1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
ix!();

use crate::{
    DiodeLpfConfig,
    DiodeLadderFilter,
    C,
    R,
};

impl DiodeLadderFilter {

    #[cfg(target_arch = "x86_64")] 
    unsafe fn update_qfu(qfu: &mut QuadFilterUnitState) {

        for i in 0..N_COEFFMAKER_COEFFS {
            qfu.coeff[i] = _mm_add_ps(qfu.coeff[i], qfu.dcoeff[i]); 
        }
    }
}

impl FilterProcessQuad for DiodeLadderFilter {

    #[cfg(target_arch = "x86_64")] 
    fn process_quad(&self, qfu: &mut QuadFilterUnitState, input: __m128) -> __m128 {

        unsafe {

            Self::update_qfu(qfu);

            let zero: __m128 = _mm_set_ps1(0.0);
            let one:  __m128 = _mm_set_ps1(1.0);
            let half: __m128 = _mm_set_ps1(0.5);

            macro_rules! one_plus {
                ($x:ident) => {
                    _mm_add_ps($x, one)
                }
            }

            macro_rules! half_of {
                ($x:ident) => {
                    _mm_mul_ps( qfu.coeff[C::$x], half)
                }
            }

            let sg3: __m128 = qfu.coeff[C::G4];

            let sg2: __m128 = _mm_mul_ps(sg3, qfu.coeff[C::G3]);
            let sg1: __m128 = _mm_mul_ps(sg2, qfu.coeff[C::G2]);

            // sg4 is 1.0, just inline it

            let g: __m128 = qfu.coeff[C::G];

            // g plus one, common so do it only once
            let gp1: __m128 = one_plus![g];

            let hg: __m128 = half_of![G];

            /// 1.0 / ($a - $b * $c)
            macro_rules! calc_beta {
                ($a:ident, $b:ident, $c:ident) => {
                    _mm_rcp_ps(
                        _mm_sub_ps(
                            $a, 
                            _mm_mul_ps( $b, qfu.coeff[C::$c])
                        )
                    )
                }
            }

            /// $a * $b + 1.0
            macro_rules! calc_gamma {
                ($a:ident, $b:ident) => {
                    _mm_add_ps(
                        _mm_mul_ps(
                            qfu.coeff[C::$a], 
                            qfu.coeff[C::$b]
                        ), 
                        one
                    )
                }
            }

            let beta1: __m128 = calc_beta![gp1, g, G2];
            let beta2: __m128 = calc_beta![gp1, hg, G3];
            let beta3: __m128 = calc_beta![gp1, hg, G4];

            // 1.0 / gp1
            let beta4: __m128 = _mm_rcp_ps(gp1);

            // nothing to compute for deltas, inline them

            let gamma1: __m128 = calc_gamma![G1, G2];
            let gamma2: __m128 = calc_gamma![G2, G3];
            let gamma3: __m128 = calc_gamma![G3, G4];

            // gamma4 is always 1.0, just inline it

            // nothing to compute for epsilons or ma0, inline them

            macro_rules! fb_output {
                ($beta:ident, $z:ident) => {
                    Self::get_feedback_output(
                        &$beta, 
                        &zero, 
                        &zero, 
                        &qfu.reg[R::$z]
                    )
                };
                ($beta:ident, $g:ident, $fb:ident, $z:ident) => {
                    Self::get_feedback_output(
                        &$beta, 
                        &$g, 
                        &qfu.reg[R::$fb], 
                        &qfu.reg[R::$z]
                    )
                }
            }

            // feedback4 is always zero, inline it
            let feedback3: __m128 = fb_output![beta4, Z4];
            let feedback2: __m128 = fb_output![beta3, hg, Feedback3, Z3];
            let feedback1: __m128 = fb_output![beta2, hg, Feedback2, Z2];

            macro_rules! sigma_summand {
                ($sg:ident, $beta:ident, $g:ident, $fb:ident, $z:ident) => {
                    _mm_mul_ps( 
                        $sg, 
                        Self::get_feedback_output(
                            &$beta, 
                            &$g,  
                            &$fb, 
                            &qfu.reg[R::$z]
                        ) 
                    )
                }
            }

