1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
use crate::{
    error::*,
    parse_tree::{Declaration, ExpressionKind, Visibility},
    semantic_analysis::{
        ast_node::{TypedAstNode, TypedAstNodeContent, TypedVariableDeclaration},
        declaration::VariableMutability,
        TypeCheckContext,
    },
    AstNode, AstNodeContent, CompileResult, Ident, Namespace, TypedDeclaration,
};

use super::{
    items::{Items, SymbolMap},
    root::Root,
    ModuleName, Path,
};

use std::collections::BTreeMap;
use sway_ast::ItemConst;
use sway_parse::{handler::Handler, lex, Parser};
use sway_types::{span::Span, ConfigTimeConstant, Spanned};

/// A single `Module` within a Sway project.
///
/// A `Module` is most commonly associated with an individual file of Sway code, e.g. a top-level
/// script/predicate/contract file or some library dependency whether introduced via `dep` or the
/// `[dependencies]` table of a `forc` manifest.
///
/// A `Module` contains a set of all items that exist within the lexical scope via declaration or
/// importing, along with a map of each of its submodules.
#[derive(Clone, Debug, Default, PartialEq)]
pub struct Module {
    /// Submodules of the current module represented as an ordered map from each submodule's name
    /// to the associated `Module`.
    ///
    /// Submodules are normally introduced in Sway code with the `dep foo;` syntax where `foo` is
    /// some library dependency that we include as a submodule.
    ///
    /// Note that we *require* this map to be ordered to produce deterministic codegen results.
    pub(crate) submodules: im::OrdMap<ModuleName, Module>,
    /// The set of symbols, implementations, synonyms and aliases present within this module.
    items: Items,
}

impl Module {
    pub fn default_with_constants(
        constants: BTreeMap<String, ConfigTimeConstant>,
    ) -> Result<Self, vec1::Vec1<CompileError>> {
        let res = Module::default_with_constants_inner(constants);
        match res.value {
            Some(x) => Ok(x),
            None => {
                let mut errs = res.errors;
                // it is an invariant that if `.value` is `None` then there's at least one
                // error
                assert!(!errs.is_empty());
                let first_err = errs.pop().unwrap();
                let mut errs_1 = vec1::vec1![first_err];
                errs_1.append(&mut errs);
                Err(errs_1)
            }
        }
    }

    fn default_with_constants_inner(
        constants: BTreeMap<String, ConfigTimeConstant>,
    ) -> CompileResult<Self> {
        // it would be nice to one day maintain a span from the manifest file, but
        // we don't keep that around so we just use the span from the generated const decl instead.
        let mut compiled_constants: SymbolMap = Default::default();
        let mut ec: crate::convert_parse_tree::ErrorContext = Default::default();
        let ec = &mut ec;
        let mut warnings = vec![];
        let mut errors = vec![];
        // this for loop performs a miniature compilation of each const item in the config
        for (name, ConfigTimeConstant { r#type, value }) in constants.into_iter() {
            // parser config
            let const_item = format!("const {name}: {type} = {value};");
            let const_item_len = const_item.len();
            let input_arc = std::sync::Arc::from(const_item);
            let token_stream = lex(&input_arc, 0, const_item_len, None).unwrap();
            let handler = Handler::default();
            let mut parser = Parser::new(&token_stream, &handler);
            // perform the parse
            let const_item: ItemConst = match parser.parse() {
                Ok(o) => o,
                Err(_emit_signal) => {
                    // if an error was emitted, grab errors from the error context
                    errors.append(&mut ec.errors.clone());
                    warnings.append(&mut ec.warnings.clone());

                    return err(warnings, errors);
                }
            };
            let const_item_span = const_item.span().clone();

            // perform the conversions from parser code to parse tree types
            let name = const_item.name.clone();
            // convert to const decl
            let const_decl =
                match crate::convert_parse_tree::item_const_to_constant_declaration(ec, const_item)
                {
                    Ok(o) => o,
                    Err(_emit_signal) => {
                        // if an error was emitted, grab errors from the error context
                        errors.append(&mut ec.errors.clone());
                        warnings.append(&mut ec.warnings.clone());

                        return err(warnings, errors);
                    }
                };

