1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
#[macro_use]
pub mod error;

#[macro_use]
mod engine_threading;

pub mod abi_generation;
pub mod asm_generation;
mod asm_lang;
mod build_config;
mod concurrent_slab;
mod control_flow_analysis;
pub mod decl_engine;
pub mod ir_generation;
pub mod language;
mod metadata;
mod monomorphize;
pub mod query_engine;
pub mod semantic_analysis;
pub mod source_map;
pub mod transform;
pub mod type_system;

use crate::ir_generation::check_function_purity;
use crate::{error::*, source_map::SourceMap};
pub use asm_generation::from_ir::compile_ir_to_asm;
use asm_generation::FinalizedAsm;
pub use asm_generation::{CompiledBytecode, FinalizedEntry};
pub use build_config::{BuildConfig, BuildTarget};
use control_flow_analysis::ControlFlowGraph;
use metadata::MetadataManager;
use std::collections::HashMap;
use std::path::{Path, PathBuf};
use std::sync::Arc;
use sway_ast::AttributeDecl;
use sway_error::handler::{ErrorEmitted, Handler};
use sway_ir::{
    create_o1_pass_group, register_known_passes, Context, Kind, Module, PassManager,
    ARGDEMOTION_NAME, CONSTDEMOTION_NAME, DCE_NAME, MEMCPYOPT_NAME, MISCDEMOTION_NAME,
    MODULEPRINTER_NAME, RETDEMOTION_NAME,
};
use sway_types::constants::DOC_COMMENT_ATTRIBUTE_NAME;
use sway_utils::{time_expr, PerformanceData, PerformanceMetric};
use transform::{Attribute, AttributeArg, AttributeKind, AttributesMap};
use types::*;

pub use semantic_analysis::namespace::{self, Namespace};
pub mod types;

pub use error::CompileResult;
use sway_error::error::CompileError;
use sway_error::warning::CompileWarning;
use sway_types::{ident::Ident, span, Spanned};
pub use type_system::*;

use language::{lexed, parsed, ty, Visibility};
use transform::to_parsed_lang::{self, convert_module_kind};

pub mod fuel_prelude {
    pub use fuel_vm::{self, fuel_asm, fuel_crypto, fuel_tx, fuel_types};
}

pub use engine_threading::Engines;
use sysinfo::{System, SystemExt};

/// Given an input `Arc<str>` and an optional [BuildConfig], parse the input into a [lexed::LexedProgram] and [parsed::ParseProgram].
///
/// # Example
/// ```ignore
/// # use sway_core::parse;
/// # fn main() {
///     let input = "script; fn main() -> bool { true }";
///     let result = parse(input.into(), <_>::default(), None);
/// # }
/// ```
///
/// # Panics
/// Panics if the parser panics.
pub fn parse(
    input: Arc<str>,
    engines: Engines<'_>,
    config: Option<&BuildConfig>,
) -> CompileResult<(lexed::LexedProgram, parsed::ParseProgram)> {
    CompileResult::with_handler(|h| match config {
        None => parse_in_memory(h, engines, input),
        // When a `BuildConfig` is given,
        // the module source may declare `dep`s that must be parsed from other files.
        Some(config) => parse_module_tree(
            h,
            engines,
            input,
            config.canonical_root_module(),
            None,
            config.build_target,
        )
        .map(|(kind, lexed, parsed)| {
            let lexed = lexed::LexedProgram {
                kind: kind.clone(),
                root: lexed,
            };
            let parsed = parsed::ParseProgram { kind, root: parsed };
            (lexed, parsed)
        }),
    })
}

/// Parses the tree kind in the input provided.
///
/// This will lex the entire input, but parses only the module kind.
pub fn parse_tree_type(input: Arc<str>) -> CompileResult<parsed::TreeType> {
    CompileResult::with_handler(|h| {
        sway_parse::parse_module_kind(h, input, None).map(|kind| convert_module_kind(&kind))
    })
}

