1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
//! Management of external NAND Flash through the STM32 FMC peripheral
//!
//! Commands and parameters are referenced to the Open NAND Flash Interface
//! (ONFI) Specification Revision 5.1 3 May 2022
//!
//! Addressing supports up to 64Gb / 4GByte (8-bit data) or 128Gb / 8Gbyte (16-bit data).
use core::convert::TryInto;
use core::sync::atomic::{fence, Ordering};
use core::{fmt, ptr, str};
/// NAND Commands defined in ONFI Specification 5.1
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[derive(Clone, Copy, Debug, PartialEq)]
#[allow(unused)]
enum Command {
/// 0xFF Reset: ONFI Section 5.3
Reset = 0xFF,
/// 0x90 Read ID: ONFI Section 5.6
ReadID = 0x90,
/// 0xEC Read Parameter Page: ONFI Section 5.7
ReadParameterPage = 0xEC,
/// 0xED Read Unique ID: ONFI Section 5.8
ReadUniqueID = 0xED,
/// Block Erase: ONFI Section 5.9
BlockErase = 0x60,
/// 0x70 Read Status: ONFI Section 5.10
ReadStatus = 0x70,
}
/// Status returned from 0x70 Read Status: ONFI Section 5.10
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum Status {
/// Status Register indicated Pass
Success(u8),
/// Status Register indicates Fail
Fail(u8),
}
impl Status {
fn from_register(reg: u8) -> Self {
match reg & 1 {
1 => Self::Fail(reg),
_ => Self::Success(reg),
}
}
}
/// Identifier returned from 0x90 Read ID: ONFI Section 5.6
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct ID {
manufacturer_jedec: u8,
device_jedec: u8,
internal_chip_count: usize,
page_size: usize,
}
/// Parameter Page returned from 0xEC Read Parameter Page: ONFI Section 5.7
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[derive(Clone, Copy, PartialEq)]
pub struct ParameterPage {
signature: [u8; 4],
onfi_revision: u16,
manufacturer: [u8; 12],
model: [u8; 20],
date_code: u16,
data_bytes_per_page: u32,
spare_bytes_per_page: u16,
pages_per_block: u32,
blocks_per_lun: u32,
lun_count: u8,
ecc_bits: u8,
}
impl ParameterPage {
/// Manufacturer of the device
pub fn manufacturer(&self) -> &str {
str::from_utf8(&self.manufacturer).unwrap_or("<ERR>")
}
/// Model number of the deviceo
pub fn model(&self) -> &str {
str::from_utf8(&self.model).unwrap_or("<ERR>")
}
}
impl fmt::Debug for ParameterPage {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("ONFI Parameter Page")
.field("ONFI Revision", &self.onfi_revision)
.field("Manufacturer", &self.manufacturer())
.field("Model", &self.model())
.field("Date Code", &self.date_code)
.field("Data bytes per Page", &self.data_bytes_per_page)
.field("Spare bytes per Page", &self.spare_bytes_per_page)
.field("Pages per Block", &self.pages_per_block)
.field("Blocks per LUN", &self.blocks_per_lun)
.field("LUN Count", &self.lun_count)
.field("ECC Bits Correctability", &self.ecc_bits)
.finish()
}
}
/// NAND Device
#[derive(Clone, Debug, PartialEq)]
#[allow(missing_copy_implementations)]
pub struct NandDevice {
common_command: *mut u8,
common_address: *mut u8,
attribute_command: *mut u8,
common_data: *mut u8,
/// Number of address bits C that are used for the column address. The
/// number of data bytes per page is typically 2^C
column_bits: Option<usize>,
}
unsafe fn write_volatile_sync<T>(dest: *mut T, src: T) {
ptr::write_volatile(dest, src);
// Ensure that the write is committed before continuing. In the default
// ARMv7-M address map the space 0x8000_0000-0x9FFF_FFFF is Normal Memory
// with write-though cache attribute.
fence(Ordering::SeqCst);
}
impl NandDevice {
/// Create a `NandDevice` from a bank pointer
///
/// # Safety
///
/// The FMC controller must have been initialized as NAND controller and
/// enabled for this bank, with the correct pin settings. The bank pointer
/// must be a singleton.
