1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
use crate::{
decl_engine::{DeclRefConstant, DeclRefFunction},
engine_threading::*,
error::*,
language::{ty, CallPath},
type_system::*,
CompileResult, Ident,
};
use super::{
module::Module, root::Root, submodule_namespace::SubmoduleNamespace,
trait_map::are_equal_minus_dynamic_types, Path, PathBuf,
};
use sway_error::error::CompileError;
use sway_types::{span::Span, Spanned};
use std::{cmp::Ordering, collections::VecDeque};
/// The set of items that represent the namespace context passed throughout type checking.
#[derive(Clone, Debug)]
pub struct Namespace {
/// An immutable namespace that consists of the names that should always be present, no matter
/// what module or scope we are currently checking.
///
/// These include external library dependencies and (when it's added) the `std` prelude.
///
/// This is passed through type-checking in order to initialise the namespace of each submodule
/// within the project.
init: Module,
/// The `root` of the project namespace.
///
/// From the root, the entirety of the project's namespace can always be accessed.
///
/// The root is initialised from the `init` namespace before type-checking begins.
pub(crate) root: Root,
/// An absolute path from the `root` that represents the current module being checked.
///
/// E.g. when type-checking the root module, this is equal to `[]`. When type-checking a
/// submodule of the root called "foo", this would be equal to `[foo]`.
pub(crate) mod_path: PathBuf,
}
impl Namespace {
/// Initialise the namespace at its root from the given initial namespace.
pub fn init_root(init: Module) -> Self {
let root = Root::from(init.clone());
let mod_path = vec![];
Self {
init,
root,
mod_path,
}
}
/// A reference to the path of the module currently being type-checked.
pub fn mod_path(&self) -> &Path {
&self.mod_path
}
/// Find the module that these prefixes point to
pub fn find_module_path<'a>(
&'a self,
prefixes: impl IntoIterator<Item = &'a Ident>,
) -> PathBuf {
self.mod_path.iter().chain(prefixes).cloned().collect()
}
/// A reference to the root of the project namespace.
pub fn root(&self) -> &Root {
&self.root
}
/// A mutable reference to the root of the project namespace.
pub fn root_mut(&mut self) -> &mut Root {
&mut self.root
}
/// Access to the current [Module], i.e. the module at the inner `mod_path`.
///
/// Note that the [Namespace] will automatically dereference to this [Module] when attempting
/// to call any [Module] methods.
pub fn module(&self) -> &Module {
&self.root.module[&self.mod_path]
}
/// Mutable access to the current [Module], i.e. the module at the inner `mod_path`.
///
/// Note that the [Namespace] will automatically dereference to this [Module] when attempting
/// to call any [Module] methods.
pub fn module_mut(&mut self) -> &mut Module {
&mut self.root.module[&self.mod_path]
}
/// Short-hand for calling [Root::resolve_symbol] on `root` with the `mod_path`.
pub(crate) fn resolve_symbol(&self, symbol: &Ident) -> CompileResult<&ty::TyDecl> {
self.root.resolve_symbol(&self.mod_path, symbol)
}
/// Short-hand for calling [Root::resolve_call_path] on `root` with the `mod_path`.
pub(crate) fn resolve_call_path(&self, call_path: &CallPath) -> CompileResult<&ty::TyDecl> {
self.root.resolve_call_path(&self.mod_path, call_path)
}
/// Short-hand for calling [Root::resolve_call_path_with_visibility_check] on `root` with the `mod_path`.
pub(crate) fn resolve_call_path_with_visibility_check(
&self,
engines: Engines<'_>,
call_path: &CallPath,
) -> CompileResult<&ty::TyDecl> {
self.root
.resolve_call_path_with_visibility_check(engines, &self.mod_path, call_path)
}
/// Short-hand for calling [Root::resolve_type_with_self] on `root` with the `mod_path`.
pub(crate) fn resolve_type_with_self(
&mut self,
engines: Engines<'_>,
type_id: TypeId,
self_type: TypeId,
span: &Span,
enforce_type_arguments: EnforceTypeArguments,
type_info_prefix: Option<&Path>,
) -> CompileResult<TypeId> {
let mod_path = self.mod_path.clone();
engines.te().resolve_with_self(
engines.de(),
type_id,
self_type,
span,
enforce_type_arguments,
type_info_prefix,
self,
&mod_path,
)
}
/// Short-hand for calling [Root::resolve_type_without_self] on `root` and with the `mod_path`.
pub(crate) fn resolve_type_without_self(
&mut self,
engines: Engines<'_>,
type_id: TypeId,
span: &Span,
type_info_prefix: Option<&Path>,
) -> CompileResult<TypeId> {
let mod_path = self.mod_path.clone();
engines.te().resolve(
engines.de(),
type_id,
span,
EnforceTypeArguments::Yes,
type_info_prefix,
self,
&mod_path,
)
}
/// Given a name and a type (plus a `self_type` to potentially
/// resolve it), find items matching in the namespace.