/// Convert attributes from `Annotated<Module>` to an [AttributesMap].
fn module_attrs_to_map(
    handler: &Handler,
    attribute_list: &[AttributeDecl],
) -> Result<AttributesMap, ErrorEmitted> {
    let mut attrs_map: HashMap<_, Vec<Attribute>> = HashMap::new();
    for attr_decl in attribute_list {
        let attrs = attr_decl.attribute.get().into_iter();
        for attr in attrs {
            let name = attr.name.as_str();
            if name != DOC_COMMENT_ATTRIBUTE_NAME {
                // prevent using anything except doc comment attributes
                handler.emit_err(CompileError::ExpectedModuleDocComment {
                    span: attr.name.span(),
                });
            }

            let args = attr
                .args
                .as_ref()
                .map(|parens| {
                    parens
                        .get()
                        .into_iter()
                        .cloned()
                        .map(|arg| AttributeArg {
                            name: arg.name.clone(),
                            value: arg.value.clone(),
                            span: arg.span(),
                        })
                        .collect()
                })
                .unwrap_or_else(Vec::new);

            let attribute = Attribute {
                name: attr.name.clone(),
                args,
                span: attr_decl.span(),
            };

            if let Some(attr_kind) = match name {
                DOC_COMMENT_ATTRIBUTE_NAME => Some(AttributeKind::DocComment),
                _ => None,
            } {
                attrs_map.entry(attr_kind).or_default().push(attribute);
            }
        }
    }
    Ok(AttributesMap::new(Arc::new(attrs_map)))
}

/// When no `BuildConfig` is given, we're assumed to be parsing in-memory with no submodules.
fn parse_in_memory(
    handler: &Handler,
    engines: Engines<'_>,
    src: Arc<str>,
) -> Result<(lexed::LexedProgram, parsed::ParseProgram), ErrorEmitted> {
    let module = sway_parse::parse_file(handler, src, None)?;
    let (kind, tree) = to_parsed_lang::convert_parse_tree(
        &mut to_parsed_lang::Context::default(),
        handler,
        engines,
        module.value.clone(),
    )?;
    let submodules = Default::default();
    let attributes = module_attrs_to_map(handler, &module.attribute_list)?;
    let root = parsed::ParseModule {
        span: span::Span::dummy(),
        tree,
        submodules,
        attributes,
    };
    let lexed_program = lexed::LexedProgram::new(
        kind.clone(),
        lexed::LexedModule {
            tree: module.value,
            submodules: Default::default(),
        },
    );
    Ok((lexed_program, parsed::ParseProgram { kind, root }))
}

/// Contains the lexed and parsed submodules 'deps' of a module.
struct Submodules {
    lexed: Vec<(Ident, lexed::LexedSubmodule)>,
    parsed: Vec<(Ident, parsed::ParseSubmodule)>,
}

/// Parse all dependencies `deps` as submodules.
fn parse_submodules(
    handler: &Handler,
    engines: Engines<'_>,
    module_name: Option<&str>,
    module: &sway_ast::Module,
    module_dir: &Path,
    build_target: BuildTarget,
) -> Submodules {
    // Assume the happy path, so there'll be as many submodules as dependencies, but no more.
    let mut lexed_submods = Vec::with_capacity(module.submodules().count());
    let mut parsed_submods = Vec::with_capacity(lexed_submods.capacity());

    module.submodules().for_each(|submod| {
        // Read the source code from the dependency.
        // If we cannot, record as an error, but continue with other files.
        let submod_path = Arc::new(module_path(module_dir, module_name, submod));
        let submod_str: Arc<str> = match std::fs::read_to_string(&*submod_path) {
            Ok(s) => Arc::from(s),
            Err(e) => {
                handler.emit_err(CompileError::FileCouldNotBeRead {
                    span: submod.name.span(),
                    file_path: submod_path.to_string_lossy().to_string(),
                    stringified_error: e.to_string(),
                });
                return;
            }
        };

