1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
// Copyright 2019 TiKV Project Authors. Licensed under Apache-2.0.
use core::ops::Range;
use std::str::FromStr;
use std::sync::Arc;
use std::u32;
use futures::StreamExt;
use log::debug;
use crate::backoff::DEFAULT_REGION_BACKOFF;
use crate::common::Error;
use crate::config::Config;
use crate::pd::PdClient;
use crate::pd::PdRpcClient;
use crate::proto::metapb;
use crate::raw::lowering::*;
use crate::request::Collect;
use crate::request::CollectSingle;
use crate::request::EncodeKeyspace;
use crate::request::KeyMode;
use crate::request::Keyspace;
use crate::request::Plan;
use crate::request::TruncateKeyspace;
use crate::Backoff;
use crate::BoundRange;
use crate::ColumnFamily;
use crate::Key;
use crate::KvPair;
use crate::Result;
use crate::Value;
const MAX_RAW_KV_SCAN_LIMIT: u32 = 10240;
/// The TiKV raw `Client` is used to interact with TiKV using raw requests.
///
/// Raw requests don't need a wrapping transaction.
/// Each request is immediately processed once executed.
///
/// The returned results of raw request methods are [`Future`](std::future::Future)s that must be
/// awaited to execute.
pub struct Client<PdC: PdClient = PdRpcClient> {
rpc: Arc<PdC>,
cf: Option<ColumnFamily>,
backoff: Backoff,
/// Whether to use the [`atomic mode`](Client::with_atomic_for_cas).
atomic: bool,
keyspace: Keyspace,
}
impl Clone for Client {
fn clone(&self) -> Self {
Self {
rpc: self.rpc.clone(),
cf: self.cf.clone(),
backoff: self.backoff.clone(),
atomic: self.atomic,
keyspace: self.keyspace,
}
}
}
impl Client<PdRpcClient> {
/// Create a raw [`Client`] and connect to the TiKV cluster.
///
/// Because TiKV is managed by a [PD](https://github.com/pingcap/pd/) cluster, the endpoints for
/// PD must be provided, not the TiKV nodes. It's important to include more than one PD endpoint
/// (include all endpoints, if possible), this helps avoid having a single point of failure.
///
/// # Examples
///
/// ```rust,no_run
/// # use tikv_client::RawClient;
/// # use futures::prelude::*;
/// # futures::executor::block_on(async {
/// let client = RawClient::new(vec!["192.168.0.100"]).await.unwrap();
/// # });
/// ```
pub async fn new<S: Into<String>>(pd_endpoints: Vec<S>) -> Result<Self> {
Self::new_with_config(pd_endpoints, Config::default()).await
}
/// Create a raw [`Client`] with a custom configuration, and connect to the TiKV cluster.
///
/// Because TiKV is managed by a [PD](https://github.com/pingcap/pd/) cluster, the endpoints for
/// PD must be provided, not the TiKV nodes. It's important to include more than one PD endpoint
/// (include all endpoints, if possible), this helps avoid having a single point of failure.
///
/// # Examples
///
/// ```rust,no_run
/// # use tikv_client::{Config, RawClient};
/// # use futures::prelude::*;
/// # use std::time::Duration;
/// # futures::executor::block_on(async {
/// let client = RawClient::new_with_config(
/// vec!["192.168.0.100"],
/// Config::default().with_timeout(Duration::from_secs(60)),
/// )
/// .await
/// .unwrap();
/// # });
/// ```
pub async fn new_with_config<S: Into<String>>(
pd_endpoints: Vec<S>,
config: Config,
) -> Result<Self> {
let enable_codec = config.keyspace.is_some();
let pd_endpoints: Vec<String> = pd_endpoints.into_iter().map(Into::into).collect();
let rpc =
Arc::new(PdRpcClient::connect(&pd_endpoints, config.clone(), enable_codec).await?);
let keyspace = match config.keyspace {
Some(keyspace) => {
let keyspace = rpc.load_keyspace(&keyspace).await?;
Keyspace::Enable {
keyspace_id: keyspace.id,
}
}
None => Keyspace::Disable,
};
Ok(Client {
rpc,
cf: None,
backoff: DEFAULT_REGION_BACKOFF,
atomic: false,
keyspace,
})
}
/// Create a new client which is a clone of `self`, but which uses an explicit column family for
/// all requests.
