1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
ix!();

use crate::{
    RingModulator,
    RingModulatorParam,
    RINGMOD_MAX_UNISON,
    RINGMOD_OVERSAMPLE,
};

//TODO: if possible, clean up/factor out this RINGMOD_OVERSAMPLE funny business
impl Process for RingModulator {

    fn process<const N: usize>(&mut self, data_l: &mut [f32; N], data_r: &mut [f32; N]) 
    {
        let mut dphase = A1d::<f32>::zeros(RINGMOD_MAX_UNISON as usize);

        let mix = pvalf![self.params[RingModulatorParam::Mix]];

        let uni = std::cmp::max(
            1, 
            pvali![self.params[RingModulatorParam::UnisonVoices]]
        );

        // Has unison reset? If so modify settings
        if uni != self.last_unison {
            self.update_unison_settings(uni);
        }

        // Gain Scale based on unison
        let gscale: f32 = 0.4 +  0.6 * ( 1.0 / (uni as f32).sqrt() );

        let mut oversampled = match RINGMOD_OVERSAMPLE {
            true  => Some(WetBlock::new(block_size_oversample![N])),
            false => None,
        };

        if RINGMOD_OVERSAMPLE {
            // Now upsample
            self.halfband_in.process_block_upsample_by_two(
                data_l.as_mut_ptr(), 
                data_r.as_mut_ptr(), 
                oversampled.as_mut().unwrap().l.as_mut_ptr(), 
                oversampled.as_mut().unwrap().r.as_mut_ptr(),
                None,
            );
        }

        let sri: f64 = match RINGMOD_OVERSAMPLE {
            true  => self.srunit.dsamplerate_os_inv(),
            false => self.srunit.dsamplerate_inv(),
        };

        for u in 0..uni {

            // need to calc this every time since carierfreq could change
            let carrierfreq     = pvalf![self.params[RingModulatorParam::CarrierFreq]];
            let unison_detune   = pvalf![self.params[RingModulatorParam::UnisonDetune]];

            let detune_extended = self.params[
                RingModulatorParam::UnisonDetune
            ].get_extended(
                unison_detune * self.detune_offset[u as usize]
            );

            let pitch = self.tuner.n2p::<f64,false>( (carrierfreq + detune_extended) as f64 );

            dphase[u as usize]  = (pitch * MIDI_0_FREQ * sri) as f32;
        }

        let ub: usize = match RINGMOD_OVERSAMPLE {
            true  => block_size_oversample![N],
            false => N,
        };

        for i in 0..ub {

            let mut res_l: f32 = 0.0;
            let mut res_r: f32 = 0.0;

            // TODO make faster
            for u in 0..uni {
                let u = u as usize;

                let vc: f32 = SineWaveOscillator::value_from_sin_and_cos( 
                    fastsin( 2.0 * PI_32 * ( self.phase[u] - 0.5 ) ),
                    fastcos( 2.0 * PI_32 * ( self.phase[u] - 0.5 ) ),
                    pvali![self.params[RingModulatorParam::CarrierShape]]
                );

                self.phase[u] += dphase[u];

                if self.phase[u] > 1.0 {

                    self.phase[u] -= self.phase[u];
                }

                for c in 0..2 {

                    let vin = match c == 0 {
                        true  => match RINGMOD_OVERSAMPLE {
                            true  => oversampled.as_ref().unwrap().l[i],
                            false => data_l[i],
                        },
                        false => match RINGMOD_OVERSAMPLE {
                            true  => oversampled.as_ref().unwrap().r[i],
                            false => data_r[i]
                        },
                    };

                    let a = 0.5 * vin + vc;
                    let b = vc - 0.5 * vin;

                    let d_pa: f32 = self.diode_sim(a);
                    let d_ma: f32 = self.diode_sim(-a);
                    let d_pb: f32 = self.diode_sim(b);
                    let d_mb: f32 = self.diode_sim(-b);

                    let res: f32 = d_pa + d_ma - d_pb - d_mb;

                    res_l += res * self.pan_l[u];
                    res_r += res * self.pan_r[u];

                    // std::cout << "RES " << _D(res) << _D(res_l) << _D(res_r) << _D(self.pan_l[u]) << _D(self.pan_r[u]) << _D(u) << _D(uni) << std::endl;
                }
            }

            let (samp_l, samp_r) = match RINGMOD_OVERSAMPLE {
                true  => (
                    oversampled.as_ref().unwrap().l[i], 
                    oversampled.as_ref().unwrap().r[i]
                ),
                false => (data_l[i], data_r[i]),
            };

            let mut outl = gscale * ( mix * res_l + ( 1.0 - mix ) * samp_l );
            let mut outr = gscale * ( mix * res_r + ( 1.0 - mix ) * samp_r );

            outl = 1.5 * outl - 0.5 * outl * outl * outl;
            outr = 1.5 * outr - 0.5 * outr * outr * outr;

            match RINGMOD_OVERSAMPLE {
                true => {
                    let oversampled = oversampled.as_mut().unwrap();
                    oversampled.l[i] = outl;
                    oversampled.r[i] = outr;
                },
                false => {
                    data_l[i] = outl;
                    data_r[i] = outr;
                },
            }
        }

        if RINGMOD_OVERSAMPLE {

            let oversampled = oversampled.as_mut().unwrap();

            self.halfband_out.process_block_downsample_by_two(
                oversampled.l.as_mut_ptr(), 
                oversampled.r.as_mut_ptr(),
                None, None, None
            );

            copy_block(
                oversampled.l.as_mut_ptr(), 
                data_l.as_mut_ptr(), 
                block_size_quad![N]
            );

            copy_block(
                oversampled.r.as_mut_ptr(), 
                data_r.as_mut_ptr(), 
                block_size_quad![N]
            );
        }

        let lowcut  = pvalf![self.params[RingModulatorParam::LowCut]]  as f64;
        let highcut = pvalf![self.params[RingModulatorParam::HighCut]] as f64;

        // Apply the filters
        self.hp.coeff_hp(  self.hp.calc_omega(lowcut / 12.0),  0.707);
        self.lp.coeff_lp2b(self.lp.calc_omega(highcut / 12.0), 0.707);

        unsafe {
            self.lp.process_block_stereo(
                data_l.as_mut_ptr(), 
                data_r.as_mut_ptr(), 
                None
            );

            self.hp.process_block_stereo(
                data_l.as_mut_ptr(), 
                data_r.as_mut_ptr(), 
                None
            );
        }
    }
}