1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
//! This crate provides multiple mechanisms for interrupting a `Stream`.
//!
//! # Stream combinator
//!
//! The extension trait [`StreamExt`] provides a single new `Stream` combinator: `take_until_if`.
//! [`StreamExt::take_until_if`] continues yielding elements from the underlying `Stream` until a
//! `Future` resolves, and at that moment immediately yields `None` and stops producing further
//! elements.
//!
//! For convenience, the crate also includes the [`Tripwire`] type, which produces a cloneable
//! `Future` that can then be passed to `take_until_if`. When a new `Tripwire` is created, an
//! associated [`Trigger`] is also returned, which interrupts the `Stream` when it is dropped.
//!
//!
//! ```
//! use stream_cancel::{StreamExt, Tripwire};
//! use futures::prelude::*;
//! use tokio_stream::wrappers::TcpListenerStream;
//!
//! #[tokio::main]
//! async fn main() {
//! let listener = tokio::net::TcpListener::bind("127.0.0.1:0").await.unwrap();
//! let (trigger, tripwire) = Tripwire::new();
//!
//! tokio::spawn(async move {
//! let mut incoming = TcpListenerStream::new(listener).take_until_if(tripwire);
//! while let Some(mut s) = incoming.next().await.transpose().unwrap() {
//! tokio::spawn(async move {
//! let (mut r, mut w) = s.split();
//! println!("copied {} bytes", tokio::io::copy(&mut r, &mut w).await.unwrap());
//! });
//! }
//! });
//!
//! // tell the listener to stop accepting new connections
//! drop(trigger);
//! // the spawned async block will terminate cleanly, allowing main to return
//! }
//! ```
//!
//! # Stream wrapper
//!
//! Any stream can be wrapped in a [`Valved`], which enables it to be remotely terminated through
//! an associated [`Trigger`]. This can be useful to implement graceful shutdown on "infinite"
//! streams like a `TcpListener`. Once [`Trigger::cancel`] is called on the handle for a given
//! stream's [`Valved`], the stream will yield `None` to indicate that it has terminated.
//!
//! ```
//! use stream_cancel::Valved;
//! use futures::prelude::*;
//! use tokio_stream::wrappers::TcpListenerStream;
//! use std::thread;
//!
//! #[tokio::main]
//! async fn main() {
//! let (exit_tx, exit_rx) = tokio::sync::oneshot::channel();
//! let listener = tokio::net::TcpListener::bind("127.0.0.1:0").await.unwrap();
//!
//! tokio::spawn(async move {
//! let (exit, mut incoming) = Valved::new(TcpListenerStream::new(listener));
//! exit_tx.send(exit).unwrap();
//! while let Some(mut s) = incoming.next().await.transpose().unwrap() {
//! tokio::spawn(async move {
//! let (mut r, mut w) = s.split();
//! println!("copied {} bytes", tokio::io::copy(&mut r, &mut w).await.unwrap());
//! });
//! }
//! });
//!
//! let exit = exit_rx.await;
//!
//! // the server thread will normally never exit, since more connections
//! // can always arrive. however, with a Valved, we can turn off the
//! // stream of incoming connections to initiate a graceful shutdown
//! drop(exit);
//! }
//! ```
//!
//! You can share the same [`Trigger`] between multiple streams by first creating a [`Valve`],
//! and then wrapping multiple streams using [`Valve::Wrap`]:
//!
//! ```
//! use stream_cancel::Valve;
//! use futures::prelude::*;
//! use tokio_stream::wrappers::TcpListenerStream;
//!
//! #[tokio::main]
//! async fn main() {
//! let (exit, valve) = Valve::new();
//! let listener1 = tokio::net::TcpListener::bind("127.0.0.1:0").await.unwrap();
//! let listener2 = tokio::net::TcpListener::bind("127.0.0.1:0").await.unwrap();
//!
//! tokio::spawn(async move {
//! let incoming1 = valve.wrap(TcpListenerStream::new(listener1));
//! let incoming2 = valve.wrap(TcpListenerStream::new(listener2));
//!