///
/// This function returns a new `Client`; requests created with the new client will use the
/// supplied column family. The original `Client` can still be used (without the new
/// column family).
///
/// By default, raw clients use the `Default` column family.
///
/// # Examples
///
/// ```rust,no_run
/// # use tikv_client::{Config, RawClient, ColumnFamily};
/// # use futures::prelude::*;
/// # use std::convert::TryInto;
/// # futures::executor::block_on(async {
/// let client = RawClient::new(vec!["192.168.0.100"])
/// .await
/// .unwrap()
/// .with_cf(ColumnFamily::Write);
/// // Fetch a value at "foo" from the Write CF.
/// let get_request = client.get("foo".to_owned());
/// # });
/// ```
#[must_use]
pub fn with_cf(&self, cf: ColumnFamily) -> Self {
Client {
rpc: self.rpc.clone(),
cf: Some(cf),
backoff: self.backoff.clone(),
atomic: self.atomic,
keyspace: self.keyspace,
}
}
/// Set the [`Backoff`] strategy for retrying requests.
/// The default strategy is [`DEFAULT_REGION_BACKOFF`](crate::backoff::DEFAULT_REGION_BACKOFF).
/// See [`Backoff`] for more information.
/// # Examples
/// ```rust,no_run
/// # use tikv_client::{Config, RawClient, ColumnFamily};
/// # use tikv_client::backoff::DEFAULT_REGION_BACKOFF;
/// # use futures::prelude::*;
/// # use std::convert::TryInto;
/// # futures::executor::block_on(async {
/// let client = RawClient::new(vec!["192.168.0.100"])
/// .await
/// .unwrap()
/// .with_backoff(DEFAULT_REGION_BACKOFF);
/// // Fetch a value at "foo" from the Write CF.
/// let get_request = client.get("foo".to_owned());
/// # });
/// ```
#[must_use]
pub fn with_backoff(&self, backoff: Backoff) -> Self {
Client {
rpc: self.rpc.clone(),
cf: self.cf.clone(),
backoff,
atomic: self.atomic,
keyspace: self.keyspace,
}
}
/// Set to use the atomic mode.
///
/// The only reason of using atomic mode is the
/// [`compare_and_swap`](Client::compare_and_swap) operation. To guarantee
/// the atomicity of CAS, write operations like [`put`](Client::put) or
/// [`delete`](Client::delete) in atomic mode are more expensive. Some
/// operations are not supported in the mode.
#[must_use]
pub fn with_atomic_for_cas(&self) -> Self {
Client {
rpc: self.rpc.clone(),
cf: self.cf.clone(),
backoff: self.backoff.clone(),
atomic: true,
keyspace: self.keyspace,
}
}
}
impl<PdC: PdClient> Client<PdC> {
/// Create a new 'get' request.
///
/// Once resolved this request will result in the fetching of the value associated with the
/// given key.
///
/// Retuning `Ok(None)` indicates the key does not exist in TiKV.
///
/// # Examples
/// ```rust,no_run
/// # use tikv_client::{Value, Config, RawClient};
/// # use futures::prelude::*;
/// # futures::executor::block_on(async {
/// # let client = RawClient::new(vec!["192.168.0.100"]).await.unwrap();
/// let key = "TiKV".to_owned();
/// let req = client.get(key);
/// let result: Option<Value> = req.await.unwrap();
/// # });
/// ```
pub async fn get(&self, key: impl Into<Key>) -> Result<Option<Value>> {
debug!("invoking raw get request");
let key = key.into().encode_keyspace(self.keyspace, KeyMode::Raw);
let request = new_raw_get_request(key, self.cf.clone());
let plan = crate::request::PlanBuilder::new(self.rpc.clone(), self.keyspace, request)
.retry_multi_region(self.backoff.clone())
.merge(CollectSingle)
.post_process_default()
.plan();
plan.execute().await
}
/// Create a new 'batch get' request.