            // Temporarily disallow non-literals. See https://github.com/FuelLabs/sway/issues/2647.
            if !matches!(const_decl.value.kind, ExpressionKind::Literal(_)) {
                errors.push(CompileError::ConfigTimeConstantNotALiteral {
                    span: const_item_span,
                });
                return err(warnings, errors);
            }

            let ast_node = AstNode {
                content: AstNodeContent::Declaration(Declaration::ConstantDeclaration(const_decl)),
                span: const_item_span.clone(),
            };
            let mut ns = Namespace::init_root(Default::default());
            let type_check_ctx = TypeCheckContext::from_root(&mut ns);
            let typed_node =
                TypedAstNode::type_check(type_check_ctx, ast_node).unwrap(&mut vec![], &mut vec![]);
            // get the decl out of the typed node:
            // we know as an invariant this must be a const decl, as we hardcoded a const decl in
            // the above `format!`.  if it isn't we report an
            // error that only constant items are alowed, defensive programming etc...
            let typed_decl = match typed_node.content {
                TypedAstNodeContent::Declaration(decl) => decl,
                _ => {
                    errors.push(CompileError::ConfigTimeConstantNotAConstDecl {
                        span: const_item_span,
                    });
                    return err(warnings, errors);
                }
            };
            compiled_constants.insert(name, typed_decl);
        }
        ok(
            Self {
                items: Items {
                    symbols: compiled_constants,
                    ..Default::default()
                },
                ..Default::default()
            },
            warnings,
            errors,
        )
    }

    /// Immutable access to this module's submodules.
    pub fn submodules(&self) -> &im::OrdMap<ModuleName, Module> {
        &self.submodules
    }

    /// Insert a submodule into this `Module`.
    pub fn insert_submodule(&mut self, name: String, submodule: Module) {
        self.submodules.insert(name, submodule);
    }

    /// Lookup the submodule at the given path.
    pub fn submodule(&self, path: &Path) -> Option<&Module> {
        let mut module = self;
        for ident in path.iter() {
            match module.submodules.get(ident.as_str()) {
                Some(ns) => module = ns,
                None => return None,
            }
        }
        Some(module)
    }

    /// Unique access to the submodule at the given path.
    pub fn submodule_mut(&mut self, path: &Path) -> Option<&mut Module> {
        let mut module = self;
        for ident in path.iter() {
            match module.submodules.get_mut(ident.as_str()) {
                Some(ns) => module = ns,
                None => return None,
            }
        }
        Some(module)
    }

    /// Lookup the submodule at the given path.
    ///
    /// This should be used rather than `Index` when we don't yet know whether the module exists.
    pub(crate) fn check_submodule(&self, path: &[Ident]) -> CompileResult<&Module> {
        match self.submodule(path) {
            None => err(vec![], vec![module_not_found(path)]),
            Some(module) => ok(module, vec![], vec![]),
        }
    }

    /// Given a path to a `src` module, create synonyms to every symbol in that module to the given
    /// `dst` module.
    ///
    /// This is used when an import path contains an asterisk.
    ///
    /// Paths are assumed to be relative to `self`.
    pub(crate) fn star_import(&mut self, src: &Path, dst: &Path) -> CompileResult<()> {
        let mut warnings = vec![];
        let mut errors = vec![];
        let src_ns = check!(
            self.check_submodule(src),
            return err(warnings, errors),
            warnings,
            errors
        );
        let implemented_traits = src_ns.implemented_traits.clone();
        let symbols = src_ns
            .symbols
            .iter()
            .filter_map(|(symbol, decl)| {
                if decl.visibility() == Visibility::Public {
                    Some(symbol.clone())
                } else {
                    None
                }
            })
            .collect::<Vec<_>>();

        let dst_ns = &mut self[dst];
        dst_ns.implemented_traits.extend(implemented_traits);
        for symbol in symbols {
            if dst_ns.use_synonyms.contains_key(&symbol) {
                errors.push(CompileError::StarImportShadowsOtherSymbol {
                    name: symbol.clone(),
                });
            }
            dst_ns.use_synonyms.insert(symbol, src.to_vec());
        }
        ok((), warnings, errors)
    }