pub(crate) unsafe fn init(ptr: *mut u8, column_bits: usize) -> NandDevice {
let mut nand = NandDevice {
common_command: ptr.add(0x1_0000),
common_address: ptr.add(0x2_0000),
attribute_command: ptr.add(0x801_0000),
common_data: ptr,
column_bits: Some(column_bits),
};
// Reset Command. May be specifically required by some devices and there
// seems to be no disadvantage of sending it always
nand.reset();
nand
}
/// 0xFF Reset: ONFI Section 5.3
pub fn reset(&mut self) {
unsafe {
write_volatile_sync(self.common_command, 0xFF);
}
}
/// Generic Command
fn command(&mut self, cmd: Command, address: u8, buffer: &mut [u8]) {
unsafe {
write_volatile_sync(self.common_command, cmd as u8);
write_volatile_sync(self.common_address, address);
for x in buffer {
*x = ptr::read_volatile(self.common_data);
}
}
}
/// Generic Address
///
/// column_bits must be set first!
fn address(&mut self, address: usize, spare: bool) {
let column_bits = self
.column_bits
.expect("Number of column bits must be configured first");
let column = (address & ((1 << column_bits) - 1))
+ if spare { 1 << column_bits } else { 0 };
let row = address >> column_bits;
let mut addr_cycles = [0u8; 5];
// Assuming 5-cycle address
addr_cycles[0] = (column & 0xFF) as u8;
addr_cycles[1] = ((column >> 8) & 0xFF) as u8;
addr_cycles[2] = (row & 0xFF) as u8;
addr_cycles[3] = ((row >> 8) & 0xFF) as u8;
addr_cycles[4] = ((row >> 16) & 0xFF) as u8;
for a in addr_cycles {
unsafe {
write_volatile_sync(self.common_address, a);
}
}
}
/// 0x90 Read ID: ONFI Section 5.6
pub fn read_id(&mut self) -> ID {
let mut id = [0u8; 5];
self.command(Command::ReadID, 0, &mut id);
let internal_chip_count = match id[2] & 3 {
1 => 2,
2 => 4,
3 => 8,
_ => 1,
};
let page_size = match id[3] & 3 {
1 => 2048,
2 => 4096,
_ => 0,
};
ID {
manufacturer_jedec: id[0],
device_jedec: id[1],
internal_chip_count,
page_size,
}
}
/// 0xEC Read Parameter Page: ONFI Section 5.7
pub fn read_parameter_page(&mut self) -> ParameterPage {
let mut page = [0u8; 115];
self.command(Command::ReadParameterPage, 0, &mut page);
ParameterPage {
signature: page[0..4].try_into().unwrap(),
onfi_revision: u16::from_le_bytes(page[4..6].try_into().unwrap()),
manufacturer: page[32..44].try_into().unwrap(),
model: page[44..64].try_into().unwrap(),
date_code: u16::from_le_bytes(page[65..67].try_into().unwrap()),
data_bytes_per_page: u32::from_le_bytes(
page[80..84].try_into().unwrap(),
),
spare_bytes_per_page: u16::from_le_bytes(
page[84..86].try_into().unwrap(),
),
pages_per_block: u32::from_le_bytes(
page[92..96].try_into().unwrap(),
),
blocks_per_lun: u32::from_le_bytes(
page[96..100].try_into().unwrap(),
),
lun_count: page[100],
ecc_bits: page[112],
}
}
/// 0xED Read Unique ID: ONFI Section 5.8
pub fn read_unique_id(&mut self) -> u128 {
let mut unique = [0u8; 16];
self.command(Command::ReadUniqueID, 0, &mut unique);
u128::from_le_bytes(unique)
}
/// 0x60 Block Erase: ONFI Section 5.9
pub fn block_erase(&mut self, address: usize) -> Status {
unsafe {
write_volatile_sync(self.common_command, 0x60); // auto block erase setup
}
let column_bits = self
.column_bits
.expect("Number of column bits must be configured first!");
let row = address >> column_bits;
unsafe {
// write block address
write_volatile_sync(self.common_address, (row & 0xFF) as u8);
write_volatile_sync(self.common_address, ((row >> 8) & 0xFF) as u8);
write_volatile_sync(
self.common_address,
((row >> 16) & 0xFF) as u8,
);
// erase command
write_volatile_sync(self.attribute_command, 0xD0); // t_WB
write_volatile_sync(self.common_command, Command::ReadStatus as u8);
let status_register = ptr::read_volatile(self.common_data);
Status::from_register(status_register)
}
}
/// Page Read: ONFI Section 5.14
///
/// This method starts a Page Read operation but does not include the data
/// phase. This method is useful when DMA is used for the data phase.
