1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
use super::{DataSection, InstructionSet, ProgramKind};
use crate::asm_lang::allocated_ops::AllocatedOpcode;
use crate::declaration_engine::DeclarationId;
use crate::error::*;
use crate::source_map::SourceMap;

use sway_error::error::CompileError;
use sway_types::span::Span;

use either::Either;
use std::fmt;
use std::io::Read;

/// Represents an ASM set which has had register allocation, jump elimination, and optimization
/// applied to it
#[derive(Clone)]
pub struct FinalizedAsm {
    pub data_section: DataSection,
    pub program_section: InstructionSet,
    pub program_kind: ProgramKind,
    pub entries: Vec<FinalizedEntry>,
}

#[derive(Clone, Debug)]
pub struct FinalizedEntry {
    /// The original entry point function name.
    pub fn_name: String,
    /// The immediate instruction offset at which the entry function begins.
    pub imm: u64,
    /// The function selector (only `Some` for contract ABI methods).
    pub selector: Option<[u8; 4]>,
    /// If this entry is constructed from a test function contains the declaration id for that
    /// function, otherwise contains `None`.
    pub test_decl_id: Option<DeclarationId>,
}

impl FinalizedAsm {
    pub(crate) fn to_bytecode_mut(&mut self, source_map: &mut SourceMap) -> CompileResult<Vec<u8>> {
        to_bytecode_mut(&self.program_section, &mut self.data_section, source_map)
    }
}

impl FinalizedEntry {
    /// We assume the entry point is for a test function in the case it is neither an ABI method
    /// (no selector) or it is not "main".
    pub fn is_test(&self) -> bool {
        self.selector.is_none()
            && self.fn_name != sway_types::constants::DEFAULT_ENTRY_POINT_FN_NAME
    }
}

impl fmt::Display for FinalizedAsm {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}\n{}", self.program_section, self.data_section)
    }
}

fn to_bytecode_mut(
    program_section: &InstructionSet,
    data_section: &mut DataSection,
    source_map: &mut SourceMap,
) -> CompileResult<Vec<u8>> {
    let mut errors = vec![];
    if program_section.ops.len() & 1 != 0 {
        tracing::info!("ops len: {}", program_section.ops.len());
        errors.push(CompileError::Internal(
            "Non-word-aligned (odd-number) ops generated. This is an invariant violation.",
            Span::new(" ".into(), 0, 0, None).unwrap(),
        ));
        return err(vec![], errors);
    }
    // The below invariant is introduced to word-align the data section.
    // A noop is inserted in ASM generation if there is an odd number of ops.
    assert_eq!(program_section.ops.len() & 1, 0);
    // this points at the byte (*4*8) address immediately following (+1) the last instruction
    // Some LWs are expanded into two ops to allow for data larger than one word, so we calculate
    // exactly how many ops will be generated to calculate the offset.
    let offset_to_data_section_in_bytes =
        program_section
            .ops
            .iter()
            .fold(0, |acc, item| match &item.opcode {
                AllocatedOpcode::LWDataId(_reg, data_label)
                    if !data_section
                        .has_copy_type(data_label)
                        .expect("data label references non existent data -- internal error") =>
                {
                    acc + 8
                }
                AllocatedOpcode::BLOB(count) => acc + count.value as u64 * 4,
                _ => acc + 4,
            })
            + 4;

    // each op is four bytes, so the length of the buf is the number of ops times four.
    let mut buf = vec![0; (program_section.ops.len() * 4) + 4];

    let mut half_word_ix = 0;
    for op in program_section.ops.iter() {
        let span = op.owning_span.clone();
        let op = op.to_fuel_asm(offset_to_data_section_in_bytes, data_section);
        match op {
            Either::Right(data) => {
                for i in 0..data.len() {
                    buf[(half_word_ix * 4) + i] = data[i];
                }
                half_word_ix += 2;
            }
            Either::Left(ops) => {
                if ops.len() > 1 {
                    buf.resize(buf.len() + ((ops.len() - 1) * 4), 0);
                }
                for mut op in ops {
                    if let Some(span) = &span {
                        source_map.insert(half_word_ix, span);
                    }
                    let read_range_upper_bound =
                        core::cmp::min(half_word_ix * 4 + std::mem::size_of_val(&op), buf.len());
                    op.read_exact(&mut buf[half_word_ix * 4..read_range_upper_bound])
                        .expect("Failed to write to in-memory buffer.");
                    half_word_ix += 1;
                }
            }
        }
    }

    let mut data_section = data_section.serialize_to_bytes();

    buf.append(&mut data_section);

    ok(buf, vec![], errors)
}