        if let Ok((kind, lexed_module, parse_module)) = parse_module_tree(
            handler,
            engines,
            submod_str.clone(),
            submod_path.clone(),
            Some(submod.name.as_str()),
            build_target,
        ) {
            if !matches!(kind, parsed::TreeType::Library) {
                let span = span::Span::new(submod_str, 0, 0, Some(submod_path)).unwrap();
                handler.emit_err(CompileError::ImportMustBeLibrary { span });
                return;
            }

            let parse_submodule = parsed::ParseSubmodule {
                module: parse_module,
                visibility: match submod.visibility {
                    Some(..) => Visibility::Public,
                    None => Visibility::Private,
                },
                mod_name_span: submod.name.span(),
            };
            let lexed_submodule = lexed::LexedSubmodule {
                module: lexed_module,
            };
            lexed_submods.push((submod.name.clone(), lexed_submodule));
            parsed_submods.push((submod.name.clone(), parse_submodule));
        }
    });

    Submodules {
        lexed: lexed_submods,
        parsed: parsed_submods,
    }
}

/// Given the source of the module along with its path,
/// parse this module including all of its submodules.
fn parse_module_tree(
    handler: &Handler,
    engines: Engines<'_>,
    src: Arc<str>,
    path: Arc<PathBuf>,
    module_name: Option<&str>,
    build_target: BuildTarget,
) -> Result<(parsed::TreeType, lexed::LexedModule, parsed::ParseModule), ErrorEmitted> {
    // Parse this module first.
    let module_dir = path.parent().expect("module file has no parent directory");
    let module = sway_parse::parse_file(handler, src.clone(), Some(path.clone()))?;

    // Parse all submodules before converting to the `ParseTree`.
    // This always recovers on parse errors for the file itself by skipping that file.
    let submodules = parse_submodules(
        handler,
        engines,
        module_name,
        &module.value,
        module_dir,
        build_target,
    );

    // Convert from the raw parsed module to the `ParseTree` ready for type-check.
    let (kind, tree) = to_parsed_lang::convert_parse_tree(
        &mut to_parsed_lang::Context::new(build_target),
        handler,
        engines,
        module.value.clone(),
    )?;
    let attributes = module_attrs_to_map(handler, &module.attribute_list)?;

    let lexed = lexed::LexedModule {
        tree: module.value,
        submodules: submodules.lexed,
    };
    let parsed = parsed::ParseModule {
        span: span::Span::new(src, 0, 0, Some(path)).unwrap(),
        tree,
        submodules: submodules.parsed,
        attributes,
    };
    Ok((kind, lexed, parsed))
}

fn module_path(
    parent_module_dir: &Path,
    parent_module_name: Option<&str>,
    submod: &sway_ast::Submodule,
) -> PathBuf {
    if let Some(parent_name) = parent_module_name {
        parent_module_dir
            .join(parent_name)
            .join(submod.name.to_string())
            .with_extension(sway_types::constants::DEFAULT_FILE_EXTENSION)
    } else {
        // top level module
        parent_module_dir
            .join(submod.name.to_string())
            .with_extension(sway_types::constants::DEFAULT_FILE_EXTENSION)
    }
}

pub struct CompiledAsm(pub FinalizedAsm);

pub fn parsed_to_ast(
    engines: Engines<'_>,
    parse_program: &parsed::ParseProgram,
    initial_namespace: namespace::Module,
    build_config: Option<&BuildConfig>,
    package_name: &str,
) -> CompileResult<ty::TyProgram> {
    // Type check the program.
    let CompileResult {
        value: typed_program_opt,
        mut warnings,
        mut errors,
    } = ty::TyProgram::type_check(engines, parse_program, initial_namespace, package_name);

    let mut typed_program = match typed_program_opt {
        Some(typed_program) => typed_program,
        None => return err(warnings, errors),
    };

