
    /// static POOL: Bump<[usize; 128]> = Bump::uninit();
    /// let future = POOL.leak_box(example(0))
    ///     .expect("Enough space for small async fn");
    ///
    /// // PIN this future!
    /// let mut future = LeakBox::into_pin(future);
    ///
    /// let usage = async move {
    ///     let _ = future.as_mut().await;
    /// };
    /// ```
    pub fn into_pin(this: Self) -> Pin<Self> {
        // SAFETY:
        // * This memory is valid for `'static` duration, independent of the fate of `this` and
        //   even when it is forgotten. This trivially implies that any Drop is called before the
        //   memory is invalidated, as required by `Pin`.
        unsafe { Pin::new_unchecked(this) }
    }
}

impl<'ctx, T> LeakBox<'ctx, T> {
    /// Remove the value, forgetting the box in the process.
    ///
    /// This is similar to dereferencing a box (`*leak_box`) but no deallocation is involved. This
    /// becomes useful when the allocator turns out to have too short of a lifetime.
    ///
    /// # Usage
    ///
    /// You may want to move a long-lived value out of the current scope where it's been allocated.
    ///
    /// ```
    /// # use core::cell::RefCell;
    /// use static_alloc::{Bump, leaked::LeakBox};
    ///
    /// let cell = RefCell::new(0usize);
    ///
    /// let guard = {
    ///     let bump: Bump<[usize; 128]> = Bump::uninit();
    ///
    ///     let mut leaked = bump.leak_box(cell.borrow_mut()).unwrap();
    ///     **leaked = 1usize;
    ///
    ///     // Take the value, allowing use independent of the lifetime of bump
    ///     LeakBox::take(leaked)
    /// };
    ///
    /// assert!(cell.try_borrow().is_err());
    /// drop(guard);
    /// assert!(cell.try_borrow().is_ok());
    /// ```
    pub fn take(this: Self) -> T {
        // Do not drop this.
        let this = ManuallyDrop::new(this);
        // SAFETY:
        // * `ptr` points to an initialized allocation according to the constructors of `LeakBox`.
        // * The old value is forgotten and no longer dropped.
        unsafe { core::ptr::read(this.pointer.as_ptr()) }
    }

    /// Wrap a mutable reference to a trivial value as if it were a box.
    ///
    /// This is safe because such values can not have any Drop code and can be duplicated at will.
    ///
    /// The usefulness of this operation is questionable but the author would be delighted to hear
    /// about any actual use case.
    pub fn from_mut(val: &'ctx mut T) -> Self
    where
        T: Copy
    {
        // SAFETY:
        // * Is valid instance
        // * Not aliased as by mut reference
        // * Dropping is a no-op
        // * We don't invalidate anyones value
        unsafe { LeakBox::from_raw(val) }
    }
}

impl<'ctx, T> LeakBox<'ctx, MaybeUninit<T>> {
    /// Write a value into this box, initializing it.
    ///
    /// This can be used to delay the computation of a value until after an allocation succeeded
    /// while maintaining all types necessary for a safe initialization.
    ///
    /// # Usage
    ///
    /// ```
    /// # fn some_expensive_operation() -> [u8; 4] { [0u8; 4] }
    /// # use core::mem::MaybeUninit;
    /// #
    /// # fn fake_main() -> Option<()> {
    /// #
    /// use static_alloc::{Bump, leaked::LeakBox};
    ///
    /// let bump: Bump<[usize; 128]> = Bump::uninit();
    /// let memory = bump.leak_box(MaybeUninit::uninit())?;
    ///
    /// let value = LeakBox::write(memory, some_expensive_operation());
    /// # Some(()) } fn main() {}
    /// ```
    pub fn write(mut this: Self, val: T) -> LeakBox<'ctx, T> {
        unsafe {
            // SAFETY: MaybeUninit<T> is valid for writing a T.
            ptr::write(this.as_mut_ptr(), val);
            // SAFETY: initialized by the write before.
            LeakBox::assume_init(this)
        }
    }

    /// Converts to `LeakBox<T>`.
    ///
    /// # Safety
    ///
    /// The value must have been initialized as required by `MaybeUninit::assume_init`. Calling
    /// this when the content is not yet fully initialized causes immediate undefined behavior.
    pub unsafe fn assume_init(this: Self) -> LeakBox<'ctx, T> {
        LeakBox {
            pointer: this.pointer.cast(),
            lifetime: this.lifetime,
        }
    }
}

impl<'ctx, T: ?Sized> Deref for LeakBox<'ctx, T> {
    type Target = T;

    fn deref(&self) -> &Self::Target {
        // SAFETY: constructor guarantees this is initialized and not mutably aliased.
        unsafe { self.pointer.as_ref() }
    }
}

impl<'ctx, T: ?Sized> DerefMut for LeakBox<'ctx, T> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        // SAFETY: constructor guarantees this is initialized and not aliased.
        unsafe { self.pointer.as_mut() }
    }
}

impl<T: ?Sized> Drop for LeakBox<'_, T> {
    fn drop(&mut self) {
        // SAFETY: constructor guarantees this was initialized.
        unsafe { ptr::drop_in_place(self.pointer.as_ptr()) }
    }
}

/// Construct a LeakBox to an existing MaybeUninit.
///
/// The MaybeUninit type is special in that we can treat any unique reference to an owned value as
/// an owned value itself since it has no representational invariants.
impl<'ctx, T> From<&'ctx mut MaybeUninit<T>> for LeakBox<'ctx, MaybeUninit<T>> {
    fn from(uninit: &'ctx mut MaybeUninit<T>) -> Self {
        // SAFETY:
        // * An instance of MaybeUninit is always valid.
        // * The mut references means it can not be aliased.
        // * Dropping a MaybeUninit is a no-op and can not invalidate any validity or security
        //   invariants of this MaybeUninit or the contained T.
        unsafe { LeakBox::from_raw(uninit) }
    }
}

/// Construct a LeakBox to an existing slice of MaybeUninit.
impl<'ctx, T> From<&'ctx mut [MaybeUninit<T>]> for LeakBox<'ctx, [MaybeUninit<T>]> {
    fn from(uninit: &'ctx mut [MaybeUninit<T>]) -> Self {
        // SAFETY:
        // * An instance of MaybeUninit is always valid.
        // * The mut references means it can not be aliased.
        // * Dropping a MaybeUninit is a no-op and can not invalidate any validity or security
        //   invariants of this MaybeUninit or the contained T.
        unsafe { LeakBox::from_raw(uninit) }
    }
}

impl<T: ?Sized> AsRef<T> for LeakBox<'_, T> {
    fn as_ref(&self) -> &T {
        &**self
    }
}

impl<T: ?Sized> AsMut<T> for LeakBox<'_, T> {
    fn as_mut(&mut self) -> &mut T {
        &mut **self
    }
}

impl<T: fmt::Debug + ?Sized> fmt::Debug for LeakBox<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.as_ref().fmt(f)
    }
}

impl<T: fmt::Display + ?Sized> fmt::Display for LeakBox<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.as_ref().fmt(f)
    }
}

impl<T: ?Sized> fmt::Pointer for LeakBox<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.pointer.fmt(f)
    }
}

impl<T: hash::Hash + ?Sized> hash::Hash for LeakBox<'_, T> {
    fn hash<H: hash::Hasher>(&self, h: &mut H) {
        self.as_ref().hash(h)
    }
}

// TODO: iterators, read, write?