///
/// Once resolved this request will result in the fetching of the values associated with the
/// given keys.
///
/// Non-existent entries will not appear in the result. The order of the keys is not retained in the result.
///
/// # Examples
/// ```rust,no_run
/// # use tikv_client::{KvPair, Config, RawClient};
/// # use futures::prelude::*;
/// # futures::executor::block_on(async {
/// # let client = RawClient::new(vec!["192.168.0.100"]).await.unwrap();
/// let keys = vec!["TiKV".to_owned(), "TiDB".to_owned()];
/// let req = client.batch_get(keys);
/// let result: Vec<KvPair> = req.await.unwrap();
/// # });
/// ```
pub async fn batch_get(
&self,
keys: impl IntoIterator<Item = impl Into<Key>>,
) -> Result<Vec<KvPair>> {
debug!("invoking raw batch_get request");
let keys = keys
.into_iter()
.map(|k| k.into().encode_keyspace(self.keyspace, KeyMode::Raw));
let request = new_raw_batch_get_request(keys, self.cf.clone());
let plan = crate::request::PlanBuilder::new(self.rpc.clone(), self.keyspace, request)
.retry_multi_region(self.backoff.clone())
.merge(Collect)
.plan();
plan.execute().await.map(|r| {
r.into_iter()
.map(|pair| pair.truncate_keyspace(self.keyspace))
.collect()
})
}
/// Create a new 'get key ttl' request.
///
/// Once resolved this request will result in the fetching of the alive time left for the
/// given key.
///
/// Retuning `Ok(None)` indicates the key does not exist in TiKV.
///
/// # Examples
/// # use tikv_client::{Value, Config, RawClient};
/// # use futures::prelude::*;
/// # futures::executor::block_on(async {
/// # let client = RawClient::new(vec!["192.168.0.100"]).await.unwrap();
/// let key = "TiKV".to_owned();
/// let req = client.get_key_ttl_secs(key);
/// let result: Option<Value> = req.await.unwrap();
/// # });
pub async fn get_key_ttl_secs(&self, key: impl Into<Key>) -> Result<Option<u64>> {
debug!("invoking raw get_key_ttl_secs request");
let key = key.into().encode_keyspace(self.keyspace, KeyMode::Raw);
let request = new_raw_get_key_ttl_request(key, self.cf.clone());
let plan = crate::request::PlanBuilder::new(self.rpc.clone(), self.keyspace, request)
.retry_multi_region(self.backoff.clone())
.merge(CollectSingle)
.post_process_default()
.plan();
plan.execute().await
}
/// Create a new 'put' request.
///
/// Once resolved this request will result in the setting of the value associated with the given key.
///
/// # Examples
/// ```rust,no_run
/// # use tikv_client::{Key, Value, Config, RawClient};
/// # use futures::prelude::*;
/// # futures::executor::block_on(async {
/// # let client = RawClient::new(vec!["192.168.0.100"]).await.unwrap();
/// let key = "TiKV".to_owned();
/// let val = "TiKV".to_owned();
/// let req = client.put(key, val);
/// let result: () = req.await.unwrap();
/// # });
/// ```
pub async fn put(&self, key: impl Into<Key>, value: impl Into<Value>) -> Result<()> {
self.put_with_ttl(key, value, 0).await
}
pub async fn put_with_ttl(
&self,
key: impl Into<Key>,
value: impl Into<Value>,
ttl_secs: u64,
) -> Result<()> {
debug!("invoking raw put request");
let key = key.into().encode_keyspace(self.keyspace, KeyMode::Raw);
let request =
new_raw_put_request(key, value.into(), self.cf.clone(), ttl_secs, self.atomic);
let plan = crate::request::PlanBuilder::new(self.rpc.clone(), self.keyspace, request)
.retry_multi_region(self.backoff.clone())
.merge(CollectSingle)
.extract_error()
.plan();
plan.execute().await?;
Ok(())
}
/// Create a new 'batch put' request.
