1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
use crate::{ keccak::{keccakf_u8, AlignedKeccakState, KECCAK_BLOCK_SIZE}, prelude::*, }; use bitflags::bitflags; use subtle::{self, ConstantTimeEq}; /// Version of Strobe that this crate implements. pub const STROBE_VERSION: &str = "1.0.2"; bitflags! { /// Operation flags defined in the Strobe paper. This is defined as a bitflags struct. pub(crate) struct OpFlags: u8 { /// Is data being moved inbound const I = 1<<0; /// Is data being sent to the application const A = 1<<1; /// Does this operation use cipher output const C = 1<<2; /// Is data being sent for transport const T = 1<<3; /// Use exclusively for metadata operations const M = 1<<4; /// Reserved and currently unimplemented. Using this will cause a panic. const K = 1<<5; } } /// Security parameter. Choice of 128 or 256 bits. #[derive(Clone, Copy)] #[repr(usize)] pub enum SecParam { B128 = 128, B256 = 256, } /// An empty struct that just indicates that an error occurred in verifying a MAC #[derive(Debug)] pub struct AuthError; /// The main Strobe object. This is currently limited to using Keccak-f\[1600\] as the internal /// permutation function. For more information on this object, the [protocol specification][spec] /// is a great resource. /// /// [spec]: https://strobe.sourceforge.io/specs/ /// /// Description of method input /// --------------------------- /// Most operations exposed by `Strobe` take the same set of inputs. The arguments are /// /// * `data` - The input data to the operation. /// * `more` - Whether or not you want to add more input to the previous operation. For example: /// /// ```rust /// # extern crate strobe_rs; /// # use strobe_rs::{SecParam, Strobe}; /// # fn main() { /// # let mut s = Strobe::new(b"example-of-more", SecParam::B128); /// s.ad(b"hello world", false); /// # } /// ``` /// is equivalent to /// ```rust /// # extern crate strobe_rs; /// # use strobe_rs::{SecParam, Strobe}; /// # fn main() { /// # let mut s = Strobe::new(b"example-of-more", SecParam::B128); /// s.ad(b"hello ", false); /// s.ad(b"world", true); /// # } /// ``` /// /// Some methods take a `usize` argument instead of bytes. These functions are individually /// commented below. #[derive(Clone)] pub struct Strobe { /// Internal Keccak state pub(crate) st: AlignedKeccakState, /// Security parameter (128 or 256) pub sec: SecParam, /// This is the `R` parameter in the Strobe spec pub rate: usize, /// Index into `st` pos: usize, /// Index into `st` pos_begin: usize, /// Represents whether we're a sender or a receiver or uninitialized is_receiver: Option<bool>, } // This defines an operation and meta-operation that mutates its input macro_rules! def_op_mut { ($name:ident, $meta_name:ident, $flags:expr, $doc_str:expr) => ( #[doc = $doc_str] pub fn $name(&mut self, data: &mut [u8], more: bool) { let flags = $flags; self.operate(flags, data, more); } #[doc = $doc_str] pub fn $meta_name(&mut self, data: &mut [u8], more: bool) { let flags = $flags | OpFlags::M; self.operate(flags, data, more); } ) } // This defines an operation and meta-operation that does not mutate its input macro_rules! def_op_no_mut { ($name:ident, $meta_name:ident, $flags:expr, $doc_str:expr) => ( #[doc = $doc_str] pub fn $name(&mut self, data: &[u8], more: bool) { let flags = $flags; self.operate_no_mutate(flags, data, more); } #[doc = $doc_str] pub fn $meta_name(&mut self, data: &[u8], more: bool) { let flags = $flags | OpFlags::M; self.operate_no_mutate(flags, data, more); } ) } impl Strobe { /// Makes a new `Strobe` object with a given protocol byte string and security parameter. pub fn new(proto: &[u8], sec: SecParam) -> Strobe { let rate = KECCAK_BLOCK_SIZE * 8 - (sec as usize) / 4 - 2; assert!(rate >= 1); assert!