    // Collect information about the types used in this program
    let CompileResult {
        value: types_metadata_result,
        warnings: new_warnings,
        errors: new_errors,
    } = typed_program.collect_types_metadata(&mut CollectTypesMetadataContext::new(engines));
    warnings.extend(new_warnings);
    errors.extend(new_errors);
    let types_metadata = match types_metadata_result {
        Some(types_metadata) => types_metadata,
        None => return deduped_err(warnings, errors),
    };

    typed_program
        .logged_types
        .extend(types_metadata.iter().filter_map(|m| match m {
            TypeMetadata::LoggedType(log_id, type_id) => Some((*log_id, *type_id)),
            _ => None,
        }));

    typed_program
        .messages_types
        .extend(types_metadata.iter().filter_map(|m| match m {
            TypeMetadata::MessageType(message_id, type_id) => Some((*message_id, *type_id)),
            _ => None,
        }));

    let (print_graph, print_graph_url_format) = match build_config {
        Some(cfg) => (
            cfg.print_dca_graph.clone(),
            cfg.print_dca_graph_url_format.clone(),
        ),
        None => (None, None),
    };
    // Perform control flow analysis and extend with any errors.
    let cfa_res =
        perform_control_flow_analysis(engines, &typed_program, print_graph, print_graph_url_format);
    errors.extend(cfa_res.errors);
    warnings.extend(cfa_res.warnings);

    // Evaluate const declarations, to allow storage slots initializion with consts.
    let mut ctx = Context::default();
    let mut md_mgr = MetadataManager::default();
    let module = Module::new(&mut ctx, Kind::Contract);
    if let Err(e) = ir_generation::compile::compile_constants(
        engines,
        &mut ctx,
        &mut md_mgr,
        module,
        &typed_program.root.namespace,
    ) {
        errors.push(e);
    }

    // CEI pattern analysis
    let cei_analysis_warnings =
        semantic_analysis::cei_pattern_analysis::analyze_program(engines, &typed_program);
    warnings.extend(cei_analysis_warnings);

    // Check that all storage initializers can be evaluated at compile time.
    let typed_wiss_res = typed_program.get_typed_program_with_initialized_storage_slots(
        engines,
        &mut ctx,
        &mut md_mgr,
        module,
    );
    warnings.extend(typed_wiss_res.warnings);
    errors.extend(typed_wiss_res.errors);
    let typed_program_with_storage_slots = match typed_wiss_res.value {
        Some(typed_program_with_storage_slots) => typed_program_with_storage_slots,
        None => return deduped_err(warnings, errors),
    };

    // All unresolved types lead to compile errors.
    errors.extend(types_metadata.iter().filter_map(|m| match m {
        TypeMetadata::UnresolvedType(name, call_site_span_opt) => {
            Some(CompileError::UnableToInferGeneric {
                ty: name.as_str().to_string(),
                span: call_site_span_opt.clone().unwrap_or_else(|| name.span()),
            })
        }
        _ => None,
    }));

    // Check if a non-test function calls `#[test]` function.

    ok(
        typed_program_with_storage_slots,
        dedup_unsorted(warnings),
        dedup_unsorted(errors),
    )
}

pub fn compile_to_ast(
    engines: Engines<'_>,
    input: Arc<str>,
    initial_namespace: namespace::Module,
    build_config: Option<&BuildConfig>,
    package_name: &str,
    metrics: &mut PerformanceData,
) -> CompileResult<ty::TyProgram> {
    // Parse the program to a concrete syntax tree (CST).
    let CompileResult {
        value: parse_program_opt,
        mut warnings,
        mut errors,
    } = time_expr!(
        "parse the program to a concrete syntax tree (CST)",
        "parse_cst",
        parse(input, engines, build_config),
        build_config,
        metrics
    );

    let (.., mut parse_program) = match parse_program_opt {
        Some(parse_program) => parse_program,
        None => return deduped_err(warnings, errors),
    };

    // If tests are not enabled, exclude them from `parsed_program`.
    if build_config
        .map(|config| !config.include_tests)
        .unwrap_or(true)
    {
        parse_program.exclude_tests();
    }