pub(crate) fn find_items_for_type(
&mut self,
mut type_id: TypeId,
item_prefix: &Path,
item_name: &Ident,
self_type: TypeId,
engines: Engines<'_>,
) -> CompileResult<Vec<ty::TyTraitItem>> {
let mut warnings = vec![];
let mut errors = vec![];
let type_engine = engines.te();
let decl_engine = engines.de();
// If the type that we are looking for is the error recovery type, then
// we want to return the error case without creating a new error
// message.
if let TypeInfo::ErrorRecovery = type_engine.get(type_id) {
return err(warnings, errors);
}
// grab the local module
let local_module = check!(
self.root().check_submodule(&self.mod_path),
return err(warnings, errors),
warnings,
errors
);
// grab the local items from the local module
let local_items = local_module.get_items_for_type(engines, type_id);
type_id.replace_self_type(engines, self_type);
// resolve the type
let type_id = check!(
type_engine.resolve(
decl_engine,
type_id,
&item_name.span(),
EnforceTypeArguments::No,
None,
self,
item_prefix
),
type_engine.insert(decl_engine, TypeInfo::ErrorRecovery),
warnings,
errors
);
// grab the module where the type itself is declared
let type_module = check!(
self.root().check_submodule(item_prefix),
return err(warnings, errors),
warnings,
errors
);
// grab the items from where the type is declared
let mut type_items = type_module.get_items_for_type(engines, type_id);
let mut items = local_items;
items.append(&mut type_items);
let mut matching_item_decl_refs: Vec<ty::TyTraitItem> = vec![];
for item in items.into_iter() {
match &item {
ty::TyTraitItem::Fn(decl_ref) => {
if decl_ref.name() == item_name {
matching_item_decl_refs.push(item.clone());
}
}
ty::TyTraitItem::Constant(decl_ref) => {
if decl_ref.name() == item_name {
matching_item_decl_refs.push(item.clone());
}
}
}
}
ok(matching_item_decl_refs, warnings, errors)
}
/// Given a name and a type (plus a `self_type` to potentially
/// resolve it), find that method in the namespace. Requires `args_buf`
/// because of some special casing for the standard library where we pull
/// the type from the arguments buffer.
///
/// This function will generate a missing method error if the method is not
/// found.
pub(crate) fn find_method_for_type(
&mut self,
type_id: TypeId,
method_prefix: &Path,
method_name: &Ident,
self_type: TypeId,
args_buf: &VecDeque<ty::TyExpression>,
engines: Engines<'_>,
) -> CompileResult<DeclRefFunction> {
let mut warnings = vec![];
let mut errors = vec![];
let decl_engine = engines.de();
let type_engine = engines.te();
let matching_item_decl_refs = check!(
self.find_items_for_type(type_id, method_prefix, method_name, self_type, engines),
return err(warnings, errors),
warnings,
errors
);
let matching_method_decl_refs = matching_item_decl_refs
.into_iter()
.flat_map(|item| match item {
ty::TyTraitItem::Fn(decl_ref) => Some(decl_ref),
ty::TyTraitItem::Constant(_) => None,
})
.collect::<Vec<_>>();
let matching_method_decl_ref = match matching_method_decl_refs.len().cmp(&1) {
Ordering::Equal => matching_method_decl_refs.get(0).cloned(),
Ordering::Greater => {
// Case where multiple methods exist with the same name
// This is the case of https://github.com/FuelLabs/sway/issues/3633
// where multiple generic trait impls use the same method name but with different parameter types
let mut maybe_method_decl_ref: Option<DeclRefFunction> = None;
for decl_ref in matching_method_decl_refs.clone().into_iter() {
let method = decl_engine.get_function(&decl_ref);
if method.parameters.len() == args_buf.len()
&& !method.parameters.iter().zip(args_buf.iter()).any(|(p, a)| {
!are_equal_minus_dynamic_types(
engines,
p.type_argument.type_id,
a.return_type,
)
})
{
maybe_method_decl_ref = Some(decl_ref);
break;
}
}
if let Some(matching_method_decl_ref) = maybe_method_decl_ref {
// In case one or more methods match the parameter types we return the first match.
Some(matching_method_decl_ref)
} else {
// When we can't match any method with parameter types we still return the first method found
// This was the behavior before introducing the parameter type matching
matching_method_decl_refs.get(0).cloned()
}
}
Ordering::Less => None,
};
if let Some(method_decl_ref) = matching_method_decl_ref {
return ok(method_decl_ref, warnings, errors);
}
if !args_buf
.get(0)
.map(|x| type_engine.get(x.return_type))
.eq(&Some(TypeInfo::ErrorRecovery), engines)
{
errors.push(CompileError::MethodNotFound {
method_name: method_name.clone(),
type_name: engines.help_out(type_id).to_string(),
span: method_name.span(),
});
}
err(warnings, errors)
}
/// Given a name and a type (plus a `self_type` to potentially
/// resolve it), find that method in the namespace. Requires `args_buf`
/// because of some special casing for the standard library where we pull
/// the type from the arguments buffer.