(rate < 254); // Initialize state: st = F([0x01, R+2, 0x01, 0x00, 0x01, 0x60] + b"STROBEvX.Y.Z") let mut st_buf = [0u8; KECCAK_BLOCK_SIZE * 8]; st_buf[0..6].copy_from_slice(&[0x01, (rate as u8) + 2, 0x01, 0x00, 0x01, 0x60]); st_buf[6..13].copy_from_slice(b"STROBEv"); st_buf[13..18].copy_from_slice(STROBE_VERSION.as_bytes()); let mut st = AlignedKeccakState(st_buf); keccakf_u8(&mut st); let mut strobe = Strobe { st, sec, rate, pos: 0, pos_begin: 0, is_receiver: None, }; // Mix the protocol into the state let _ = strobe.meta_ad(proto, false); strobe } /// Returns a string of the form `Strobe-Keccak-<sec>/<b>v<ver>` where `sec` is the bits of /// security (128 or 256), `b` is the block size (in bits) of the Keccak permutation function, /// and `ver` is the protocol version. pub fn version_str(&self) -> String { format!( "Strobe-Keccak-{}/{}-v{}", self.sec as usize, KECCAK_BLOCK_SIZE * 64, STROBE_VERSION ) } // Runs the permutation function on the internal state fn run_f(&mut self) { self.st.0[self.pos] ^= self.pos_begin as u8; self.st.0[self.pos + 1] ^= 0x04; self.st.0[self.rate + 1] ^= 0x80; keccakf_u8(&mut self.st); self.pos = 0; self.pos_begin = 0; } /// XORs the given data into the state. This is a special case of the `duplex` code in the /// STROBE paper. fn absorb(&mut self, data: &[u8]) { for b in data { self.st.0[self.pos] ^= *b; self.pos += 1; if self.pos == self.rate { self.run_f(); } } } /// XORs the given data into the state, then sets the data equal the state. This is a special /// case of the `duplex` code in the STROBE paper. fn absorb_and_set(&mut self, data: &mut [u8]) { for b in data { let state_byte = self.st.0.get_mut(self.pos).unwrap(); *state_byte ^= *b; *b = *state_byte; self.pos += 1; if self.pos == self.rate { self.run_f(); } } } /// Copies the internal state into the given buffer. This is a special case of `absorb_and_set` /// where `data` is all zeros. fn copy_state(&mut self, data: &mut [u8]) { for b in data { *b = self.st.0[self.pos]; self.pos += 1; if self.pos == self.rate { self.run_f(); } } } /// Overwrites the state with the given data while XORing the given data with the old state. /// This is a special case of the `duplex` code in the STROBE paper. fn exchange(&mut self, data: &mut [u8]) { for b in data { let state_byte = self.st.0.get_mut(self.pos).unwrap(); *b ^= *state_byte; *state_byte ^= *b; self.pos += 1; if self.pos == self.rate { self.run_f(); } } } /// Overwrites the state with the given data. This is a special case of `Strobe::exchange`, /// where we do not want to mutate the input data. fn overwrite(&mut self, data: &[u8]) { for b in data { self.st.0[self.pos] = *b; self.pos += 1; if self.pos == self.rate { self.run_f(); } } } /// Copies the state into the given buffer and sets the state to 0. This is a special case of /// `Strobe::exchange`, where `data` is assumed to be the all-zeros string. This is precisely /// the case when the current operation is PRF. fn squeeze(&mut self, data: &mut [u8]) { for b in data { let state_byte = self.st.0.get_mut(self.pos).unwrap(); *b = *state_byte; *state_byte = 0; self.pos += 1; if self.pos == self.rate { self.run_f(); } } } /// Overwrites the state with a specified number of zeros. This is a special case of /// `Strobe::exchange`. More specifically, it's a special case of `Strobe::overwrite` and /// `Strobe::squeeze`. It's like `squeeze` in that we assume we've been given all zeros as /// input, and like `overwrite` in that we do not mutate (or take) any input. fn zero_state(&mut self, mut bytes_to_zero: usize) { static ZEROS: [u8; 8 * KECCAK_BLOCK_SIZE] = [0u8; 8 * KECCAK_BLOCK_SIZE]; // Do the zero-writing in chunks while bytes_to_zero > 0 { let slice_len = core::cmp::min(self.rate - self.pos, bytes_to_zero); self.st.0[self.pos..