            let sigma: __m128 = _mm_add_ps(
                _mm_add_ps( 
                    _mm_add_ps( 
                        sigma_summand![sg1, beta1, g,  feedback1, Z1],
                        sigma_summand![sg2, beta2, hg, feedback2, Z2],
                    ), 
                    sigma_summand![sg3, beta3, hg, feedback3, Z3]
                ),
                sigma_summand![one, beta4, zero, zero, Z4]
            );

            qfu.reg[R::Feedback3] = feedback3;
            qfu.reg[R::Feedback2] = feedback2;
            qfu.reg[R::Feedback1] = feedback1;

            macro_rules! kmodded_by_pt3_plus_one {
                () => {
                    _mm_add_ps(
                        _mm_mul_ps(
                            _mm_set_ps1(0.3), 
                            qfu.coeff[C::KModded]
                        ), 
                        one
                    )
                }
            }

            macro_rules! calculate_gain_compensation {
                ($input:ident) => {
                    _mm_mul_ps(
                        kmodded_by_pt3_plus_one![], 
                        $input
                    )
                }
            }

            // gain compensation
            let comp: __m128 = calculate_gain_compensation![input];

            macro_rules! comp_minus_kmodded_by_sigma {
                ($comp:ident, $sigma:ident) => {
                    _mm_sub_ps(
                        $comp, 
                        _mm_mul_ps(
                            qfu.coeff[C::KModded], 
                            $sigma
                        )
                    )
                }
            }

            macro_rules! kmodded_by_gamma_plus_one {
                () => {
                    _mm_add_ps(
                        _mm_mul_ps(
                            qfu.coeff[C::KModded], 
                            qfu.coeff[C::Gamma]
                        ), 
                        one
                    )
                }
            }

            // (comp - kmodded * sigma) / (kmodded * gamma + 1.0)
            let u: __m128 = _mm_div_ps(
                comp_minus_kmodded_by_sigma![comp, sigma], 
                kmodded_by_gamma_plus_one![]
            );

            let result1: __m128 = Self::do_lpf(
                DiodeLpfConfig {
                    input:    &u, 
                    alpha:    &qfu.coeff[C::Alpha], 
                    gamma:    &gamma1,    
                    epsilon:  &qfu.coeff[C::G2],  
                    ma0:      &one, 
                    feedback: &feedback1,
                    feedback_output: &Self::get_feedback_output(
                        &beta1, 
                        &g, 
                        &feedback1, 
                        &qfu.reg[R::Z1]
                    ), 
                    output: &mut qfu.reg[R::Z1],
                },
            );

            let result2: __m128 = Self::do_lpf(
                DiodeLpfConfig {
                    input:           &result1, 
                    alpha:           &qfu.coeff[C::Alpha], 
                    gamma:           &gamma2,   
                    epsilon:         &qfu.coeff[C::G3], 
                    ma0:             &half, 
                    feedback:        &feedback2,
                    feedback_output: &Self::get_feedback_output(
                        &beta2, 
                        &hg, 
                        &feedback2, 
                        &qfu.reg[R::Z2]
                    ), 
                    output: &mut qfu.reg[R::Z2],
                },
            );

            let result3: __m128 = Self::do_lpf(
                DiodeLpfConfig {
                    input:           &result2, 
                    alpha:           &qfu.coeff[C::Alpha], 
                    gamma:           &gamma3, 
                    epsilon:         &qfu.coeff[C::G4], 
                    ma0:             &half, 
                    feedback:        &feedback3,
                    feedback_output: &Self::get_feedback_output( 
                        &beta3, 
                        &hg, 
                        &feedback3, 
                        &qfu.reg[R::Z3]
                    ), 
                    output: &mut qfu.reg[R::Z3],
                },
            );

            Self::do_lpf(
                DiodeLpfConfig {
                    input:           &result3, 
                    alpha:           &qfu.coeff[C::Alpha], 
                    gamma:           &one, 
                    epsilon:         &zero, 
                    ma0:             &half, 
                    feedback:        &zero,
                    feedback_output: &Self::get_feedback_output(
                        &beta4, 
                        &zero, 
                        &zero, 
                        &qfu.reg[R::Z4]
                    ), 
                    output: &mut qfu.reg[R::Z4],
                },
            )
        }
    }
}