//! use futures_util::stream::select;
//! let mut incoming = select(incoming1, incoming2);
//! while let Some(mut s) = incoming.next().await.transpose().unwrap() {
//! tokio::spawn(async move {
//! let (mut r, mut w) = s.split();
//! println!("copied {} bytes", tokio::io::copy(&mut r, &mut w).await.unwrap());
//! });
//! }
//! });
//!
//! // the runtime will not become idle until both incoming1 and incoming2 have stopped
//! // (due to the select). this checks that they are indeed both interrupted when the
//! // valve is closed.
//! drop(exit);
//! }
//! ```
#![deny(missing_docs)]
#![warn(rust_2018_idioms)]
use tokio::sync::watch;
mod combinator;
mod wrapper;
pub use crate::combinator::{StreamExt, TakeUntilIf, Tripwire};
pub use crate::wrapper::{Valve, Valved};
/// A handle to a set of cancellable streams.
///
/// If the `Trigger` is dropped, any streams associated with it are interrupted (this is equivalent
/// to calling [`Trigger::cancel`]. To override this behavior, call [`Trigger::disable`].
#[derive(Debug)]
pub struct Trigger(Option<watch::Sender<bool>>);
impl Trigger {
/// Cancel all associated streams, and make them immediately yield `None`.
pub fn cancel(self) {
drop(self);
}
/// Disable the `Trigger`, and leave all associated streams running to completion.
pub fn disable(mut self) {
let _ = self.0.take();
drop(self);
}
}
impl Drop for Trigger {
fn drop(&mut self) {
if let Some(tx) = self.0.take() {
// Send may fail when all associated rx'es are dropped already
// so code here cannot panic on error
let _ = tx.send(true);
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use futures::prelude::*;
use futures_util::stream::select;
use tokio::io::{AsyncReadExt, AsyncWriteExt};
use tokio_stream::wrappers::TcpListenerStream;
#[test]
fn tokio_run() {
use std::thread;
let rt = tokio::runtime::Runtime::new().unwrap();
let listener = rt
.block_on(tokio::net::TcpListener::bind("127.0.0.1:0"))
.unwrap();
let (exit_tx, exit_rx) = tokio::sync::oneshot::channel();
let server = thread::spawn(move || {
let (tx, rx) = tokio::sync::oneshot::channel();
// start a tokio echo server
rt.block_on(async move {
let (exit, mut incoming) = Valved::new(TcpListenerStream::new(listener));
exit_tx.send(exit).unwrap();
while let Some(mut s) = incoming.next().await.transpose().unwrap() {
tokio::spawn(async move {
let (mut r, mut w) = s.split();
tokio::io::copy(&mut r, &mut w).await.unwrap();
});
}
tx.send(()).unwrap();
});
let _ = rt.block_on(rx).unwrap();
});
let exit = futures::executor::block_on(exit_rx);
// the server thread will normally never exit, since more connections
// can always arrive. however, with a Valved, we can turn off the
// stream of incoming connections to initiate a graceful shutdown
drop(exit);
server.join().unwrap();
}
#[tokio::test]
async fn tokio_rt_on_idle() {
let (exit_tx, exit_rx) = tokio::sync::oneshot::channel();
tokio::spawn(async move {
let listener = tokio::net::TcpListener::bind("127.0.0.1:0").await.unwrap();
let (exit, mut incoming) = Valved::new(TcpListenerStream::new(listener));
exit_tx.send(exit).unwrap();
while let Some(mut s) = incoming.next().await.transpose().unwrap() {
tokio::spawn(async move {
let (mut r, mut w) = s.split();
tokio::io::copy(&mut r, &mut w).await.unwrap();
});
}
});
let exit = exit_rx.await;
drop(exit);
}
#[tokio::test]
async fn multi_interrupt() {
let (exit, valve) = Valve::new();
tokio::spawn(async move {
let listener1 = tokio::net::TcpListener::bind("127.0.0.1:0").await.unwrap();
let listener2 = tokio::net::TcpListener::bind("127.0.0.1:0").await.unwrap();
let incoming1 = valve.wrap(TcpListenerStream::new(listener1));
let incoming2 = valve.wrap(TcpListenerStream::new(listener2));
let mut incoming = select(incoming1, incoming2);
while let Some(mut s) = incoming.next().await.transpose().unwrap() {
tokio::spawn(async move {
let (mut r, mut w) = s.split();
tokio::io::copy(&mut r, &mut w).await.unwrap();
});
}
});
// the runtime will not become idle until both incoming1 and incoming2 have stopped (due to
// the select). this checks that they are indeed both interrupted when the valve is closed.