    // Type check (+ other static analysis) the CST to a typed AST.
    let typed_res = time_expr!(
        "parse the concrete syntax tree (CST) to a typed AST",
        "parse_ast",
        parsed_to_ast(
            engines,
            &parse_program,
            initial_namespace,
            build_config,
            package_name,
        ),
        build_config,
        metrics
    );

    errors.extend(typed_res.errors);
    warnings.extend(typed_res.warnings);
    let typed_program = match typed_res.value {
        Some(tp) => tp,
        None => return deduped_err(warnings, errors),
    };

    ok(
        typed_program,
        dedup_unsorted(warnings),
        dedup_unsorted(errors),
    )
}

/// Given input Sway source code,
/// try compiling to a `CompiledAsm`,
/// containing the asm in opcode form (not raw bytes/bytecode).
pub fn compile_to_asm(
    engines: Engines<'_>,
    input: Arc<str>,
    initial_namespace: namespace::Module,
    build_config: BuildConfig,
    package_name: &str,
    metrics: &mut PerformanceData,
) -> CompileResult<CompiledAsm> {
    let ast_res = compile_to_ast(
        engines,
        input,
        initial_namespace,
        Some(&build_config),
        package_name,
        metrics,
    );
    ast_to_asm(engines, &ast_res, &build_config)
}

/// Given an AST compilation result,
/// try compiling to a `CompiledAsm`,
/// containing the asm in opcode form (not raw bytes/bytecode).
pub fn ast_to_asm(
    engines: Engines<'_>,
    ast_res: &CompileResult<ty::TyProgram>,
    build_config: &BuildConfig,
) -> CompileResult<CompiledAsm> {
    match &ast_res.value {
        None => err(ast_res.warnings.clone(), ast_res.errors.clone()),
        Some(typed_program) => {
            let mut errors = ast_res.errors.clone();
            let mut warnings = ast_res.warnings.clone();
            let asm = check!(
                compile_ast_to_ir_to_asm(engines, typed_program, build_config),
                return deduped_err(warnings, errors),
                warnings,
                errors
            );
            ok(CompiledAsm(asm), warnings, errors)
        }
    }
}

pub(crate) fn compile_ast_to_ir_to_asm(
    engines: Engines<'_>,
    program: &ty::TyProgram,
    build_config: &BuildConfig,
) -> CompileResult<FinalizedAsm> {
    let mut warnings = Vec::new();
    let mut errors = Vec::new();

    // the IR pipeline relies on type information being fully resolved.
    // If type information is found to still be generic or unresolved inside of
    // IR, this is considered an internal compiler error. To resolve this situation,
    // we need to explicitly ensure all types are resolved before going into IR.
    //
    // We _could_ introduce a new type here that uses TypeInfo instead of TypeId and throw away
    // the engine, since we don't need inference for IR. That'd be a _lot_ of copy-pasted code,
    // though, so instead, we are just going to do a pass and throw any unresolved generics as
    // errors and then hold as a runtime invariant that none of the types will be unresolved in the
    // IR phase.

    let mut ir = match ir_generation::compile_program(program, build_config.include_tests, engines)
    {
        Ok(ir) => ir,
        Err(e) => return err(warnings, vec![e]),
    };

    // Find all the entry points for purity checking and DCE.
    let entry_point_functions: Vec<::sway_ir::Function> = ir
        .module_iter()
        .flat_map(|module| module.function_iter(&ir))
        .filter(|func| func.is_entry(&ir))
        .collect();

    // Do a purity check on the _unoptimised_ IR.
    {
        let handler = Handler::default();
        let mut env = ir_generation::PurityEnv::default();
        let mut md_mgr = metadata::MetadataManager::default();
        for entry_point in &entry_point_functions {
            check_function_purity(&handler, &mut env, &ir, &mut md_mgr, entry_point);
        }
        let (e, w) = handler.consume();
        warnings.extend(w);
        errors.extend(e);
    }

    // Initialize the pass manager and register known passes.
    let mut pass_mgr = PassManager::default();
    register_known_passes(&mut pass_mgr);
    let mut pass_group = create_o1_pass_group();