(self.pos + slice_len)].copy_from_slice(&ZEROS[..slice_len]); self.pos += slice_len; bytes_to_zero -= slice_len; if self.pos == self.rate { self.run_f(); } } } /// Mixes the current state index and flags into the state, accounting for whether we are /// sending or receiving fn begin_op(&mut self, mut flags: OpFlags) { if flags.contains(OpFlags::T) { let is_op_receiving = flags.contains(OpFlags::I); // If uninitialized, take on the direction of the first directional operation we get if self.is_receiver.is_none() { self.is_receiver = Some(is_op_receiving); } // So that the sender and receiver agree, toggle the I flag as necessary // This is equivalent to flags ^= is_receiver flags.set(OpFlags::I, self.is_receiver.unwrap() != is_op_receiving); } let old_pos_begin = self.pos_begin; self.pos_begin = self.pos + 1; // Mix in the position and flags let to_mix = &mut [old_pos_begin as u8, flags.bits()]; self.absorb(&to_mix[..]); let force_f = flags.contains(OpFlags::C) || flags.contains(OpFlags::K); if force_f && self.pos != 0 { self.run_f(); } } // TODO?: Keep track of cur_flags and assert they don't change when `more` is set /// Performs the state / data transformation that corresponds to the given flags. If `more` is /// given, this will treat `data` as a continuation of the data given in the previous /// call to `operate`. pub(crate) fn operate(&mut self, flags: OpFlags, data: &mut [u8], more: bool) { assert!(!flags.contains(OpFlags::K), "Op flag K not implemented"); if !more { self.begin_op(flags); } // Meta-ness is only relevant for `begin_op`. Remove it to simplify the below logic. let flags = flags & !OpFlags::M; // TODO?: Assert that input is empty under some flag conditions if flags.contains(OpFlags::C) && flags.contains(OpFlags::T) && !flags.contains(OpFlags::I) { // This is equivalent to the `duplex` operation in the Python implementation, with // `cafter = True` if flags == OpFlags::C | OpFlags::T { // This is `send_mac`. Pretend the input is all zeros self.copy_state(data) } else { self.absorb_and_set(data); } } else if flags == OpFlags::I | OpFlags::A | OpFlags::C { // Special case of case below. This is PRF. Use `squeeze` instead of `exchange`. self.squeeze(data); } else if flags.contains(OpFlags::C) { // This is equivalent to the `duplex` operation in the Python implementation, with // `cbefore = True` self.exchange(data); } else { // This should normally call `absorb`, but `absorb` does not mutate, so the implementor // should have used operate_no_mutate instead panic!("operate should not be called for operations that do not require mutation"); } } /// Performs the state transformation that corresponds to the given flags. If `more` is given, /// this will treat `data` as a continuation of the data given in the previous call to /// `operate`. This uses non-mutating variants of the specializations of the `duplex` function. pub(crate) fn operate_no_mutate(&mut self, flags: OpFlags, data: &[u8], more: bool) { assert!(!flags.contains(OpFlags::K), "Op flag K not implemented"); if !more { self.begin_op(flags); } // There are no non-mutating variants of things with flags & (C | T | I) == C | T if flags.contains(OpFlags::C) && flags.contains(OpFlags::T) && !flags.contains(OpFlags::I) { panic!