drop(exit);
}
#[tokio::test]
async fn yields_many() {
use std::sync::{
atomic::{AtomicUsize, Ordering},
Arc,
};
let (exit, valve) = Valve::new();
let listener = tokio::net::TcpListener::bind("127.0.0.1:0").await.unwrap();
let addr = listener.local_addr().unwrap();
let reqs = Arc::new(AtomicUsize::new(0));
let got = reqs.clone();
tokio::spawn(async move {
let mut incoming = valve.wrap(TcpListenerStream::new(listener));
while let Some(mut s) = incoming.next().await.transpose().unwrap() {
reqs.fetch_add(1, Ordering::SeqCst);
tokio::spawn(async move {
let (mut r, mut w) = s.split();
tokio::io::copy(&mut r, &mut w).await.unwrap();
});
}
});
let mut s = tokio::net::TcpStream::connect(&addr).await.unwrap();
s.write_all(b"hello").await.unwrap();
let mut buf = [0; 5];
s.read_exact(&mut buf[..]).await.unwrap();
assert_eq!(&buf, b"hello");
drop(s);
let mut s = tokio::net::TcpStream::connect(&addr).await.unwrap();
s.write_all(b"world").await.unwrap();
let mut buf = [0; 5];
s.read_exact(&mut buf[..]).await.unwrap();
assert_eq!(&buf, b"world");
drop(s);
assert_eq!(got.load(Ordering::SeqCst), 2);
drop(exit);
}
#[tokio::test]
async fn yields_some() {
use std::sync::{
atomic::{AtomicUsize, Ordering},
Arc,
};
let (exit, valve) = Valve::new();
let listener1 = tokio::net::TcpListener::bind("127.0.0.1:0").await.unwrap();
let listener2 = tokio::net::TcpListener::bind("127.0.0.1:0").await.unwrap();
let addr1 = listener1.local_addr().unwrap();
let addr2 = listener2.local_addr().unwrap();
let reqs = Arc::new(AtomicUsize::new(0));
let got = reqs.clone();
tokio::spawn(async move {
let incoming1 = valve.wrap(TcpListenerStream::new(listener1));
let incoming2 = valve.wrap(TcpListenerStream::new(listener2));
let mut incoming = select(incoming1, incoming2);
while let Some(mut s) = incoming.next().await.transpose().unwrap() {
reqs.fetch_add(1, Ordering::SeqCst);
tokio::spawn(async move {
let (mut r, mut w) = s.split();
tokio::io::copy(&mut r, &mut w).await.unwrap();
});
}
});
let mut s = tokio::net::TcpStream::connect(&addr1).await.unwrap();
s.write_all(b"hello").await.unwrap();
let mut buf = [0; 5];
s.read_exact(&mut buf[..]).await.unwrap();
assert_eq!(&buf, b"hello");
drop(s);
let mut s = tokio::net::TcpStream::connect(&addr2).await.unwrap();
s.write_all(b"world").await.unwrap();
let mut buf = [0; 5];
s.read_exact(&mut buf[..]).await.unwrap();
assert_eq!(&buf, b"world");
drop(s);
assert_eq!(got.load(Ordering::SeqCst), 2);
drop(exit);
}
}