    // Target specific transforms should be moved into something more configured.
    if build_config.build_target == BuildTarget::Fuel {
        // FuelVM target specific transforms.
        //
        // Demote large by-value constants, arguments and return values to by-reference values
        // using temporaries.
        pass_group.append_pass(CONSTDEMOTION_NAME);
        pass_group.append_pass(ARGDEMOTION_NAME);
        pass_group.append_pass(RETDEMOTION_NAME);
        pass_group.append_pass(MISCDEMOTION_NAME);

        // Convert loads and stores to mem_copys where possible.
        pass_group.append_pass(MEMCPYOPT_NAME);

        // Run a DCE and simplify-cfg to clean up any obsolete instructions.
        pass_group.append_pass(DCE_NAME);
        // XXX Oh no, if we add simplifycfg here it unearths a bug in the register allocator which
        // manifests in the `should_pass/language/while_loops` test.  Fixing the register allocator
        // is a very high priority but isn't a part of this change.
        //pass_group.append_pass(SIMPLIFYCFG_NAME);
    }

    if build_config.print_ir {
        pass_group.append_pass(MODULEPRINTER_NAME);
    }

    // Run the passes.
    let res = CompileResult::with_handler(|handler| {
        if let Err(ir_error) = pass_mgr.run(&mut ir, &pass_group) {
            Err(handler.emit_err(CompileError::InternalOwned(
                ir_error.to_string(),
                span::Span::dummy(),
            )))
        } else {
            Ok(())
        }
    });
    check!(res, return err(warnings, errors), warnings, errors);

    let final_asm = check!(
        compile_ir_to_asm(&ir, Some(build_config)),
        return err(warnings, errors),
        warnings,
        errors
    );

    ok(final_asm, warnings, errors)
}

/// Given input Sway source code, compile to [CompiledBytecode], containing the asm in bytecode form.
pub fn compile_to_bytecode(
    engines: Engines<'_>,
    input: Arc<str>,
    initial_namespace: namespace::Module,
    build_config: BuildConfig,
    source_map: &mut SourceMap,
    package_name: &str,
    metrics: &mut PerformanceData,
) -> CompileResult<CompiledBytecode> {
    let asm_res = compile_to_asm(
        engines,
        input,
        initial_namespace,
        build_config,
        package_name,
        metrics,
    );
    asm_to_bytecode(asm_res, source_map)
}

/// Given the assembly (opcodes), compile to [CompiledBytecode], containing the asm in bytecode form.
pub fn asm_to_bytecode(
    CompileResult {
        value,
        mut warnings,
        mut errors,
    }: CompileResult<CompiledAsm>,
    source_map: &mut SourceMap,
) -> CompileResult<CompiledBytecode> {
    match value {
        Some(CompiledAsm(mut asm)) => {
            let compiled_bytecode = check!(
                asm.to_bytecode_mut(source_map),
                return err(warnings, errors),
                warnings,
                errors,
            );
            ok(compiled_bytecode, warnings, errors)
        }
        None => err(warnings, errors),
    }
}

/// Given a [ty::TyProgram], which is type-checked Sway source, construct a graph to analyze
/// control flow and determine if it is valid.
fn perform_control_flow_analysis(
    engines: Engines<'_>,
    program: &ty::TyProgram,
    print_graph: Option<String>,
    print_graph_url_format: Option<String>,
) -> CompileResult<()> {
    let dca_res = dead_code_analysis(engines, program);
    let rpa_errors = return_path_analysis(engines, program);
    let rpa_res = if rpa_errors.is_empty() {
        ok((), vec![], vec![])
    } else {
        err(vec![], rpa_errors)
    };
    if let Some(graph) = dca_res.clone().value {
        graph.visualize(engines, print_graph, print_graph_url_format);
    }
    dca_res.flat_map(|_| rpa_res)
}

/// Constructs a dead code graph from all modules within the graph and then attempts to find dead
/// code.
///
/// Returns the graph that was used for analysis.
fn dead_code_analysis<'a>(
    engines: Engines<'a>,
    program: &ty::TyProgram,
) -> CompileResult<ControlFlowGraph<'a>> {
    let decl_engine = engines.de();
    let mut dead_code_graph = Default::default();
    let tree_type = program.kind.tree_type();
    module_dead_code_analysis(engines, &program.root, &tree_type, &mut dead_code_graph).flat_map(
        |_| {
            let warnings = dead_code_graph.find_dead_code(decl_engine);
            ok(dead_code_graph, warnings, vec![])
        },
    )
}