///
/// Once resolved this request will result in the setting of the values associated with the given keys.
///
/// # Examples
/// ```rust,no_run
/// # use tikv_client::{Result, KvPair, Key, Value, Config, RawClient, IntoOwnedRange};
/// # use futures::prelude::*;
/// # futures::executor::block_on(async {
/// # let client = RawClient::new(vec!["192.168.0.100"]).await.unwrap();
/// let kvpair1 = ("PD".to_owned(), "Go".to_owned());
/// let kvpair2 = ("TiKV".to_owned(), "Rust".to_owned());
/// let iterable = vec![kvpair1, kvpair2];
/// let req = client.batch_put(iterable);
/// let result: () = req.await.unwrap();
/// # });
/// ```
pub async fn batch_put(
&self,
pairs: impl IntoIterator<Item = impl Into<KvPair>>,
) -> Result<()> {
self.batch_put_with_ttl(pairs, std::iter::repeat(0)).await
}
pub async fn batch_put_with_ttl(
&self,
pairs: impl IntoIterator<Item = impl Into<KvPair>>,
ttls: impl IntoIterator<Item = u64>,
) -> Result<()> {
debug!("invoking raw batch_put request");
let pairs = pairs
.into_iter()
.map(|pair| pair.into().encode_keyspace(self.keyspace, KeyMode::Raw));
let request =
new_raw_batch_put_request(pairs, ttls.into_iter(), self.cf.clone(), self.atomic);
let plan = crate::request::PlanBuilder::new(self.rpc.clone(), self.keyspace, request)
.retry_multi_region(self.backoff.clone())
.extract_error()
.plan();
plan.execute().await?;
Ok(())
}
/// Create a new 'delete' request.
///
/// Once resolved this request will result in the deletion of the given key.
///
/// It does not return an error if the key does not exist in TiKV.
///
/// # Examples
/// ```rust,no_run
/// # use tikv_client::{Key, Config, RawClient};
/// # use futures::prelude::*;
/// # futures::executor::block_on(async {
/// # let client = RawClient::new(vec!["192.168.0.100"]).await.unwrap();
/// let key = "TiKV".to_owned();
/// let req = client.delete(key);
/// let result: () = req.await.unwrap();
/// # });
/// ```
pub async fn delete(&self, key: impl Into<Key>) -> Result<()> {
debug!("invoking raw delete request");
let key = key.into().encode_keyspace(self.keyspace, KeyMode::Raw);
let request = new_raw_delete_request(key, self.cf.clone(), self.atomic);
let plan = crate::request::PlanBuilder::new(self.rpc.clone(), self.keyspace, request)
.retry_multi_region(self.backoff.clone())
.merge(CollectSingle)
.extract_error()
.plan();
plan.execute().await?;
Ok(())
}
/// Create a new 'batch delete' request.
///
/// Once resolved this request will result in the deletion of the given keys.
///
/// It does not return an error if some of the keys do not exist and will delete the others.
///
/// # Examples
/// ```rust,no_run
/// # use tikv_client::{Config, RawClient};
/// # use futures::prelude::*;
/// # futures::executor::block_on(async {
/// # let client = RawClient::new(vec!["192.168.0.100"]).await.unwrap();
/// let keys = vec!["TiKV".to_owned(), "TiDB".to_owned()];
/// let req = client.batch_delete(keys);
/// let result: () = req.await.unwrap();
/// # });
/// ```
pub async fn batch_delete(&self, keys: impl IntoIterator<Item = impl Into<Key>>) -> Result<()> {
debug!("invoking raw batch_delete request");
self.assert_non_atomic()?;
let keys = keys
.into_iter()
.map(|k| k.into().encode_keyspace(self.keyspace, KeyMode::Raw));
let request = new_raw_batch_delete_request(keys, self.cf.clone());
let plan = crate::request::PlanBuilder::new(self.rpc.clone(), self.keyspace, request)
.retry_multi_region(self.backoff.clone())
.extract_error()
.plan();
plan.execute().await?;
Ok(())
}
/// Create a new 'delete range' request.