///
/// For a method that completes the entire transaction see
/// [`page_read`](Self::page_read).
pub fn start_page_read(&mut self, address: usize, spare: bool) {
unsafe {
write_volatile_sync(self.common_command, 0x00);
self.address(address, spare);
write_volatile_sync(self.attribute_command, 0x30); // t_WB
}
}
/// Page Read: ONFI Section 5.14
///
/// Executes a Page Read operation from the specified address. Data is
/// copied to the slice `page`. The length of `page` determines the read
/// length. The read length should not exceed the number of bytes between
/// the specified address and the end of the page. Reading beyond the end of
/// the page results in indeterminate values being returned.
///
/// If `spare` is true, then the read occours from the spare area. The
/// address offset from the start of the page plus the slice length should
/// not exceed the spare area size.
pub fn page_read(&mut self, address: usize, spare: bool, page: &mut [u8]) {
self.start_page_read(address, spare);
for x in page {
unsafe {
*x = ptr::read_volatile(self.common_data);
}
}
}
/// Page Program: ONFI Section 5.16
///
/// Executes a page program to the specified address and waits for it to
/// complete. The length of `page` determines the write length. The write
/// length should not exceed the number of bytes between the specified
/// address and the end of the page. Writing beyond this length is
/// undefined.
pub fn page_program(
&mut self,
address: usize,
spare: bool,
page: &[u8],
) -> Status {
unsafe {
write_volatile_sync(self.common_command, 0x80); // data input
self.address(address, spare);
for x in page {
write_volatile_sync(self.common_data, *x); // write page
}
write_volatile_sync(self.attribute_command, 0x10); // program command, t_WB
let mut status_register;
while {
write_volatile_sync(
self.common_command,
Command::ReadStatus as u8,
);
status_register = ptr::read_volatile(self.common_data);
status_register & 0x20 == 0 // program in progress
} {}
Status::from_register(status_register)
}
}
}
/// Methods to allow users to implement their own commands using `unsafe`.
///
impl NandDevice {
/// Return a Raw Pointer to the common command space. This memory-mapped
/// address is used to write command phase of NAND device transactions.
///
/// It is recommended to use
/// [`ptr::write_volatile`](https://doc.rust-lang.org/std/ptr/fn.write_volatile.html)
/// to write to this pointer. Depending on the memory map in use, you may
/// need to ensure the write is committed by using
/// [`core::atomic::sync::fence`](https://doc.rust-lang.org/core/sync/atomic/fn.fence.html).
pub fn common_command(&mut self) -> *mut u8 {
self.common_command
}
/// Return a Raw Pointer to the attribute command space. This memory-mapped
/// address is used to write command phase of NAND device transactions.
///
/// It is recommended to use
/// [`ptr::write_volatile`](https://doc.rust-lang.org/std/ptr/fn.write_volatile.html)
/// to write to this pointer. Depending on the memory map in use, you may
/// need to ensure the write is committed by using
/// [`core::atomic::sync::fence`](https://doc.rust-lang.org/core/sync/atomic/fn.fence.html).
pub fn attribute_command(&mut self) -> *mut u8 {
self.attribute_command
}
/// Return a Raw Pointer to the common address space. This memory-mapped
/// address is used to write the address phase of NAND device transactions.
///
/// It is recommended to use
/// [`ptr::write_volatile`](https://doc.rust-lang.org/std/ptr/fn.write_volatile.html)
/// to write to this pointer. Depending on the memory map in use, you may
/// need to ensure the write is committed by using
/// [`core::atomic::sync::fence`](https://doc.rust-lang.org/core/sync/atomic/fn.fence.html).
pub fn common_address(&mut self) -> *mut u8 {
self.common_address
}
/// Return a Raw Pointer to the common data space. This memory-mapped
/// address is used to write or read the data phase of NAND device
/// transactions.
///
/// It is recommended to use
/// [`ptr::write_volatile`](https://doc.rust-lang.org/std/ptr/fn.write_volatile.html)
/// to write to this pointer. Depending on the memory map in use, you may
/// need to ensure the write is committed by using
/// [`core::atomic::sync::fence`](https://doc.rust-lang.org/core/sync/atomic/fn.fence.html).
pub fn common_data(&mut self) -> *mut u8 {
self.common_data
}
}