/// Recursively collect modules into the given `ControlFlowGraph` ready for dead code analysis.
fn module_dead_code_analysis<'eng: 'cfg, 'cfg>(
    engines: Engines<'eng>,
    module: &ty::TyModule,
    tree_type: &parsed::TreeType,
    graph: &mut ControlFlowGraph<'cfg>,
) -> CompileResult<()> {
    let init_res = ok((), vec![], vec![]);
    let submodules_res = module
        .submodules
        .iter()
        .fold(init_res, |res, (_, submodule)| {
            let tree_type = parsed::TreeType::Library;
            res.flat_map(|_| {
                module_dead_code_analysis(engines, &submodule.module, &tree_type, graph)
            })
        });
    let res = submodules_res.flat_map(|()| {
        ControlFlowGraph::append_module_to_dead_code_graph(
            engines,
            &module.all_nodes,
            tree_type,
            graph,
        )
        .map(|_| ok((), vec![], vec![]))
        .unwrap_or_else(|error| err(vec![], vec![error]))
    });
    graph.connect_pending_entry_edges();
    res
}

fn return_path_analysis(engines: Engines<'_>, program: &ty::TyProgram) -> Vec<CompileError> {
    let mut errors = vec![];
    module_return_path_analysis(engines, &program.root, &mut errors);
    errors
}

fn module_return_path_analysis(
    engines: Engines<'_>,
    module: &ty::TyModule,
    errors: &mut Vec<CompileError>,
) {
    for (_, submodule) in &module.submodules {
        module_return_path_analysis(engines, &submodule.module, errors);
    }
    let graph = ControlFlowGraph::construct_return_path_graph(engines, &module.all_nodes);
    match graph {
        Ok(graph) => errors.extend(graph.analyze_return_paths(engines)),
        Err(error) => errors.push(error),
    }
}

#[test]
fn test_basic_prog() {
    use crate::{decl_engine::DeclEngine, query_engine::QueryEngine, TypeEngine};
    let type_engine = TypeEngine::default();
    let decl_engine = DeclEngine::default();
    let query_engine = QueryEngine::default();
    let engines = Engines::new(&type_engine, &decl_engine, &query_engine);
    let prog = parse(
        r#"
        contract;

    enum yo
    <T>
    where
    T: IsAThing
    {
        x: u32,
        y: MyStruct<u32>
    }

    enum  MyOtherSumType
    {
        x: u32,
        y: MyStruct<u32>
    }
        struct MyStruct<T> {
            field_name: u64,
            other_field: T,
        }


    fn generic_function
    <T>
    (arg1: u64,
    arg2: T)
    ->
    T
    where T: Display,
          T: Debug {
          let x: MyStruct =
          MyStruct
          {
              field_name:
              5
          };
          return
          match
            arg1
          {
               1
               => true,
               _ => { return false; },
          };
    }

    struct MyStruct {
        test: string,
    }



    use stdlib::println;

    trait MyTrait {
        // interface points
        fn myfunc(x: int) -> unit;
        } {
        // methods
        fn calls_interface_fn(x: int) -> unit {
            // declare a byte
            let x = 0b10101111;
            let mut y = 0b11111111;
            self.interface_fn(x);
        }
    }