///
/// Once resolved this request will result in the deletion of all keys lying in the given range.
///
/// # Examples
/// ```rust,no_run
/// # use tikv_client::{Key, Config, RawClient, IntoOwnedRange};
/// # use futures::prelude::*;
/// # futures::executor::block_on(async {
/// # let client = RawClient::new(vec!["192.168.0.100"]).await.unwrap();
/// let inclusive_range = "TiKV"..="TiDB";
/// let req = client.delete_range(inclusive_range.into_owned());
/// let result: () = req.await.unwrap();
/// # });
/// ```
pub async fn delete_range(&self, range: impl Into<BoundRange>) -> Result<()> {
debug!("invoking raw delete_range request");
self.assert_non_atomic()?;
let range = range.into().encode_keyspace(self.keyspace, KeyMode::Raw);
let request = new_raw_delete_range_request(range, self.cf.clone());
let plan = crate::request::PlanBuilder::new(self.rpc.clone(), self.keyspace, request)
.retry_multi_region(self.backoff.clone())
.extract_error()
.plan();
plan.execute().await?;
Ok(())
}
/// Create a new 'scan' request.
///
/// Once resolved this request will result in a `Vec` of key-value pairs that lies in the specified range.
///
/// If the number of eligible key-value pairs are greater than `limit`,
/// only the first `limit` pairs are returned, ordered by the key.
///
///
/// # Examples
/// ```rust,no_run
/// # use tikv_client::{KvPair, Config, RawClient, IntoOwnedRange};
/// # use futures::prelude::*;
/// # futures::executor::block_on(async {
/// # let client = RawClient::new(vec!["192.168.0.100"]).await.unwrap();
/// let inclusive_range = "TiKV"..="TiDB";
/// let req = client.scan(inclusive_range.into_owned(), 2);
/// let result: Vec<KvPair> = req.await.unwrap();
/// # });
/// ```
pub async fn scan(&self, range: impl Into<BoundRange>, limit: u32) -> Result<Vec<KvPair>> {
debug!("invoking raw scan request");
self.scan_inner(range.into(), limit, false, false).await
}
/// Create a new 'scan' request but scans in "reverse" direction.
///
/// Once resolved this request will result in a `Vec` of key-value pairs that lies in the specified range.
///
/// If the number of eligible key-value pairs are greater than `limit`,
/// only the first `limit` pairs are returned, ordered by the key.
///
///
/// Reverse Scan queries continuous kv pairs in range [startKey, endKey),
/// from startKey(lowerBound) to endKey(upperBound) in reverse order, up to limit pairs.
/// The returned keys are in reversed lexicographical order.
/// If you want to include the endKey or exclude the startKey, push a '\0' to the key.
/// It doesn't support Scanning from "", because locating the last Region is not yet implemented.
/// # Examples
/// ```rust,no_run
/// # use tikv_client::{KvPair, Config, RawClient, IntoOwnedRange};
/// # use futures::prelude::*;
/// # futures::executor::block_on(async {
/// # let client = RawClient::new(vec!["192.168.0.100"]).await.unwrap();
/// let inclusive_range = "TiKV"..="TiDB";
/// let req = client.scan_reverse(inclusive_range.into_owned(), 2);
/// let result: Vec<KvPair> = req.await.unwrap();
/// # });
/// ```
pub async fn scan_reverse(
&self,
range: impl Into<BoundRange>,
limit: u32,
) -> Result<Vec<KvPair>> {
debug!("invoking raw reverse scan request");
self.scan_inner(range.into(), limit, false, true).await
}
/// Create a new 'scan' request that only returns the keys.
///
/// Once resolved this request will result in a `Vec` of keys that lies in the specified range.
///
/// If the number of eligible keys are greater than `limit`,
/// only the first `limit` pairs are returned, ordered by the key.