("operate_no_mutate called on something that requires mutation"); } else if flags.contains(OpFlags::C) { // This is equivalent to a non-mutating form of the `duplex` operation in the Python // implementation, with `cbefore = True` self.overwrite(data); } else { // This is equivalent to the `duplex` operation in the Python implementation, with // `cbefore = cafter = False` self.absorb(data); }; } // This is separately defined because it's the only method that can return a `Result`. See docs // for recv_mac and meta_recv_mac. fn generalized_recv_mac( &mut self, data: &mut [u8], more: bool, is_meta: bool, ) -> Result<(), AuthError> { // These are the (meta_)recv_mac flags let flags = if is_meta { OpFlags::I | OpFlags::C | OpFlags::T | OpFlags::M } else { OpFlags::I | OpFlags::C | OpFlags::T }; self.operate(flags, data, more); // Constant-time MAC check. This accumulates the truth values of byte == 0 let mut all_zero = subtle::Choice::from(1u8); for b in data { all_zero &= b.ct_eq(&0u8); } // If the buffer isn't all zeros, that's an invalid MAC if !bool::from(all_zero) { Err(AuthError) } else { Ok(()) } } /// Attempts to authenticate the current state against the given MAC. On failure, it returns an /// `AuthError`. It behooves the user of this library to check this return value and overreact /// on error. pub fn recv_mac(&mut self, data: &mut [u8], more: bool) -> Result<(), AuthError> { self.generalized_recv_mac(data, more, /* is_meta */ false) } /// Attempts to authenticate the current state against the given MAC. On failure, it returns an /// `AuthError`. It behooves the user of this library to check this return value and overreact /// on error. pub fn meta_recv_mac(&mut self, data: &mut [u8], more: bool) -> Result<(), AuthError> { self.generalized_recv_mac(data, more, /* is_meta */ true) } // This is separately defined because it's the only method that takes an integer and mutates // its input fn generalized_ratchet(&mut self, num_bytes_to_zero: usize, more: bool, is_meta: bool) { // These are the (meta_)ratchet flags let flags = if is_meta { OpFlags::C | OpFlags::M } else { OpFlags::C }; // We don't make an `operate` call, since this is a super special case. That means we have // to make the `begin_op` call manually. if !more { self.begin_op(flags); } self.zero_state(num_bytes_to_zero); } /// Ratchets the internal state forward in an irreversible way by zeroing bytes. /// /// Takes a `usize` argument specifying the number of bytes of public state to zero. If the /// size exceeds `self.rate`, Keccak-f will be called before more bytes are zeroed. pub fn ratchet(&mut self, num_bytes_to_zero: usize, more: bool) { self.generalized_ratchet(num_bytes_to_zero, more, /* is_meta */ false) } /// Ratchets the internal state forward in an irreversible way by zeroing bytes. /// /// Takes a `usize` argument specifying the number of bytes of public state to zero. If the /// size exceeds `self.rate`, Keccak-f will be called before more bytes are zeroed. pub fn meta_ratchet(&mut self, num_bytes_to_zero: usize, more: bool) { self.generalized_ratchet(num_bytes_to_zero, more, /* is_meta */ true) } // // These operations mutate their inputs // def_op_mut!( send_enc, meta_send_enc, OpFlags::A | OpFlags::C | OpFlags::T, "Sends an encrypted message." ); def_op_mut!( recv_enc, meta_recv_enc, OpFlags::I | OpFlags::A | OpFlags::C | OpFlags::T, "Receives an encrypted message." ); def_op_mut!( send_mac, meta_send_mac, OpFlags::C | OpFlags::T, "Sends a MAC of the internal state. \ The output is independent of the initial contents of the input buffer." ); def_op_mut!( prf, meta_prf, OpFlags::I | OpFlags::A | OpFlags::C, "Extracts pseudorandom data as a function of the internal state. \ The output is independent of the initial contents of the input buffer." ); // // These operations do not mutate their inputs // def_op_no_mut!( send_clr, meta_send_clr, OpFlags::A | OpFlags::T, "Sends a plaintext message." ); def_op_no_mut!( recv_clr, meta_recv_clr, OpFlags::I | OpFlags::A | OpFlags::T, "Receives a plaintext message." ); def_op_no_mut!( ad, meta_ad, OpFlags::A, "Mixes associated data into the internal state." ); def_op_no_mut!( key, meta_key, OpFlags::A | OpFlags::C, "Sets a symmetric cipher key." ); }