    pub fn prints_number_five() -> u8 {
        let x: u8 = 5;
        println(x);
         x.to_string();
         let some_list = [
         5,
         10 + 3 / 2,
         func_app(my_args, (so_many_args))];
        return 5;
    }
    "#
        .into(),
        engines,
        None,
    );
    let mut warnings: Vec<CompileWarning> = Vec::new();
    let mut errors: Vec<CompileError> = Vec::new();
    prog.unwrap(&mut warnings, &mut errors);
}
#[test]
fn test_parenthesized() {
    use crate::{decl_engine::DeclEngine, query_engine::QueryEngine, TypeEngine};
    let type_engine = TypeEngine::default();
    let decl_engine = DeclEngine::default();
    let query_engine = QueryEngine::default();
    let engines = Engines::new(&type_engine, &decl_engine, &query_engine);
    let prog = parse(
        r#"
        contract;
        pub fn some_abi_func() -> unit {
            let x = (5 + 6 / (1 + (2 / 1) + 4));
            return;
        }
    "#
        .into(),
        engines,
        None,
    );
    let mut warnings: Vec<CompileWarning> = Vec::new();
    let mut errors: Vec<CompileError> = Vec::new();
    prog.unwrap(&mut warnings, &mut errors);
}

#[test]
fn test_unary_ordering() {
    use crate::language::{self, parsed};
    use crate::{decl_engine::DeclEngine, query_engine::QueryEngine, TypeEngine};
    let type_engine = TypeEngine::default();
    let decl_engine = DeclEngine::default();
    let query_engine = QueryEngine::default();
    let engines = Engines::new(&type_engine, &decl_engine, &query_engine);
    let prog = parse(
        r#"
    script;
    fn main() -> bool {
        let a = true;
        let b = true;
        !a && b;
    }"#
        .into(),
        engines,
        None,
    );
    let mut warnings: Vec<CompileWarning> = Vec::new();
    let mut errors: Vec<CompileError> = Vec::new();
    let (.., prog) = prog.unwrap(&mut warnings, &mut errors);
    // this should parse as `(!a) && b`, not `!(a && b)`. So, the top level
    // expression should be `&&`
    if let parsed::AstNode {
        content:
            parsed::AstNodeContent::Declaration(parsed::Declaration::FunctionDeclaration(
                parsed::FunctionDeclaration { body, .. },
            )),
        ..
    } = &prog.root.tree.root_nodes[0]
    {
        if let parsed::AstNode {
            content:
                parsed::AstNodeContent::Expression(parsed::Expression {
                    kind:
                        parsed::ExpressionKind::LazyOperator(parsed::LazyOperatorExpression {
                            op, ..
                        }),
                    ..
                }),
            ..
        } = &body.contents[2]
        {
            assert_eq!(op, &language::LazyOp::And)
        } else {
            panic!("Was not lazy operator.")
        }
    } else {
        panic!("Was not ast node")
    };
}

/// Return an irrecoverable compile result deduping any errors and warnings.
fn deduped_err<T>(warnings: Vec<CompileWarning>, errors: Vec<CompileError>) -> CompileResult<T> {
    err(dedup_unsorted(warnings), dedup_unsorted(errors))
}

/// We want compile errors and warnings to retain their ordering, since typically
/// they are grouped by relevance. However, we want to deduplicate them.
/// Stdlib dedup in Rust assumes sorted data for efficiency, but we don't want that.
/// A hash set would also mess up the order, so this is just a brute force way of doing it
/// with a vector.
fn dedup_unsorted<T: PartialEq + std::hash::Hash>(mut data: Vec<T>) -> Vec<T> {
    // TODO(Centril): Consider using `IndexSet` instead for readability.
    use smallvec::SmallVec;
    use std::collections::hash_map::{DefaultHasher, Entry};
    use std::hash::Hasher;

    let mut write_index = 0;
    let mut indexes: HashMap<u64, SmallVec<[usize; 1]>> = HashMap::with_capacity(data.len());
    for read_index in 0..data.len() {
        let hash = {
            let mut hasher = DefaultHasher::new();
            data[read_index].hash(&mut hasher);
            hasher.finish()
        };
        let index_vec = match indexes.entry(hash) {
            Entry::Occupied(oe) => {
                if oe
                    .get()
                    .iter()
                    .any(|index| data[*index] == data[read_index])
                {
                    continue;
                }
                oe.into_mut()
            }
            Entry::Vacant(ve) => ve.insert(SmallVec::new()),
        };
        data.swap(write_index, read_index);
        index_vec.push(write_index);
        write_index += 1;
    }
    data.truncate(write_index);
    data
}