1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
use crate::asm_generation::from_ir::ir_type_size_in_bytes;
use fuel_crypto::Hasher;
use fuel_tx::StorageSlot;
use fuel_types::{Bytes32, Bytes8};
use sway_ir::{
    constant::{Constant, ConstantValue},
    context::Context,
    irtype::{AggregateContent, Type},
};
use sway_types::state::StateIndex;

/// Hands out storage keys using a state index and a list of subfield indices.
/// Basically returns sha256("storage_<state_index>_<idx1>_<idx2>_..")
///
pub(super) fn get_storage_key<T>(ix: &StateIndex, indices: &[T]) -> Bytes32
where
    T: std::fmt::Display,
{
    Hasher::hash(indices.iter().fold(
        format!(
            "{}{}",
            sway_utils::constants::STORAGE_DOMAIN_SEPARATOR,
            ix.to_usize()
        ),
        |acc, i| format!("{}_{}", acc, i),
    ))
}

use uint::construct_uint;

#[allow(
// These two warnings are generated by the `construct_uint!()` macro below.
    clippy::assign_op_pattern,
    clippy::ptr_offset_with_cast
)]
pub(super) fn add_to_b256(x: fuel_types::Bytes32, y: u64) -> fuel_types::Bytes32 {
    construct_uint! {
        struct U256(4);
    }
    let x = U256::from(*x);
    let y = U256::from(y);
    let res: [u8; 32] = (x + y).into();
    fuel_types::Bytes32::from(res)
}

/// Given a constant value `constant`, a type `ty`, a state index, and a vector of subfield
/// indices, serialize the constant into a vector of storage slots. The keys (slots) are
/// generated using the state index and the subfield indices which are recursively built. The
/// values are generated such that each subfield gets its own storage slot except for enums and
/// strings which are spread over successive storage slots (use `serialize_to_words` in this case).
///
/// This behavior matches the behavior of how storage slots are assigned for storage reads and
/// writes (i.e. how `state_read_*` and `state_write_*` instructions are generated).
///
pub fn serialize_to_storage_slots(
    constant: &Constant,
    context: &Context,
    ix: &StateIndex,
    ty: &Type,
    indices: &[usize],
) -> Vec<StorageSlot> {
    match (&ty, &constant.value) {
        (_, ConstantValue::Undef) => vec![],
        (Type::Unit, ConstantValue::Unit) => vec![StorageSlot::new(
            get_storage_key(ix, indices),
            Bytes32::new([0; 32]),
        )],
        (Type::Bool, ConstantValue::Bool(b)) => {
            vec![StorageSlot::new(
                get_storage_key(ix, indices),
                Bytes32::new(
                    [0; 7]
                        .iter()
                        .cloned()
                        .chain([if *b { 0x01 } else { 0x00 }].iter().cloned())
                        .chain([0; 24].iter().cloned())
                        .collect::<Vec<u8>>()
                        .try_into()
                        .unwrap(),
                ),
            )]
        }
        (Type::Uint(_), ConstantValue::Uint(n)) => {
            vec![StorageSlot::new(
                get_storage_key(ix, indices),
                Bytes32::new(
                    n.to_be_bytes()
                        .iter()
                        .cloned()
                        .chain([0; 24].iter().cloned())
                        .collect::<Vec<u8>>()
                        .try_into()
                        .unwrap(),
                ),
            )]
        }
        (Type::B256, ConstantValue::B256(b)) => {
            vec![StorageSlot::new(
                get_storage_key(ix, indices),
                Bytes32::new(*b),
            )]
        }
        (Type::Array(_), ConstantValue::Array(_a)) => {
            unimplemented!("Arrays in storage have not been implemented yet.")
        }
        (Type::Struct(aggregate), ConstantValue::Struct(vec)) => {
            match &context.aggregates[aggregate.0] {
                AggregateContent::FieldTypes(field_tys) => vec
                    .iter()
                    .zip(field_tys.iter())
                    .enumerate()
                    .flat_map(|(i, (f, ty))| {
                        serialize_to_storage_slots(
                            f,
                            context,
                            ix,
                            ty,
                            &indices
                                .iter()
                                .cloned()
                                .chain(vec![i].iter().cloned())
                                .collect::<Vec<usize>>(),
                        )
                    })
                    .collect(),
                _ => unreachable!("Wrong content for struct."),
            }
        }
        (Type::Union(_), _) | (Type::String(_), _) => {
            // Serialize the constant data in words and add zero words until the number of words
            // is a multiple of 4. This is useful because each storage slot is 4 words.
            let mut packed = serialize_to_words(constant, context, ty);
            packed.extend(vec![
                Bytes8::new([0; 8]);
                ((packed.len() + 3) / 4) * 4 - packed.len()
            ]);

            assert!(packed.len() % 4 == 0);