///
///
/// # Examples
/// ```rust,no_run
/// # use tikv_client::{Key, Config, RawClient, IntoOwnedRange};
/// # use futures::prelude::*;
/// # futures::executor::block_on(async {
/// # let client = RawClient::new(vec!["192.168.0.100"]).await.unwrap();
/// let inclusive_range = "TiKV"..="TiDB";
/// let req = client.scan_keys(inclusive_range.into_owned(), 2);
/// let result: Vec<Key> = req.await.unwrap();
/// # });
/// ```
pub async fn scan_keys(&self, range: impl Into<BoundRange>, limit: u32) -> Result<Vec<Key>> {
debug!("invoking raw scan_keys request");
Ok(self
.scan_inner(range, limit, true, false)
.await?
.into_iter()
.map(KvPair::into_key)
.collect())
}
/// Create a new 'scan' request that only returns the keys in reverse order.
///
/// Once resolved this request will result in a `Vec` of keys that lies in the specified range.
///
/// If the number of eligible keys are greater than `limit`,
/// only the first `limit` pairs are returned, ordered by the key.
///
///
/// # Examples
/// ```rust,no_run
/// # use tikv_client::{Key, Config, RawClient, IntoOwnedRange};
/// # use futures::prelude::*;
/// # futures::executor::block_on(async {
/// # let client = RawClient::new(vec!["192.168.0.100"]).await.unwrap();
/// let inclusive_range = "TiKV"..="TiDB";
/// let req = client.scan_keys(inclusive_range.into_owned(), 2);
/// let result: Vec<Key> = req.await.unwrap();
/// # });
/// ```
pub async fn scan_keys_reverse(
&self,
range: impl Into<BoundRange>,
limit: u32,
) -> Result<Vec<Key>> {
debug!("invoking raw scan_keys request");
Ok(self
.scan_inner(range, limit, true, true)
.await?
.into_iter()
.map(KvPair::into_key)
.collect())
}
/// Create a new 'batch scan' request.
///
/// Once resolved this request will result in a set of scanners over the given keys.
///
/// **Warning**: This method is experimental. The `each_limit` parameter does not work as expected.
/// It does not limit the number of results returned of each range,
/// instead it limits the number of results in each region of each range.
/// As a result, you may get **more than** `each_limit` key-value pairs for each range.
/// But you should not miss any entries.
///
/// # Examples
/// ```rust,no_run
/// # use tikv_client::{Key, Config, RawClient, IntoOwnedRange};
/// # use futures::prelude::*;
/// # futures::executor::block_on(async {
/// # let client = RawClient::new(vec!["192.168.0.100"]).await.unwrap();
/// let inclusive_range1 = "TiDB"..="TiKV";
/// let inclusive_range2 = "TiKV"..="TiSpark";
/// let iterable = vec![inclusive_range1.into_owned(), inclusive_range2.into_owned()];
/// let req = client.batch_scan(iterable, 2);
/// let result = req.await;
/// # });
/// ```
pub async fn batch_scan(
&self,
ranges: impl IntoIterator<Item = impl Into<BoundRange>>,
each_limit: u32,
) -> Result<Vec<KvPair>> {
debug!("invoking raw batch_scan request");
self.batch_scan_inner(ranges, each_limit, false).await
}
/// Create a new 'batch scan' request that only returns the keys.
///
/// Once resolved this request will result in a set of scanners over the given keys.
///
/// **Warning**: This method is experimental.
/// The `each_limit` parameter does not limit the number of results returned of each range,
/// instead it limits the number of results in each region of each range.
/// As a result, you may get **more than** `each_limit` key-value pairs for each range,
/// but you should not miss any entries.
///
/// # Examples
/// ```rust,no_run
/// # use tikv_client::{Key, Config, RawClient, IntoOwnedRange};
/// # use futures::prelude::*;
/// # futures::executor::block_on(async {
/// # let client = RawClient::new(vec!["192.168.0.100"]).await.unwrap();
/// let inclusive_range1 = "TiDB"..="TiKV";
/// let inclusive_range2 = "TiKV"..="TiSpark";
/// let iterable = vec![inclusive_range1.into_owned(), inclusive_range2.into_owned()];
/// let req = client.batch_scan(iterable, 2);
/// let result = req.await;
/// # });
/// ```
pub async fn batch_scan_keys(
&self,
ranges: impl IntoIterator<Item = impl Into<BoundRange>>,
each_limit: u32,
) -> Result<Vec<Key>> {
debug!("invoking raw batch_scan_keys request");
Ok(self
.batch_scan_inner(ranges, each_limit, true)
.await?