    /// Pull a single item from a `src` module and import it into the `dst` module.
    ///
    /// The item we want to import is basically the last item in path because this is a `self`
    /// import.
    pub(crate) fn self_import(
        &mut self,
        src: &Path,
        dst: &Path,
        alias: Option<Ident>,
    ) -> CompileResult<()> {
        let (last_item, src) = src.split_last().expect("guaranteed by grammar");
        self.item_import(src, last_item, dst, alias)
    }

    /// Pull a single `item` from the given `src` module and import it into the `dst` module.
    ///
    /// Paths are assumed to be relative to `self`.
    pub(crate) fn item_import(
        &mut self,
        src: &Path,
        item: &Ident,
        dst: &Path,
        alias: Option<Ident>,
    ) -> CompileResult<()> {
        let mut warnings = vec![];
        let mut errors = vec![];
        let src_ns = check!(
            self.check_submodule(src),
            return err(warnings, errors),
            warnings,
            errors
        );
        let mut impls_to_insert = vec![];
        match src_ns.symbols.get(item).cloned() {
            Some(decl) => {
                if decl.visibility() != Visibility::Public {
                    errors.push(CompileError::ImportPrivateSymbol { name: item.clone() });
                }
                // if this is a const, insert it into the local namespace directly
                if let TypedDeclaration::VariableDeclaration(TypedVariableDeclaration {
                    mutability: VariableMutability::ExportedConst,
                    ref name,
                    ..
                }) = decl
                {
                    self[dst].insert_symbol(alias.unwrap_or_else(|| name.clone()), decl.clone());
                    return ok((), warnings, errors);
                }
                let a = decl.return_type().value;
                //  if this is an enum or struct, import its implementations
                let mut res = match a {
                    Some(a) => src_ns.implemented_traits.get_call_path_and_type_info(a),
                    None => vec![],
                };
                impls_to_insert.append(&mut res);
                // no matter what, import it this way though.
                let dst_ns = &mut self[dst];
                match alias {
                    Some(alias) => {
                        if dst_ns.use_synonyms.contains_key(&alias) {
                            errors.push(CompileError::ShadowsOtherSymbol {
                                name: alias.clone(),
                            });
                        }
                        dst_ns.use_synonyms.insert(alias.clone(), src.to_vec());
                        dst_ns
                            .use_aliases
                            .insert(alias.as_str().to_string(), item.clone());
                    }
                    None => {
                        if dst_ns.use_synonyms.contains_key(item) {
                            errors.push(CompileError::ShadowsOtherSymbol { name: item.clone() });
                        }
                        dst_ns.use_synonyms.insert(item.clone(), src.to_vec());
                    }
                };
            }
            None => {
                errors.push(CompileError::SymbolNotFound { name: item.clone() });
                return err(warnings, errors);
            }
        };

        let dst_ns = &mut self[dst];
        impls_to_insert
            .into_iter()
            .for_each(|((call_path, type_info), methods)| {
                dst_ns
                    .implemented_traits
                    .insert(call_path, type_info, methods);
            });

        ok((), warnings, errors)
    }
}

impl std::ops::Deref for Module {
    type Target = Items;
    fn deref(&self) -> &Self::Target {
        &self.items
    }
}

impl std::ops::DerefMut for Module {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.items
    }
}

impl<'a> std::ops::Index<&'a Path> for Module {
    type Output = Module;
    fn index(&self, path: &'a Path) -> &Self::Output {
        self.submodule(path)
            .unwrap_or_else(|| panic!("no module for the given path {:?}", path))
    }
}

impl<'a> std::ops::IndexMut<&'a Path> for Module {
    fn index_mut(&mut self, path: &'a Path) -> &mut Self::Output {
        self.submodule_mut(path)
            .unwrap_or_else(|| panic!("no module for the given path {:?}", path))
    }
}

impl From<Root> for Module {
    fn from(root: Root) -> Self {
        root.module
    }
}

fn module_not_found(path: &[Ident]) -> CompileError {
    CompileError::ModuleNotFound {
        span: path.iter().fold(path[0].span(), |acc, this_one| {
            if acc.path() == this_one.span().path() {
                Span::join(acc, this_one.span())
            } else {
                acc
            }
        }),
        name: path
            .iter()
            .map(|x| x.as_str())
            .collect::<Vec<_>>()
            .join("::"),
    }
}