            // Return a list of `StorageSlot`s
            // First get the keys then get the values
            (0..(ir_type_size_in_bytes(context, ty) + 31) / 32)
                .into_iter()
                .map(|i| add_to_b256(get_storage_key(ix, indices), i))
                .zip((0..packed.len() / 4).into_iter().map(|i| {
                    Bytes32::new(
                        Vec::from_iter((0..4).into_iter().flat_map(|j| *packed[4 * i + j]))
                            .try_into()
                            .unwrap(),
                    )
                }))
                .map(|(k, r)| StorageSlot::new(k, r))
                .collect()
        }
        _ => vec![],
    }
}

/// Given a constant value `constant` and a type `ty`, serialize the constant into a vector of
/// words and add left padding up to size of `ty`.
///
pub fn serialize_to_words(constant: &Constant, context: &Context, ty: &Type) -> Vec<Bytes8> {
    match (&ty, &constant.value) {
        (_, ConstantValue::Undef) => vec![],
        (Type::Unit, ConstantValue::Unit) => vec![Bytes8::new([0; 8])],
        (Type::Bool, ConstantValue::Bool(b)) => {
            vec![Bytes8::new(
                [0; 7]
                    .iter()
                    .cloned()
                    .chain([if *b { 0x01 } else { 0x00 }].iter().cloned())
                    .collect::<Vec<u8>>()
                    .try_into()
                    .unwrap(),
            )]
        }
        (Type::Uint(_), ConstantValue::Uint(n)) => {
            vec![Bytes8::new(n.to_be_bytes())]
        }
        (Type::B256, ConstantValue::B256(b)) => Vec::from_iter(
            (0..4)
                .into_iter()
                .map(|i| Bytes8::new(b[8 * i..8 * i + 8].try_into().unwrap())),
        ),
        (Type::String(_), ConstantValue::String(s)) => {
            // Turn the bytes into serialized words (Bytes8).
            let mut s = s.clone();
            s.extend(vec![0; ((s.len() + 7) / 8) * 8 - s.len()]);

            assert!(s.len() % 8 == 0);

            // Group into words
            Vec::from_iter((0..s.len() / 8).into_iter().map(|i| {
                Bytes8::new(
                    Vec::from_iter((0..8).into_iter().map(|j| s[8 * i + j]))
                        .try_into()
                        .unwrap(),
                )
            }))
        }
        (Type::Array(_), ConstantValue::Array(_)) => {
            unimplemented!("Arrays in storage have not been implemented yet.")
        }
        (Type::Struct(aggregate), ConstantValue::Struct(vec)) => {
            match &context.aggregates[aggregate.0] {
                AggregateContent::FieldTypes(field_tys) => vec
                    .iter()
                    .zip(field_tys.iter())
                    .flat_map(|(f, ty)| serialize_to_words(f, context, ty))
                    .collect(),
                _ => unreachable!("Wrong content for struct."),
            }
        }
        (Type::Union(_), _) => {
            let value_size_in_words = ir_type_size_in_bytes(context, ty) / 8;
            let constant_size_in_words = ir_type_size_in_bytes(context, &constant.ty) / 8;
            assert!(value_size_in_words >= constant_size_in_words);

            // Add enough left padding to satisfy the actual size of the union
            let padding_size_in_words = value_size_in_words - constant_size_in_words;
            vec![Bytes8::new([0; 8]); padding_size_in_words as usize]
                .iter()
                .cloned()
                .chain(
                    serialize_to_words(constant, context, &constant.ty)
                        .iter()
                        .cloned(),
                )
                .collect()
        }
        _ => vec![],
    }
}