.into_iter()
.map(KvPair::into_key)
.collect())
}
/// Create a new *atomic* 'compare and set' request.
///
/// Once resolved this request will result in an atomic `compare and set'
/// operation for the given key.
///
/// If the value retrived is equal to `current_value`, `new_value` is
/// written.
///
/// # Return Value
///
/// A tuple is returned if successful: the previous value and whether the
/// value is swapped
pub async fn compare_and_swap(
&self,
key: impl Into<Key>,
previous_value: impl Into<Option<Value>>,
new_value: impl Into<Value>,
) -> Result<(Option<Value>, bool)> {
debug!("invoking raw compare_and_swap request");
self.assert_atomic()?;
let key = key.into().encode_keyspace(self.keyspace, KeyMode::Raw);
let req = new_cas_request(
key,
new_value.into(),
previous_value.into(),
self.cf.clone(),
);
let plan = crate::request::PlanBuilder::new(self.rpc.clone(), self.keyspace, req)
.retry_multi_region(self.backoff.clone())
.merge(CollectSingle)
.post_process_default()
.plan();
plan.execute().await
}
pub async fn coprocessor(
&self,
copr_name: impl Into<String>,
copr_version_req: impl Into<String>,
ranges: impl IntoIterator<Item = impl Into<BoundRange>>,
request_builder: impl Fn(metapb::Region, Vec<Range<Key>>) -> Vec<u8> + Send + Sync + 'static,
) -> Result<Vec<(Vec<Range<Key>>, Vec<u8>)>> {
let copr_version_req = copr_version_req.into();
semver::VersionReq::from_str(&copr_version_req)?;
let ranges = ranges
.into_iter()
.map(|range| range.into().encode_keyspace(self.keyspace, KeyMode::Raw));
let keyspace = self.keyspace;
let request_builder = move |region, ranges: Vec<Range<Key>>| {
request_builder(
region,
ranges
.into_iter()
.map(|range| range.truncate_keyspace(keyspace))
.collect(),
)
};
let req = new_raw_coprocessor_request(
copr_name.into(),
copr_version_req,
ranges,
request_builder,
);
let plan = crate::request::PlanBuilder::new(self.rpc.clone(), self.keyspace, req)
.preserve_shard()
.retry_multi_region(self.backoff.clone())
.post_process_default()
.plan();
Ok(plan
.execute()
.await?
.into_iter()
.map(|(ranges, data)| (ranges.truncate_keyspace(keyspace), data))
.collect())
}
async fn scan_inner(
&self,
range: impl Into<BoundRange>,
limit: u32,
key_only: bool,
reverse: bool,
) -> Result<Vec<KvPair>> {
if limit > MAX_RAW_KV_SCAN_LIMIT {
return Err(Error::MaxScanLimitExceeded {
limit,
max_limit: MAX_RAW_KV_SCAN_LIMIT,
});
}
let mut cur_range = range.into().encode_keyspace(self.keyspace, KeyMode::Raw);
let mut result = Vec::new();
let mut scan_regions = self.rpc.clone().stores_for_range(cur_range.clone()).boxed();
let mut region_store =
scan_regions
.next()
.await
.ok_or(Error::RegionForRangeNotFound {
range: (cur_range.clone()),
})??;
let mut cur_limit = limit;
while cur_limit > 0 {
let request = new_raw_scan_request(
cur_range.clone(),
cur_limit,
key_only,
reverse,
self.cf.clone(),
);
let resp = crate::request::PlanBuilder::new(self.rpc.clone(), self.keyspace, request)
.single_region_with_store(region_store.clone())
.await?