///
/// This function will generate a missing method error if the method is not
/// found.
pub(crate) fn find_constant_for_type(
&mut self,
type_id: TypeId,
item_name: &Ident,
self_type: TypeId,
engines: Engines<'_>,
) -> CompileResult<DeclRefConstant> {
let mut warnings = vec![];
let mut errors = vec![];
let matching_item_decl_refs = check!(
self.find_items_for_type(type_id, &Vec::<Ident>::new(), item_name, self_type, engines),
return err(warnings, errors),
warnings,
errors
);
let matching_constant_decl_refs = matching_item_decl_refs
.into_iter()
.flat_map(|item| match item {
ty::TyTraitItem::Fn(_decl_ref) => None,
ty::TyTraitItem::Constant(decl_ref) => Some(decl_ref),
})
.collect::<Vec<_>>();
if let Some(constant_decl_ref) = matching_constant_decl_refs.first() {
ok(constant_decl_ref.clone(), warnings, errors)
} else {
err(warnings, errors)
}
}
/// Short-hand for performing a [Module::star_import] with `mod_path` as the destination.
pub(crate) fn star_import(&mut self, src: &Path, engines: Engines<'_>) -> CompileResult<()> {
self.root.star_import(src, &self.mod_path, engines)
}
/// Short-hand for performing a [Module::variant_star_import] with `mod_path` as the destination.
pub(crate) fn variant_star_import(
&mut self,
src: &Path,
engines: Engines<'_>,
enum_name: &Ident,
) -> CompileResult<()> {
self.root
.variant_star_import(src, &self.mod_path, engines, enum_name)
}
/// Short-hand for performing a [Module::self_import] with `mod_path` as the destination.
pub(crate) fn self_import(
&mut self,
engines: Engines<'_>,
src: &Path,
alias: Option<Ident>,
) -> CompileResult<()> {
self.root.self_import(engines, src, &self.mod_path, alias)
}
/// Short-hand for performing a [Module::item_import] with `mod_path` as the destination.
pub(crate) fn item_import(
&mut self,
engines: Engines<'_>,
src: &Path,
item: &Ident,
alias: Option<Ident>,
) -> CompileResult<()> {
self.root
.item_import(engines, src, item, &self.mod_path, alias)
}
/// Short-hand for performing a [Module::variant_import] with `mod_path` as the destination.
pub(crate) fn variant_import(
&mut self,
engines: Engines<'_>,
src: &Path,
enum_name: &Ident,
variant_name: &Ident,
alias: Option<Ident>,
) -> CompileResult<()> {
self.root
.variant_import(engines, src, enum_name, variant_name, &self.mod_path, alias)
}
/// "Enter" the submodule at the given path by returning a new [SubmoduleNamespace].
///
/// Here we temporarily change `mod_path` to the given `dep_mod_path` and wrap `self` in a
/// [SubmoduleNamespace] type. When dropped, the [SubmoduleNamespace] resets the `mod_path`
/// back to the original path so that we can continue type-checking the current module after
/// finishing with the dependency.
pub(crate) fn enter_submodule(
&mut self,
mod_name: Ident,
module_span: Span,
) -> SubmoduleNamespace {
let init = self.init.clone();
self.submodules.entry(mod_name.to_string()).or_insert(init);
let submod_path: Vec<_> = self
.mod_path
.iter()
.cloned()
.chain(Some(mod_name.clone()))
.collect();
let parent_mod_path = std::mem::replace(&mut self.mod_path, submod_path);
self.name = Some(mod_name);
self.span = Some(module_span);
self.is_external = false;
SubmoduleNamespace {
namespace: self,
parent_mod_path,
}
}
#[allow(clippy::too_many_arguments)]
pub(crate) fn insert_trait_implementation(
&mut self,
trait_name: CallPath,
trait_type_args: Vec<TypeArgument>,
type_id: TypeId,
items: &[ty::TyImplItem],
impl_span: &Span,
is_impl_self: bool,
engines: Engines<'_>,
) -> CompileResult<()> {
// Use trait name with full path, improves consistency between
// this inserting and getting in `get_methods_for_type_and_trait_name`.
let full_trait_name = trait_name.to_fullpath(self);
self.implemented_traits.insert(
full_trait_name,
trait_type_args,
type_id,
items,
impl_span,
is_impl_self,
engines,
)
}
pub(crate) fn get_items_for_type_and_trait_name(
&mut self,
engines: Engines<'_>,
type_id: TypeId,
trait_name: &CallPath,
) -> Vec<ty::TyTraitItem> {
// Use trait name with full path, improves consistency between
// this get and inserting in `insert_trait_implementation`.
let trait_name = trait_name.to_fullpath(self);
self.implemented_traits
.get_items_for_type_and_trait_name(engines, type_id, &trait_name)
}
}
impl std::ops::Deref for Namespace {
type Target = Module;
fn deref(&self) -> &Self::Target {
self.module()
}
}
impl std::ops::DerefMut for Namespace {
fn deref_mut(&mut self) -> &mut Self::Target {
self.module_mut()
}
}