.plan()
.execute()
.await?;
let mut region_scan_res = resp
.kvs
.into_iter()
.map(Into::into)
.collect::<Vec<KvPair>>();
let res_len = region_scan_res.len();
result.append(&mut region_scan_res);
// if the number of results is less than cur_limit, it means this scan range contains more than one region, so we need to scan next region
if res_len < cur_limit as usize {
region_store = match scan_regions.next().await {
Some(Ok(rs)) => {
cur_range = BoundRange::new(
std::ops::Bound::Included(region_store.region_with_leader.range().1),
cur_range.to,
);
rs
}
Some(Err(e)) => return Err(e),
None => break,
};
cur_limit -= res_len as u32;
} else {
break;
}
}
// limit is a soft limit, so we need check the number of results
result.truncate(limit as usize);
// truncate the prefix of keys
let result = result.truncate_keyspace(self.keyspace);
Ok(result)
}
async fn batch_scan_inner(
&self,
ranges: impl IntoIterator<Item = impl Into<BoundRange>>,
each_limit: u32,
key_only: bool,
) -> Result<Vec<KvPair>> {
if each_limit > MAX_RAW_KV_SCAN_LIMIT {
return Err(Error::MaxScanLimitExceeded {
limit: each_limit,
max_limit: MAX_RAW_KV_SCAN_LIMIT,
});
}
let ranges = ranges
.into_iter()
.map(|range| range.into().encode_keyspace(self.keyspace, KeyMode::Raw));
let request = new_raw_batch_scan_request(ranges, each_limit, key_only, self.cf.clone());
let plan = crate::request::PlanBuilder::new(self.rpc.clone(), self.keyspace, request)
.retry_multi_region(self.backoff.clone())
.merge(Collect)
.plan();
plan.execute().await.map(|r| {
r.into_iter()
.map(|pair| pair.truncate_keyspace(self.keyspace))
.collect()
})
}
fn assert_non_atomic(&self) -> Result<()> {
if !self.atomic {
Ok(())
} else {
Err(Error::UnsupportedMode)
}
}
fn assert_atomic(&self) -> Result<()> {
if self.atomic {
Ok(())
} else {
Err(Error::UnsupportedMode)
}
}
}
#[cfg(test)]
mod tests {
use std::any::Any;
use std::sync::Arc;
use super::*;
use crate::mock::MockKvClient;
use crate::mock::MockPdClient;
use crate::proto::kvrpcpb;
use crate::Result;
#[tokio::test]
async fn test_raw_coprocessor() -> Result<()> {
let pd_client = Arc::new(MockPdClient::new(MockKvClient::with_dispatch_hook(
move |req: &dyn Any| {
if let Some(req) = req.downcast_ref::<kvrpcpb::RawCoprocessorRequest>() {
assert_eq!(req.copr_name, "example");
assert_eq!(req.copr_version_req, "0.1.0");
let resp = kvrpcpb::RawCoprocessorResponse {
data: req.data.clone(),
..Default::default()
};
Ok(Box::new(resp) as Box<dyn Any>)
} else {
unreachable!()
}
},
)));
let client = Client {
rpc: pd_client,
cf: Some(ColumnFamily::Default),
backoff: DEFAULT_REGION_BACKOFF,
atomic: false,
keyspace: Keyspace::Enable { keyspace_id: 0 },
};
let resps = client
.coprocessor(
"example",
"0.1.0",
vec![vec![5]..vec![15], vec![20]..vec![]],
|region, ranges| format!("{:?}:{:?}", region.id, ranges).into_bytes(),
)
.await?;
let resps: Vec<_> = resps
.into_iter()
.map(|(ranges, data)| (ranges, String::from_utf8(data).unwrap()))
.collect();
assert_eq!(
resps,
vec![(
vec![
Key::from(vec![5])..Key::from(vec![15]),
Key::from(vec![20])..Key::from(vec![])
],
"2:[Key(05)..Key(0F), Key(14)..Key()]".to_string(),
),]
);
Ok(())
}
}